
Diffusion 5.9
User Guide

Diffusion | 2

Contents

List of Figures..12

List of Tables... 17

Part I: Welcome.. 21
Introducing Diffusion... 22
What's new in Diffusion 5.9?.. 24

What was new in Diffusion 5.8?...26
What was new in Diffusion 5.7?...26
What was new in Diffusion 5.6?...28
What was new in Diffusion 5.1?...29
What was new in Diffusion 5.0?...31

Part II: Quick Start Guide.. 33
Get Diffusion... 34
Install Diffusion... 34
Start the Diffusion server... 34
Default configuration... 34
The Diffusion monitoring console... 35
Develop a publishing client.. 35
Develop a subscribing client...37
Resources..40

Part III: Design Guide.. 41
Support...42

System requirements for the Diffusion server..42
Platform support for the Diffusion Unified API libraries.. 44
Feature support in the Diffusion Unified API..46
Protocol support...53
Browser support... 55
Browser limitations.. 55

WebSocket limitations... 56
Cross-origin resource sharing limitations...56
Browser connection limitations.. 57

Designing your data model...58

Diffusion | 3

Topic tree.. 58
Topic naming.. 59
Topic selectors in the Unified API... 60
Topic selectors in the Classic API (deprecated)... 67

Topics.. 70
JSON topics...70
Binary topics... 72
Single value topics... 73
Record topics.. 73
Stateless topics...76
Advanced topics... 76

Publication.. 87
Publishing data...88
Subscribing to topics..90

Messaging.. 90
Advanced usage..92

Conflation..92
DEPRECATED: Distributing and viewing data as pages..95

Designing your solution... 96
Servers... 96
Fan-out.. 98

Using missing topic notifications with fan-out...100
High availability.. 102

Session replication... 103
Topic replication...106
Failover of active update sources... 107

Clients.. 109
Client types... 109
Using clients..111
Using clients for control...112

User-written components.. 114
Publishers..114
Other user-written components.. 115

Third party components.. 117
Load balancers... 117
Web servers... 118
Push notification networks..120
JMS.. 122

Example solutions.. 124
Example: Simple solution.. 124
Example: A solution using clients..125
Example: Scalable and resilient solution..126

Security...126
Role-based authorization...127

Permissions... 132
Pre-defined roles.. 135

Authentication.. 137
User-written authentication handlers...140
System authentication handler... 142
Pre-defined users..143

DEPRECATED: Authorization handlers.. 144
Securing the console..147

Part IV: Developer Guide..149

Diffusion | 4

Developing a client.. 150
Best practice for developing clients..150
Feature support in the Diffusion Unified API..151
Getting started..158

JavaScript..158
Apple..165
Android.. 179
Java..193
.NET..203
C... 216

Connecting to the Diffusion server..235
Connecting basics...237
Reconnect to the Diffusion server... 250
Ping the Diffusion server..263
Change the security principal and credentials associated with your client

session... 264
Session properties.. 265

Receiving data from topics.. 268
Example: Subscribe to a topic...270
Example: Subscribe to a JSON topic...280
Example: Fetch topic state.. 286

Managing topics..292
Example: Create a topic...294
Creating a metadata definition for a record topic... 311
Handling subscriptions to missing topics...315
Example: Receive missing topic notifications.. 316
Listening for topic events.. 327
Removing topics with sessions..327

Updating topics.. 327
Example: Make exclusive updates to a topic..330
Example: Make non-exclusive updates to a topic.. 345

Managing subscriptions... 351
Example: Subscribe other clients to topics.. 352
Example: Receive notifications when a client subscribes to a routing topic......357

Messaging to topic paths... 360
Example: Send a message to a topic path..360
Example: Send a request message to the Push Notification Bridge....................368

Messaging to clients... 372
Example: Handle messages and send messages to sessions.............................. 373
Example: Use session property filters with messaging.. 384

Authenticating clients.. 391
Example: Register an authentication handler.. 391
Developing a control authentication handler.. 398
Developing a composite control authentication handler.................................... 401

Updating the system authentication store...404
DSL syntax: system authentication store... 404
Example: Update the system authentication store..407

Updating the security store... 414
DSL syntax: security store..414
Example: Update the security store..416

Managing clients...425
Handling client queues.. 429

DEPRECATED: Classic API...431
DEPRECATED: Java Client Classic API... 431
DEPRECATED: .NET Classic API..434

Diffusion | 5

DEPRECATED: JavaScript Classic API..437
DEPRECATED: ActionScript Classic API... 444
DEPRECATED: Silverlight Classic API...449
DEPRECATED: iOS Classic API..454
DEPRECATED: Android Classic API.. 460
DEPRECATED: C Classic API... 466
diffusion-wrapper.js..468

Developing a publisher...470
Publisher basics..470

Defining publishers...471
Loading publisher code... 472
Load publishers by using the API.. 472
Starting and stopping publishers..473
Publisher topics.. 474
Receiving and maintaining data..475
Publishing and sending messages.. 475
Publisher notifications... 476
Client handling..477
Publisher properties... 478
Using concurrent threads.. 478
Publisher logging..478
DEPRECATED: Server connections.. 478
General utilities...479

Writing a publisher... 479
Creating a Publisher class..480
Publisher startup.. 480
Data state..480
Data inputs..481
Handling client subscriptions.. 482
Publishing messages.. 483
DEPRECATED: Topic locking.. 486
Handling clients.. 487
Publisher closedown.. 487

Testing a publisher...488
Client queues.. 488

Queue enquiries..488
Maximum queue depth.. 489
Queue notification thresholds... 489
Tidy on unsubscribe... 489
Filtering queued messages.. 490

Client Geo and WhoIs information.. 490
The Diffusion WhoIs service...491

Client groups...492
Client notifications... 493

Adding a ClientListener.. 494
Using DefaultClientListener... 494

Developing other components.. 495
Local authentication handlers...495

Developing a local authentication handler.. 495
Developing a composite authentication handler...497

Push Notification Bridge persistence plugin.. 499
Using Maven to build Java Diffusion applications...500

Build client applications.. 501
Build publishers with Maven... 502

Building a publisher with mvndar...503

Diffusion | 6

Build server application code with Maven... 506
Testing.. 507

DEPRECATED: Flex/Flash client... 507
DEPRECATED: Java client test tool... 511
DEPRECATED: JavaScript client test tool... 515
Silverlight client test tool...516
Stress test tuning..519

Stress test..520
Benchmarking suite..521
Test tools...521

Part V: Administrator Guide... 522
Installing the Diffusion server...523

System requirements for the Diffusion server..523
Installing the Diffusion server using the graphical installer.. 525
Installing the Diffusion server using the headless installer... 527
Installing the Diffusion server using Red Hat Package Manager..................................... 528
Installing the Diffusion server using Docker... 529

Next steps with Docker.. 530
The Diffusion license.. 531

License restrictions...532
Updating your license file.. 533

Installed files...534
Verifying the Diffusion installation.. 536

Configuring your Diffusion server... 538
XML configuration...538
Programmatic configuration... 541

Using the configuration API... 541
The configuration tree... 543

Configuring the Diffusion server..544
Configuring fan-out.. 544
Configuring conflation..546
Configuring authentication handlers.. 550
Configuring performance... 552
Server.xml..552

Configuring connectors.. 570
Connectors.xml... 572

Configuring user security... 578
Security.store.. 578
SystemAuthentication.store.. 580

Configuring logging on the Diffusion server... 583
Configuring default logging... 584
Logs.xml.. 585
Configuring log4j2.. 587
Log4j2.xml... 588
Logging using another SLF4J implementation...589

Configuring JMX..590
Configuring the Diffusion JMX connector server.. 590
Configuring a remote JMX server connector.. 591
Configuring a local JMX connector server.. 592
Management.xml.. 593
Configuring the JMX adapter...594
Publishers.xml...595

Configuring replication...600

Diffusion | 7

Configuring the Diffusion server to use replication..600
Configuring your datagrid provider.. 601
Replication.xml... 603

Configuring the Diffusion web server..605
Configuring Diffusion web server security.. 606
WebServer.xml.. 606
Aliases.xml..613

ConnectionValidationPolicy.xml..613
Env.xml.. 615
Mime.xml... 615
Publishers.xml...616
Statistics.xml..620
SubscriptionValidationPolicy.xml..623
Additional XML files.. 625

Starting the Diffusion server...625
Running from within a Java application.. 626

Deploying publishers on your Diffusion server... 629
Classic deployment.. 629
Hot deployment..630

Deployment methods...630
Load balancers.. 631

Routing strategies at your load balancer... 632
Monitoring available Diffusion servers from your load balancer.................................... 634
Compositing URL spaces using your load balancer...634
Secure Sockets Layer (SSL) offloading at your load balancer... 635
Using load balancers for resilience... 636
Common issues when using a load balancer... 636

Web servers... 637
Diffusion web server...638

Server-side processing... 639
Hosting a status page on the Diffusion web server..640

Hosting Diffusion web clients in a third-party web server...640
Running the Diffusion server inside of a third-party web application server..................641

Example: Deploying the Diffusion server within Tomcat..................................... 641
Other considerations when running the Diffusion server inside of a third-party

web application server... 644
Cross domain policies.. 645

Flash security model.. 645
Silverlight security model.. 646
JavaScript security model... 647

Push Notification Bridge...649
Configuring your Push Notification Bridge... 652

PushNotifications.xml.. 654
Getting an Apple certificate for the Push Notification Bridge..............................658
Getting a Google API key for the Push Notification Bridge.................................. 658

Running the Push Notification Bridge.. 659
JSON formats used by the Push Notification Bridge... 659

Request and response JSON formats... 660
Push notification JSON format..663

JMS adapter.. 666
Transforming JMS messages into Diffusion messages or updates..................................667
Publishing using the JMS adapter...670
Sending messages using the JMS adapter... 671
Using JMS request-response services with the JMS adapter.. 674
Configuring the JMS adapter...675

Diffusion | 8

Example: Configuring the Diffusion connection for the JMS adapter running
as a standalone client.. 678

Example: Configuring JMS providers for the JMS adapter.................................. 678
Example: Configuring topics for use with the JMS adapter.................................680
Example: Configuring pub-sub with the JMS adapter... 681
Example: Configuring messaging with the JMS adapter......................................682
Example: Configuring the JMS adapter to work with JMS services.....................683
JMSAdapter.xml..684

Running the JMS adapter.. 694
DEPRECATED: Legacy JMS adapter...695

DEPRECATED: Configuring the legacy JMS adapter version 5.1.......................... 697
DEPRECATED: JMS adapter data flow examples..705

Network security... 713
Going to production... 715

Pre-production testing... 715
Setting up your test environment... 715
Understanding production usage conditions...717
Types of testing.. 719
Testing your security..720
Tools you can use in your pre-production testing... 721

Planning for production...722
Deploying to your production environment...723

Managing and monitoring your running Diffusion server.. 723
JMX...724

Using Java VisualVM...725
Using JConsole... 727
MBeans.. 730
The JMX adapter...740

Statistics.. 743
Configuring statistics..746

Diffusion monitoring console.. 748
DEPRECATED: Introspector.. 759

Supported platforms.. 760
Installing from update site.. 760
Installing subsequent plugin updates...764
Uninstalling... 764
Opening the Diffusion perspective.. 765
Adding servers.. 767
Opening servers.. 768
Exploring the topics... 768
Getting topic values... 768
Configuring columns.. 770
Ping servers...770
Count topics..770
Using the clients view.. 770
Ping.. 771
Statistics.. 772
Topics.. 772
Logging.. 772
Server logs...772
Property obfuscator... 773

Logging.. 773
Logging back-end... 774
Logging reference... 775
Connection counts..779

Diffusion | 9

Integration with Splunk... 780
Tuning...783

Concurrency.. 783
Buffer sizing.. 785
Message sizing.. 787
Client queues.. 787
Client multiplexers..788
Connectors.. 789
Thread pools... 789
Client reconnection.. 792
Client failover..795
Client throttling.. 797
Java memory usage... 798
Platform-specific issues... 799

Socket issues...799
Publisher design... 801

Demos... 801
Demos..802
Building the demos using mvndar.. 802

Tools... 803
Tools for Amazon Elastic Compute Cloud (EC2)...803
Tools for Joyent..805

Part VI: Upgrading Guide... 806
Interoperability..807
Upgrading from version 4.x to version 5.1... 809
Upgrading from version 5.1 to version 5.5... 815
Upgrading from version 5.5 to version 5.6... 822
Upgrading from version 5.6 to version 5.7... 826
Upgrading from version 5.7 to version 5.8... 829
Upgrading from version 5.8 to version 5.9... 832
Upgrading to a new patch release...835
Known issues in Diffusion 5.9... 836

Chapter : Appendices...838

Appendix A: Document conventions.................................... 839

Appendix B: Glossary..840
A... 841
C... 842
D... 843
E... 845
F..845
G... 846
H...846
I.. 847
J..847
L..849
M...849
N... 850

Diffusion | 10

P... 850
Q...852
R... 852
S... 854
T... 856
U... 857
V... 858
W.. 858
X... 858

Appendix C: Trademarks...860

Appendix D: Copyright Notices..862
ANTLR.. 864
apns... 864
Apache Commons Codec... 864
Apache Portable Runtime.. 864
Bootstrap...865
CocoaAsyncSocket..865
concurrent-trees... 865
CQEngine... 865
cron4j... 865
d3... 866
disruptor..866
FastColoredTextBox..866
Fluent validation...866
Fluidbox... 866
gcm-server...867
GeoIP API...867
GeoLite City Database.. 867
geronimo-jms_1.1_spec... 867
Google code prettify...868
hashmap..868
Hazelcast... 868
HPPC.. 869
htmlcompressor..869
inherits...869
jackson-core.. 869
jackson-dataformat-cbor... 869
JCIP Annotations.. 870
JCTools.. 870
jQuery.. 870
json-simple.. 870
JZlib... 870
Knockout... 871
libwebsockets... 871
log4j2... 871
loglevel.. 871
long.. 871
Metrics... 872
Minimal JSON..872
Modernizr...872
NLog...872

Diffusion | 11

opencsv..873
OpenSSL.. 873
PCRE.. 873
Picocontainer.. 874
Protocol Buffers.. 874
Rickshaw..874
Servlet API... 874
SLF4J..874
slf4j-android-logger.. 874
SocketRocket.. 875
Tabber... 875
Tapestry (Plastic).. 875
TrueLicense... 875
when.. 876
ws... 876
Licenses... 876

Apache License 2.0... 876
BSD 3-clause License..879
Common Development and Distribution License.. 880
Eclipse Public License – v 1.0.. 884
ISC License –... 887
The GNU Lesser General Public License, version 2.1 (LGPL-2.1)..........................887
The GNU Lesser General Public License, version 3.0 (LGPL-3.0)..........................893
The MIT License (MIT).. 895
OpenSSL and SSLeay Licenses.. 896

Diffusion | 12

List of Figures

Figure 1: Example topic tree... 58

Figure 2: Pub-sub model... 88

Figure 3: A client registers a handler on part of the topic tree......................................91

Figure 4: A client can send messages through a topic path to known client sessions.. 91

Figure 5: Message flow without conflation enabled..93

Figure 6: Message flow with simple replace conflation enabled.................................. 93

Figure 7: Message flow with simple append conflation enabled.................................. 93

Figure 8: Message flow with merge and replace conflation enabled............................94

Figure 9: Fan-out..98

Figure 10: Missing topic notification propagation... 101

Figure 11: Information sharing using a datagrid... 102

Figure 12: Session replication... 103

Figure 13: Topic replication...106

Figure 14: Using a web server with Diffusion... 118

Figure 15: Deploying Diffusion inside a web application server................................. 119

Figure 16: A simple solution..124

Figure 17: Clients for different purposes.. 125

Figure 18: Architecture using replication and fan-out...126

Figure 19: Topic scope example... 133

Diffusion | 13

Figure 20: Authentication process for clients...138

Figure 21: A composite authentication handler.. 141

Figure 22: Session state model... 236

Figure 23: Flow of requests and responses when connecting to Diffusion through
a proxy..248

Figure 24: Flow from a subscribing client to the client that handles a missing topic
subscription... 315

Figure 25: Diffusion wrapper... 468

Figure 26: The message queue... 488

Figure 27: Example folder structure inside a DAR file..502

Figure 28: Flex client: Connection tab.. 508

Figure 29: Flex client: Send tab...509

Figure 30: Flex client: Messages tab... 510

Figure 31: Flex client: Log tab... 511

Figure 32: External client tester: Connection tab.. 512

Figure 33: External client tester: Send tab... 513

Figure 34: External client tester: Messages tab..514

Figure 35: External client tester: Message details window..515

Figure 36: JavaScript test tool.. 516

Figure 37: Silverlight test tool: Connection tab... 517

Figure 38: Silverlight test tool: Send tab.. 518

Figure 39: Silverlight test tool: Messages tab...519

Figure 40: Sticky-IP in F5 BIG-IP..633

Figure 41: Using a load balancer to composite two URL spaces into one.................. 648

Figure 42: Requests to the Push Notification Bridge...650

Figure 43: Notifications from the Push Notification Bridge.. 651

Figure 44: JMS message structure.. 667

Figure 45: Basic mapping from a JMS message to a Diffusion message.....................668

Diffusion | 14

Figure 46: Basic mapping from a Diffusion message to a JMS message.....................668

Figure 47: Mapping from a JMS message to and from JSON in a Diffusion message.. 669

Figure 48: JMS adapter: Publishing from JMS to Diffusion... 670

Figure 49: JMS adapter: Message flow from Diffusion to JMS.....................................672

Figure 50: JMS adapter: Message flow from JMS to Diffusion.....................................672

Figure 51: JMS adapter: Request-response message flow.. 674

Figure 52: Subscription flow... 707

Figure 53: Sending flow from a Diffusion client to a JMS topic (or queue)................. 708

Figure 54: Request-reply initiated by a JMS client and serviced by a Diffusion client. 710

Figure 55: Request-reply initiated by a Diffusion client and serviced by a JMS client. 712

Figure 56: Connecting to Diffusion JMX..724

Figure 57: Java VisualVM: Overview tab... 726

Figure 58: JConsole New Connection dialog: Remote Process...................................727

Figure 59: JConsole New Connection dialog: Remote Process...................................728

Figure 60: JConsole New Connection dialog: Local Process....................................... 729

Figure 61: The server MBean stopController operation showing in JConsole............731

Figure 62: Reflecting MBeans as topics.. 741

Figure 63: Showing a composite attribute as a topic nest.. 742

Figure 64: Topics reflecting an ArrayType MXBean attributes.................................... 743

Figure 65: Logging in the monitoring console... 749

Figure 66: The default console layout.. 749

Figure 67: The table of publishers.. 750

Figure 68: Publisher statistics graphs...751

Figure 69: The table of topics... 751

Figure 70: Details of the topic publishing the CPU load of the host server.................752

Figure 71: The table of clients...752

Figure 72: The table of log entries..753

Diffusion | 15

Figure 73: Security tables.. 754

Figure 74: Editing the Access Policy... 755

Figure 75: Notification that the Diffusion server has stopped.................................... 755

Figure 76: The default Diffusion Details panel... 756

Figure 77: Editing the properties of the Diffusion Details panel................................. 757

Figure 78: Visualizing the CPU load on a server at a specific time.............................. 758

Figure 79: Editing and adding to the set of topics for this panel................................ 758

Figure 80: Adding a repository.. 761

Figure 81: Install dialog... 761

Figure 82: Accept the license agreement... 762

Figure 83: Click OK...763

Figure 84: Restarting..764

Figure 85: About Eclipse dialog...764

Figure 86: Installed plugins... 765

Figure 87: Perspective... 766

Figure 88: Views... 766

Figure 89: Add a server..767

Figure 90: Edit server details...768

Figure 91: View topic values..769

Figure 92: Re-order columns... 770

Figure 93: Ping a server... 770

Figure 94: Topic count...770

Figure 95: Ping clients... 771

Figure 96: Server log entries... 772

Figure 97: Property Obfuscator dialog... 773

Figure 98: Welcome tab of the Splunk web UI...781

Figure 99: The Splunk Set source type dialog..781

Diffusion | 16

Figure 100: The Data Preview panel... 782

Figure 101: The Splunk search summary panel...782

Figure 102: Reconnection scenario...795

Figure 103: Normal and throttled client queues..798

Diffusion | 17

List of Tables

Table 1: Supported platforms and transport protocols for the client libraries............ 44

Table 2: Capabilities provided by the Diffusion client libraries.................................... 46

Table 3: Supported protocols by client..53

Table 4: Supported protocols by client..54

Table 5: Supported browsers..55

Table 6: Support for WebSocket...56

Table 7: Support for CORS.. 56

Table 8: Maximum supported connections..57

Table 9: Restricted characters for topics used by Classic API clients........................... 60

Table 10: Types of topic selector..60

Table 11: Descendant pattern qualifiers.. 62

Table 12: Selector examples... 69

Table 13: Data types for metadata fields... 75

Table 14: Handling Responses.. 86

Table 15: Handling Errors..86

Table 16: Error types... 86

Table 17: Supported protocols by client..111

Table 18: List of topic-scoped permissions..132

Table 19: List of global permissions... 134

Diffusion | 18

Table 20: Client operations that require authentication...139

Table 21: Types of authentication handler.. 141

Table 22: Authorization handler methods... 144

Table 23: Capabilities provided by the Diffusion client libraries................................ 151

Table 24: Supported platforms and transport protocols for the client libraries........ 159

Table 25: Supported platforms and transport protocols for the client libraries........ 166

Table 26: Supported platforms and transport protocols for the client libraries........ 179

Table 27: Supported platforms and transport protocols for the client libraries........ 194

Table 28: Supported platforms and transport protocols for the client libraries........ 204

Table 29: Supported platforms and transport protocols for the client libraries........ 217

Table 30: Session filter search clause operators... 266

Table 31: Session filter boolean operators.. 267

Table 32: Connection types...431

Table 33: Types of connection that can be specified from the .NET client.................434

Table 34: JavaScript functions called on events... 438

Table 35: Location of the flashlog.txt file...449

Table 36: Location of the policyfiles.txt file... 449

Table 37:... 454

Table 38:... 461

Table 39: Start publisher... 473

Table 40: Stop publisher... 473

Table 41: Notification methods.. 476

Table 42: General publisher utilities...479

Table 43: Usable methods with ordered topic data.. 485

Table 44: Usable methods with unordered topic data..486

Table 45: WhoIs.. 490

Table 46: WhoIs service... 491

Diffusion | 19

Table 47: Client listener notifications...493

Table 48: Artifacts.. 501

Table 49: Tuning changes for stress testing...519

Table 50: Testing tools.. 521

Table 51: Installed files..534

Table 52: Tools and utilities..535

Table 53: XML Value types...539

Table 54: Conflation policy elements... 546

Table 55: Conflation policy modes... 547

Table 56: Action depending upon merge result...548

Table 57: Connectors properties...570

Table 58: Connection restrictions...571

Table 59: Examples of routing strategies... 632

Table 60: Properties that can be specified when configuring the JMS adapter......... 699

Table 61: Notifications as topics...741

Table 62: Client properties in the Eclipse client view..771

Table 63: Log levels... 775

Table 64: Fields included in the logs.. 776

Table 65: Values that can be configured for a thread pool... 789

Table 66: Events that a thread pool notification handler can act on......................... 791

Table 67: Demos provided with the Diffusion server...802

Table 68: Targets..804

Table 69: Properties for targets start, stop and status..804

Table 70: Additional properties for targets deploy and undeploy.............................. 804

Table 71: Unified API interoperation.. 807

Table 72: Classic API (deprecated) interoperation.. 807

Table 73: API features removed in version 5.0 and 5.1..810

Diffusion | 20

Table 74: API features deprecated in version 5.0 and 5.1... 811

Table 75: API features removed in version 5.5...817

Table 76: API features deprecated in version 5.5.. 817

Table 77: API features removed in version 5.6...823

Table 78: API features deprecated in version 5.6.. 823

Table 79: API features removed in version 5.7...827

Table 80: API features deprecated in version 5.7.. 827

Table 81: API features removed in version 5.8...830

Table 82: API features deprecated in version 5.8.. 830

Table 83: API features removed in version 5.9...833

Table 84: API features deprecated in version 5.9.. 833

Table 85: Typographic conventions used in this manual..839

Diffusion | 21

Part
I

Welcome

Welcome to the Push Technology User Manual for Diffusion™

The manual is regularly updated, but if you require further help, see the articles and forums in our Support
Center: http://support.pushtechnology.com.

New to Diffusion?

• Learn what Diffusion is and what it can do for your organization: Introduction
• Get started with Diffusion: Quick Start Guide on page 33

Ready to start building your Diffusion solution?

• Decide what your Diffusion solution will look like: Design Guide on page 41
• Develop your Diffusion clients: Developer Guide on page 149
• Set up and manage your Diffusion server and solution: Administrator Guide on page 522

About to upgrade from an earlier version of Diffusion?

• See what's new in the latest version of Diffusion: What's new in Diffusion 5.9? on page 24
• Check how changes might affect your existing Diffusion solution: Upgrading

In this section:

• Introducing Diffusion
• What's new in Diffusion 5.9?

http://support.pushtechnology.com

Diffusion | 22

Introducing Diffusion

Diffusion from Push Technology provides realtime messaging, optimized for streaming data over the
internet.

Flexibility, responsiveness and interactivity are some of the fundamental requirements for today’s
application architecture. But challenges created by unreliable and congested networks stand in the
way – particularly for mobile and IoT.

The answer? A realtime integration model, with better data efficiency to address these challenges,
while reducing data costs at the same time.

With Push Technology’s realtime messaging products – and our unique, data-efficient approach to
streaming data – developers are armed with an integration and data delivery platform optimized for
today’s internet-connected world.

Why realtime messaging?

Many of today’s apps are point-in-time representations of data, refreshing information only when
a user explicitly asks for an update, or continuously polling the backend. However, reactive apps
are infinitely more engaging, and interactive – pushing updates in real time as new data becomes
available. This allows you to scale your applications, without adding unnecessary load to back-
end systems and creates a layer of decoupling that protects applications from data model changes.
Realtime messaging integrates seamlessly with modern development frameworks for the web
(Angular, Meteor, React, etc) delivering data updates in real time to end users. Stop focusing on point-
in-time data, and instead, focus on realtime, event-driven, responsive, and engaging applications.

Benefits of Diffusion

Diffusion offers the most intelligent and data-efficient realtime messaging products available today.
Designed to be easily integrated to new and existing application architecture, our technology gives you
a flexible, reactive, and efficient data layer for all your business needs.

Publish-subscribe integration

The Diffusion server provides a publish-subscribe integration model. The Diffusion server stores data
in a tree of topics, where each topic has a value. This value can be fetched in an ad-hoc fashion, but,
more commonly, a client session subscribes to the topics that are of interest to it. The Diffusion server
pushes each update to the topic to the client session as a stream of values.

Dynamic data model

Client sessions subscribe to data topics using wildcard selectors. When new topics are added, sessions
with matching selectors are automatically subscribed. This avoids the need for separate topic life-
cycle processes, and data objects can be frequently created and deleted without impacting existing
applications.

Value-oriented programming

A value-oriented programming model is a fundamental feature of a reactive data model. Applications
are built against an API that provides streams of values, rather than individual messages that need
further decoding. Client SDKs provide a common programming model, making best use of the
features particular to their implementation language. This frees developers to focus on application
functionality, rather than data integration.

Diffusion | 23

Inverted data grid

Like a data grid, Diffusion stores values in memory. Traditionally, data grids are optimized for query
and primarily support a polling paradigm. In Diffusion, the data grid is optimized for a realtime, event-
driven communication. Often deployed as a specialized cache, data grids offload processing from a
backend system. Diffusion offers the same benefit but is designed to deliver realtime streams to a high
number of subscribed clients.

Non-blocking I/O

Network communication is performed by an event-driven kernel that uses non-blocking I/O to interact
efficiently with the host networking. Client sessions are partitioned and each partition is assigned to
a dedicated thread that manages all subscription matching and outbound communication for that
session. This lock-free design avoids contention between these sessions and allows the platform to
scale linearly across CPU resources, achieving very high message rates.

Protocol optimization

Messages are serialized into a compact binary representation called CBOR. This reduces bandwidth
consumption for every message – up to 30% compared with ASCII. A small binary header is used to
frame each message, but this is typically only two bytes when using the default WebSocket-based
protocol.

Delta streaming

Topics provide stateful streams of data to each session. Once a client session is subscribed to a topic
and receives the current state, all subsequent updates are sent as a delta (the difference from the
previous value). This happens transparently to the application, with the client SDK reconstructing the
full data payload with the delta applied – so neither application or backend require changes.

Message queue optimization

Messages that cannot be immediately delivered to a session are queued. If the network connections
fail, bandwidth is limited, or the client is simply slow, messages can back up on the queue. Diffusion
can conflate the queue to remove messages that are stale or no longer relevant, or to combine
multiple related messages into a single consolidated message.

Bandwidth management

The rate of messages delivered to a session can be artificially constrained by the platform. This can be
used to prioritize one client session over another, to place limits on bandwidth utilization, to improve
batching, or to encourage conflation. These measures might be desirable in some circumstances, but
obviously lead to increased latency for the throttled sessions.

Reliable reconnection

Client connectivity is continuously monitored by the Diffusion server using a variety of bandwidth
efficient mechanisms. If a client session is disconnected due to network failure, both the client and
server queue messages for a period of time until that session can be re-established. Once the session
is reconnected, the client and server reconcile the messages successfully received to ensure none are
lost.

Assured delivery

During an active session, messages between the client and the Diffusion server are delivered without
loss regardless of the protocol in use. Delivery is considered assured rather than guaranteed to
account for client/server or network failures that terminate an active session.

Diffusion | 24

Extensive SDK support

With simple client SDKs (Software Development Kits) available for a range of languages and
environments, there are no new protocols or technologies to learn. The SDK includes a runtime library,
API, documentation, and examples. The supported SDKs include JavaScript® (browser and Node.js),
Apple® (iOS®, OS X®/macOS® and tvOS™), Android™, Java™, .NET, and C

Protocol fallback

By default, clients use the WebSocket protocol to establish bi-directional communication with the
Diffusion server. In some cases the WebSocket protocol is not available For example, WebSocket
connections can be blocked by a firewall or load balancer, or disallowed by the network provider. In
this case, clients can automatically fallback (cascade) to long polling over HTTP.

Session administration

A session with appropriate security permissions can act as a control client and instruct the Diffusion
server to add and remove topics, send data updates to topics, and receive notifications about events
– such as when the number of subscribers for a topic falls to zero. A control client session can also
authenticate connection requests, receive notifications about new or modified sessions, modify or
close sessions, and send and receive messages to and from individual sessions. Every session has
session properties: a set of key-value pairs that can be modified or used to filter groups of related
sessions.

Security framework

The Diffusion server has a capable security framework. Authentication can use the built-in security
database or be federated to control clients that can integrate with third-party database. Authorization
is declarative and based on a configurable hierarchy of roles. Each session is assigned to one or more
roles. Roles are granted permissions such as the ability to access, modify, subscribe to, or update
specific topics; or the ability to control other sessions. Secure communication over TLS is supported by
the Diffusion server and client libraries for all protocols.

What's new in Diffusion 5.9?

The latest version of Diffusion contains new functions, performance enhancements and bug fixes.

A complete list of the latest updates to Diffusion can be found in the Release Notes available at http://
docs.pushtechnology.com/docs/5.9.4/ReleaseNotice.html.

TypeScript support in the JavaScript API

The JavaScript API now includes TypeScript definitions. These definitions enable developers to more
efficiently develop JavaScript clients for Diffusion while minimizing the risk of runtime errors caused
by type mismatches.

For more information, see JavaScript on page 158.

Transport cascading in the Android and Java Unified API

You can specify that your client attempts connection using more than one transport. If a connection
attempt using the first specified transport fails, the client cascades to the next specified transport and
uses it to attempt connection.

For more information, see Connecting basics on page 237.

http://docs.pushtechnology.com/docs/5.9.4/ReleaseNotice.html
http://docs.pushtechnology.com/docs/5.9.4/ReleaseNotice.html

Diffusion | 25

Additional support for JSON and binary topics in the Apple API

Apple Unified API clients now provide the ability to create and subscribe to JSON and binary topics.

JSON topics enable you to structure your data using JSON. The data is transmitted in a CBOR binary
form for increased efficiency.

For more information, see JSON topics on page 70.

Binary topics enable you to stream your data in pure binary form without the overhead of having to
encode the binary data into string form.

For more information, see Binary topics on page 72.

Reliable reconnection for automated fan-out

The automated fan-out feature now makes use of all the advantages of Diffusion's reliable
reconnection, which was introduced in version 5.8.

Previously, fan-out could not make use of standard reconnection due to the possibility of message
loss. Now a fan-out secondary server that loses its connection to the primary server can reconnect
without any loss of topics.

For more information, see Configuring fan-out on page 544.

Propagation of missing topic notifications over automated fan-out connections

Missing topic notifications generated by subscription or fetch requests to a secondary server are now
propagated to missing topic handlers registered against the primary servers.

Control clients can use these notifications to monitor the activity of end-user clients. It was previously
necessary for control clients to establish separate sessions with secondary servers to receive these
notifications. Now clients can receive missing topic notifications through a single session with a
primary server.

For more information, see Using missing topic notifications with fan-out on page 100.

Topics can be created without first creating parent topics

The relationship between topics and the topic tree has changed significantly in this release.

In previous releases, creating a topic at a topic path – for example, a/b – required that there was a
topic at all parent paths – for example, a. If not present, these parent topics were created as stateless
topics at the time the child topic was created.

From Diffusion version 5.9, a topic can be created at any topic path where there is not an existing topic.
No additional parent topics are created. Empty intermediate topic paths remain empty and topics can
be created at these empty paths at a later point.

Because there is no longer a requirement for every topic to have a parent topic, topics can now be
deleted without affecting or deleting any child topics.

Note: These changes only apply to Unified API interactions with the topic tree. Publishers still
create required parent topics when creating a topic and still delete all topics below a topic
selected for deletion.

JMS adapter now available as a standalone application

The Diffusion JMS adapter, which previously could only be run as part of the Diffusion server process,
can now also be run as a standalone application on a separate system to the Diffusion server.

For more information, see JMS on page 122.

Diffusion | 26

Related concepts
Upgrading Guide on page 806
If you are planning to move from an earlier version of Diffusion to version 5.9, review the following
information about changes between versions.

What was new in Diffusion 5.8?
The latest version of Diffusion contains new functions, performance enhancements and bug fixes.

A complete list of the latest updates to Diffusion can be found in the Release Notes available at http://
docs.pushtechnology.com/docs/5.9.4/ReleaseNotice.html.

Reconnection improvements

Previously, when a client lost connection to the Diffusion server and then reconnected, messages
might have been lost in transmission.

Diffusion now re-synchronizes the streams of messages from client to the Diffusion server and from
the Diffusion server to client when the client reconnects. When reconnecting, the client notifies the
Diffusion server of the last message received and the earliest message it can send again. Diffusion
sends any missing messages again and instructs the client to resume from the appropriate message.

The Android and Java Unified API clients also maintain a buffer of messages that can be sent again to
the Diffusion server.

If any messages have been lost, the Diffusion server aborts the reconnection. If reconnection succeeds,
no messages have been lost.

For more information, see Reconnect to the Diffusion server on page 250

JSON and binary topics in .NET

.NET Unified API clients now provide the ability to create, update, and subscribe to JSON and binary
topics.

JSON topics enable you to structure your data using JSON. The data is transmitted in a CBOR binary
form for increased efficiency.

For more information, see JSON topics on page 70.

Binary topics enable you to stream your data in pure binary form without the overhead of having to
encode the binary data into string form.

For more information, see Binary topics on page 72.

What was new in Diffusion 5.7?
Diffusion 5.7 contains new functions, performance enhancements and bug fixes.

A complete list of the latest updates to Diffusion can be found in the Release Notes available at http://
docs.pushtechnology.com/docs/5.9.4/ReleaseNotice.html.

JSON and binary topics

The Java, JavaScript, .NET, and Android Unified API clients now provide the ability to create, update,
and subscribe to JSON and binary topics.

http://docs.pushtechnology.com/docs/5.9.4/ReleaseNotice.html
http://docs.pushtechnology.com/docs/5.9.4/ReleaseNotice.html
http://docs.pushtechnology.com/docs/5.9.4/ReleaseNotice.html
http://docs.pushtechnology.com/docs/5.9.4/ReleaseNotice.html

Diffusion | 27

JSON topics enable you to structure your data using JSON. The data is transmitted in a CBOR binary
form for increased efficiency.

For more information, see JSON topics on page 70.

Binary topics enable you to stream your data in pure binary form without the overhead of having to
encode the binary data into string form.

For more information, see Binary topics on page 72.

Create and update topics from the Apple Unified API

The TopicControl and TopicUpdateControl features are now available in the Apple Unified API.

For more information, see and .

Enhancements to the C Unified API

The following new features have been added to the C Unified API:

• WebSocket support.

The WebSocket implementation provides a browser-based full duplex connection, built on top
of WebSocket framing. This complies with the WebSocket standards and is usable with any load
balancer or proxy with support for WebSocket.

• The ClientControl feature.

The C Unified API now enables you to receive notifications when client sessions open or close and
get session properties for a client session. For more information, see Managing clients on page
425.

New security permission: select_topic

The select_topic security permission has been added to the list of topic-scoped permissions. This
permission controls whether sessions can subscribe to or fetch from particular parts of the topic tree.
For more information, see Permissions on page 132.

If you are upgrading an existing configuration to work with Diffusion 5.7, update your
Security.store file to grant this new permission to the appropriate roles. For more information,
see Upgrading from version 5.6 to version 5.7 on page 826.

HTTP Polling transport in the JavaScript Unified API

HTTP polling uses HTTP to make a long poll request. This transport is supported by most proxies
and load balancers and enables your clients to connect to the Diffusion server in situations where
WebSocket connections are not allowed.

For more information, see Client types on page 109.

Transport cascading in the JavaScript Unified API

You can specify that your client attempts connection using more than one transport. If a connection
attempt using the first specified transport fails, the client cascades to the next specified transport and
uses it to attempt connection.

For more information, see Connecting basics on page 237.

Log4j2 logging

Diffusion can now be configured to use log4j2 as an alternative logging implementation. The log4j2
implementation of SLF4J supports a wide range of appenders and allows fine-grained tuning of the
events that are logged.

Diffusion | 28

For more information, see Logging back-end on page 774. For the log4j2 documentation, see http://
logging.apache.org/log4j/2.x/manual.

Increased interoperability of client and server versions

The Diffusion server and Diffusion clients can now negotiate well-defined interoperability of services
based on their respective versions, for version 5.6 and later. This enables clients to connect to a
Diffusion server with a later version and for both the client and the server to respond gracefully to
differences of capability.

For more information, see Interoperability.

Paged topic support in automated fan-out

Paged string topics and paged record topics are now added to the list of topic types that can be
distributed by automated fan-out.

For more information, see Fan-out on page 98.

What was new in Diffusion 5.6?
Diffusion 5.6 contains new functions, performance enhancements and bug fixes.

A complete list of the latest updates to Diffusion can be found in the Release Notes available at http://
docs.pushtechnology.com/docs/5.9.4/ReleaseNotice.html.

Apple Unified API

An Apple version of the Unified API is now available for iOS and OS X/macOS.

For version 5.6, the iOS Classic API (the API used in version 4 and earlier) is still supported.

For more information, see Apple on page 165.

Android Unified API

The Java version of the Unified API is now available for Android.

For version 5.6, the Android Classic API (the API used in version 4 and earlier) is still supported.

For more information, see Android on page 179.

Push notifications

This release introduces the Push Notification Bridge. The bridge is a Diffusion client that subscribes
to topics on behalf of other Diffusion client applications and uses a push notification network to relay
topic updates to the device where the client application is located.

For more information, see Push notification networks on page 120.

Automatic fan-out

A Diffusion server can be configured to as a secondary server to a specified primary Diffusion server
and automatically replicate all or part of the topic tree of the primary server at the secondary server.
In previous releases, this fan-out distribution was only achieved using topic notification topics and
publishers at both the primary and secondary server.

For more information, see Fan-out on page 98.

http://logging.apache.org/log4j/2.x/manual
http://logging.apache.org/log4j/2.x/manual
http://docs.pushtechnology.com/docs/5.9.4/ReleaseNotice.html
http://docs.pushtechnology.com/docs/5.9.4/ReleaseNotice.html

Diffusion | 29

Session failover for Unified API clients

Unified API clients can now reconnect to a replicated session on a secondary server if the primary
server they first connected to becomes unavailable.

In previous releases, only Classic API clients had this capability.

For more information, see Session replication.

Session properties enhancements

The SubscriptionControl feature now takes advantage of session properties to enable you to select
client sessions by their properties and subscribe the selected sessions to a topic or topics.

For more information, see .

The ClientControl feature can now register a session properties listener which is notified of state
changes of clients along with selected session properties values. The ClientControl feature can also get
the properties of any connected client session.

For more information, see Managing clients on page 425 />.

TopicControl feature enhancements

You can now listen for topic events on branches of the topic tree and receive a notification when any
topic in that branch changes from having zero subscribers to having one or more subscribers or from
having one or more subscribers to having zero subscribers.

For more information, see Listening for topic events on page 327.

Optimizations to topic subscription evaluation

Subscription processing has been optimized.

The memory required to record standard topic subscriptions is significantly reduced. The memory
footprint for routing or slave topic subscriptions has also been reduced.

When topics are created, the process of evaluating topic selections for existing sessions is more
efficient. Subscriptions are evaluated in parallel using multiple CPU cores, and the processing is now
asynchronous and batched. This provides a more resilient response to a sudden load.

This change to subscription evaluation also changes the performance of certain publisher features. For
more information, see Handling client subscriptions on page 482.

What was new in Diffusion 5.1?
Diffusion 5.1 contains new functions, performance enhancements and bug fixes.

Key features

A complete list of the latest updates to Diffusion can be found in the Release Notes available at http://
download.pushtechnology.com.

Paged topic support in the Java and .NET Unified API

You can use the TopicControl feature to create paged record topics and paged string topics and to
define rule-based comparators to use for ordering the lines in the paged topic. For more information,
see .

You can use the TopicUpdateControl feature to update paged record topics and paged string topics.
For more information, see .

http://download.pushtechnology.com
http://download.pushtechnology.com

Diffusion | 30

UpdateSource capabilities in the Unified API

The UpdateSource capabilities replace the TopicSource capabilities. UpdateSource includes the ability
to build more complex updates, support for more topic types, and better handling of unexpected
closes.

For more information, see the API documentation.

Remove topics after the control client closes using the Unified API

The TopicControl feature now enables you to specify whether to remove sections of the topic tree after
a control client session closes.

For more information, see .

.NET and C Unified API production support

The .NET and C Unified API are now supported for production use. Both APIs contain functionality to
implement a control client.

For more information, see .NET on page 203 and C on page 216.

Proxy support

Clients that use the Java Unified API can now connect to the Diffusion server through a proxy. The
Unified API enables you to connect through the proxy unauthenticated, with basic authentication, or
through any other authentication process by implementing your own challenge handlers.

For more information, see Connecting through an HTTP proxy on page 248.

WebSocket support in the iOS Classic API

Clients implemented using the iOS Classic API can now connect to the Diffusion server through the
WebSocket protocol.

Streams replace listeners for receiving content through the Unified API

The Listeners in the Topics and Messaging features are now deprecated. Listeners have been
replaced by streams. Topics.TopicStream receives topic events, such as topic updates for a topic
or topics. Messaging.MessageStream receives messages sent through a topic or topics.

Streams provide advantages over listeners as a stream has a logical end. A stream can be closed
or discarded, at which time the stream has the opportunity to do any required cleanup or take any
required actions.

Flow control (Java Unified API)

The Java client library can now control the flow of requests from a client to decrease the likelihood of
the client's outbound queue or the client queue on the server overflowing and causing the client to be
disconnected.

This process happens automatically when the client detects conditions that might cause a queue
overflow and increases the reliability of the Java client.

Diffusion | 31

What was new in Diffusion 5.0?
Diffusion 5.0 contains new functions, performance enhancements and bug fixes.

Key features

A complete list of the latest updates to Diffusion can be found in the Release Notes available at http://
download.pushtechnology.com.

New high availability features

In version 5.0, Diffusion introduces the following new high availability features: session replication,
topic replication, and failover of the active update source. These features use a datagrid to share data
between multiple Diffusion servers.

Session replication shares client session information between servers. If a client loses connection to a
server, it is reconnected through a load balancer to another server that has access to all of the client's
session information.

Topic replication shares topic information – such as the topic definition and metadata – and topic
data between servers. If a server becomes unavailable, the topic information and data is available on
another server.

Only one server can act as the active update source for a topic or branch of the topic tree. If that server
becomes unavailable, other servers can take over as the active update source for those topics.

For more information, see High availability on page 102.

Control client

Control clients are a way to package application logic that controls a Diffusion server. Unlike
publishers, control clients run as a separate process outside of the server and use the Diffusion client
library to communicate with the server.

Control clients use the Unified API to provide a secure remote control experience that can use all of the
supported protocols to communicate with the Diffusion server. They can be implemented in any of the
supported languages. For more information, see .

Introducing the Unified API

Beginning in version 5.0, Diffusion is transitioning to a new public API. The Unified API will make
available the capabilities of standard clients, control clients, and event publishers in one consistent,
modular interface. For more information, see .

For version 5.0, the control features are now available. This enables you to replace remote control with
the richer experience of control client.

The Classic API (the API used in version 4 and earlier) is still supported in 5.0 for clients and event
publishers. The remote control API is no longer supported.

Improved performance

Diffusion can now serve up to 150% more messages per second to 60% more clients by using a new
queuing mechanism.

In benchmark tests, using 50 topics and 125-byte messages, Diffusion served 15 million messages
per second to 87,000 clients. Diffusion used 24 threads and three client processes to achieve this
performance.

http://download.pushtechnology.com
http://download.pushtechnology.com

Diffusion | 32

New authentication model

In Diffusion 5.9 we have split out the concept of authentication from that of authorization. You can
write and configure both remote and local authentication handlers.

In previous versions, the authentication capability was provided by authorization handlers. Using
authorization handlers for authentication is now deprecated. We recommend that you re-implement
your authentication logic using the version 5 authentication APIs.

For more information, see User access control.

JavaScript API for paged topics

The JavaScript API now includes improved capability to work with paged topics. For more information,
see .

Iframe streaming

Iframe streaming connections are now available over the HTTP protocol.

Liveness monitoring in Flex® and JavaScript

The Flex and JavaScript client libraries now include liveness monitors that listen for activity from the
server and raise an event if the lack of activity indicates that the connection has been lost. This enables
the client to reconnect in the event of a lost connection.

For more information, see and

Diffusion | 33

Part
II

Quick Start Guide

Push Technology’s Diffusion is the ingredient software required to resolve the limitations and challenges of
data distribution by speeding up the delivery of content, enabling rapid scale and optimizing data sent and
received.

This guide gives you an overview of installing the Diffusion server and starting to develop your own clients.

In this section:

• Get Diffusion
• Install Diffusion
• Start the Diffusion server
• Default configuration
• The Diffusion monitoring console
• Develop a publishing client
• Develop a subscribing client
• Resources

Diffusion | 34

Get Diffusion

To install Diffusion you require the product jar, Diffusion5.9.4.jar, and the standalone installer
jar, install.jar.

You can get both of these files from the Push Technology Download site: http://
download.pushtechnology.com/releases/5.9

Install Diffusion

Java 8 is required to install Diffusion.

1. Double-click on the install.jar file to launch the graphical installer.

The installer locates the Diffusion JAR file if that file is in the same directory as the installer.
2. If the installer cannot locate the Diffusion JAR file, select File > Load install file and navigate to the

Diffusion JAR file and click Open.
3. If you have a production license, select File > Load license file and navigate to the license file and

click Open.

If you do not have a production license, you can use the developer license that is included in the
Diffusion server

4. Follow the steps in the graphical installer to install the Diffusion server.

For more information about system requirements and installing the Diffusion server, see Installing the
Diffusion server on page 523

Start the Diffusion server

The Diffusion start scripts are located in the bin directory of your Diffusion installation.

On Windows: Use diffusion.bat to start the Diffusion server.

On Linux or OS X/macOS: Use diffusion.sh to start the Diffusion server.

Default configuration

The Diffusion server is configured by the files in the etc directory.

License

Diffusion includes a development license that allows up to 5 concurrent connections to the Diffusion
server.

You can upgrade your Diffusion server to use a production license by copying the production license
file into the etc directory of your Diffusion installation.

Security

Diffusion uses role-based security for authorization. A client session must have a role with sufficient
permissions to perform specific actions on the Diffusion server.

http://download.pushtechnology.com/releases/5.9
http://download.pushtechnology.com/releases/5.9

Diffusion | 35

The default security configuration is located in the etc/SystemAuthentication.store and
etc/Security.store files of your Diffusion installation.

This configuration includes usernames and passwords for development use:

client/password
control/password
admin/password
operator/password

We recommend that you change these passwords as soon as possible by editing the etc/
SystemAuthentication.store file.

Configuration

The Diffusion server is configured by the XML files in the etc directory of your Diffusion server.

The default configuration makes port 8080 available to connecting clients.

The Diffusion monitoring console

Diffusion includes a monitoring console that shows realtime information about the Diffusion server
and its clients, publishers, and topics.

In a browser, go to http://localhost:8080. If your browser is not on the same system as your
Diffusion server, replace localhost with the hostname or IP address of the Diffusion server.

From this landing page you can go to either the demos page, where you can access the Diffusion
demos if you opted to deploy them during the install process, or to the Diffusion monitoring console.

The Diffusion monitoring console is secured by username and password. Use the default user 'admin'
and password 'password' to log in to the console.

For more information about the Diffusion monitoring console, see Diffusion monitoring console on
page 748

Develop a publishing client

Use the Diffusion JavaScript API to develop a Node.js client that creates a JSON topic and publishes
updates to it.

1. Install Node.js on your development system.

For more information, see https://nodejs.org/en/
2. Install the Diffusion JavaScript library on your development system.

npm install diffusion

3. Create a JavaScript file, publisher.js, to contain your client.
4. Include the Diffusion JavaScript library at the top of your publisher.js file.

var diffusion = require('diffusion');

5. Create a connection from the page to the Diffusion server.

diffusion.connect({
 host : 'localhost',
 port : '8080',

https://nodejs.org/en/

Diffusion | 36

 principal : 'client',
 credentials : 'password'
}).then(function(session) {
 console.log('Connected!');
 }
);

6. Create a JSON topic called topic/json:

.then(function(session) {
 console.log('Connected!');

 session.topics.add('topic/json',
 diffusion.topics.TopicType.JSON);
}

The add() method takes the name of the topic and the topic type.
7. Update the topic with a timestamp:

var d = new Date();
session.topics.update('topic/json', {
 "timestamp" : d.getTime()
});

The update() method takes the name of the topic and a JSON object.
8. Wrap the update in a loop function that causes an update to occur every second:

setInterval(function() {
 var d = new Date();
 session.topics.update('topic/json', {
 "timestamp" : d.getTime()
 });
}, 1000);

9. Run the Node.js client:

node publisher.js

Full example

The following example code shows a Node.js JavaScript client that connects to the Diffusion server,
creates a JSON topic, and publishes an update to it.

var diffusion = require('diffusion');

diffusion.connect({
 host : 'localhost',
 port : '8080',
 principal : 'control',
 credentials : 'password'
}).then(function(session) {
 console.log('Connected!');

 // Create a JSON topic
 session.topics.add('topic/json',
 diffusion.topics.TopicType.JSON);

 // Start updating the topic every second
 setInterval(function() {
 var d = new Date();
 session.topics.update('topic/json', {

Diffusion | 37

 "timestamp" : d.getTime()
 });
 }, 1000);
});

To run the example:

1. Install Node.js.

For more information, see https://nodejs.org/en/
2. Install the Diffusion JavaScript library on your development system.

npm install diffusion

3. Copy the provided code into a file called publisher.js
4. Update the connect method to include the URL of your Diffusion server.
5. If you have changed the default security configuration, change the principal and credentials to

those of a user that has the modify_topic and update_topic permissions.
6. Use Node.js to run your publishing client from the command line.

node publisher.js

The JavaScript client opens a connection to the Diffusion server, creates the topic topic/json, and
updates it each second with a timestamp.

Publish using other Diffusion APIs:

• Java
• .NET
• JavaScript
• Apple
• Android
• C

Develop a subscribing client

Use the Diffusion JavaScript API to develop a client that subscribes to a JSON topic and receives
updates published through it.

1. Ensure that the diffusion.js file, located in the clients/js directory of your Diffusion
installation, is available on your development system.

2. Create a template HTML page which displays the information.

For example, create the following index.html in your project's HTML directory.

<html>
 <head>
 <title>JSON example</title>
 </head>
 <body>
 The value of topic/json is:
 Unknown
 </body>
</html>

3. Include the Diffusion JavaScript library in the <head> section of your index.html file.

<head>

https://nodejs.org/en/

Diffusion | 38

 <title>JSON example</title>
 <script type="text/javascript" src="path_to_library/
diffusion.js"></script>
</head>

4. Create a connection from the page to the Diffusion server. Add a script element to the body
element.

 <body>
 The value of topic/json is:
 Unknown
 <script type="text/javascript">
 diffusion.connect({
 // Edit this line to include the URL of your Diffusion
 server
 host : 'localhost',
 port : 8080,
 principal : 'client',
 credentials : 'password'
 }).then(function(session) {
 alert('Connected: ' + session.isConnected());
 }
);
 </script>
 </body>

If you run the client now, it displays a dialog box when it successfully connects to the Diffusion
server.

5. Subscribe to a topic and create a stream that receives data from it.

Add the following function before the diffusion.connect() call:

function subscribeToJsonTopic(session) {
 session.subscribe('topic/json');
 session.stream('topic/
json').asType(diffusion.datatypes.json()).on('value',
 function(topic, specification, newValue, oldValue) {
 console.log("Update for " + topic, newValue.get());
 document.getElementById('display').innerHTML =
 JSON.stringify(newValue.get());
 });
}

The subscribe() method of the session object takes the name of the topic to subscribe to.
The stream() method of the session creates a value stream that receives updates from the
topic and emits an event on each update. The attached function takes the data from the topic and
updates the display element of the web page with the topic data.

6. Change the function that is called on connection to the subscribeToJsonTopic function you
just created.

.then(subscribeToTopic);

Now, when the client connects to the Diffusion server it subscribes to topic/json and creates a
stream to receive updates from that topic. Those JSON updates are displayed in the browser
window as a string.

Diffusion | 39

Full example

The following example code shows a browser JavaScript client that connects to the Diffusion server
and subscribes to a JSON topic.

<html>
 <head>
 <title>JSON example</title>
 <script type="text/javascript" src="path_to_library/
diffusion.js"></script>
 </head>
 <body>

 The value of topic/json is:
 Unknown
 <script type="text/javascript">
 function subscribeToJsonTopic(session) {
 session.subscribe('topic/json');
 session.stream('topic/
json').asType(diffusion.datatypes.json()).on('value', function(topic,
 specification, newValue, oldValue) {
 console.log("Update for " + topic, newValue.get());
 document.getElementById('display').innerHTML =
 JSON.stringify(newValue.get());
 });
 }

 diffusion.connect({
 host : 'localhost',
 port : 8080,
 principal : 'client',
 credentials : 'password'
 }).then(subscribeToJsonTopic);
 </script>
 </body>
</html>

To run the example:

1. Copy the provided code into a file called index.html
2. Update the connect method to include the URL of your Diffusion server.
3. If you have changed the default security configuration, change the principal and credentials to

those of a user that has the read_topic and select_topic permissions.
4. Open index.html in a browser.

The JavaScript client opens a connection to the Diffusion server, subscribes to the topic topic/json,
and prints the updates it receives to the browser window.

Subscribe using other Diffusion APIs:

• Apple
• Android
• Java
• .NET
• C
• JavaScript

Diffusion | 40

Resources

• Download site: http://download.pushtechnology.com/releases/5.9
• API documentation: http://docs.pushtechnology.com/5.9
• Support center: http://support.pushtechnology.com
• Stack Overflow: http://stackoverflow.com/questions/tagged/push-diffusion
• Github: https://github.com/pushtechnology/
• Development Blog: http://www.pushtechnology.com/category/development/

http://download.pushtechnology.com/releases/5.9
http://docs.pushtechnology.com/5.9
http://support.pushtechnology.com
http://stackoverflow.com/questions/tagged/push-diffusion
https://github.com/pushtechnology/
http://www.pushtechnology.com/category/development/

Diffusion | 41

Part
III

Design Guide

This guide describes the factors to consider when designing your Diffusion solution.

In this section:

• Support
• Designing your data model
• Designing your solution
• Security

Diffusion | 42

Support

When designing your solution, refer to the support information to ensure compatibility between
Diffusion and your hardware, software, and operating systems.

System requirements for the Diffusion server
Review this information before installing the Diffusion server.

The Diffusion server is certified on the system specifications listed here. In addition, the Diffusion
server is supported on a further range of systems.

Certification
Push Technology classes a system as certified if the Diffusion server is fully
functionally tested on that system.

We recommend that you use certified hardware, virtual machines, operating systems,
and other software when setting up your Diffusion servers.

Support
In addition, Push Technology supports other systems that have not been certified.

Other hardware and virtualized systems are supported, but the performance of these
systems can vary.

More recent versions of software and operating systems than those we certify are
supported.

However, Push Technology can agree to support Diffusion on other systems. For more
information, contact Push Technology.

Physical system

The Diffusion server is certified the following physical system specification:

• Intel™ Xeon™ E-Series Processors
• 8 Gb RAM
• 8 CPUs
• 10 Gigabit NIC

Network, CPU, and RAM (in decreasing order of importance) are the components that have the biggest
impact on performance. High performance file system and disk are required. Intel hardware is used
because of its ubiquity in the marketplace and proven reliability.

Virtualized system

The Diffusion server certified on the following virtualized system specification:

Host

• Intel Xeon E-Series Processors
• 32 Gb RAM
• VMware vSphere® 5.5

Virtual machine

• 8 VCPUs
• 8 Gb RAM

Diffusion | 43

Operating system

Diffusion is certified on the following operating systems:

• Red Hat 6.5, 6.6, and 7.2
• Windows Server 2012 R2

We recommend you install your Diffusion server on a Linux-based operating system with enterprise-
level support available, such as Red Hat Enterprise Linux.

Operating system configuration

If you install your Diffusion server on a Linux-based operating system and do SSL offloading of secure
client connections at the Diffusion server, you must disable transparent huge pages.

If you install your Diffusion server on a Linux-based operating system but do not do SSL offloading
of secure client connections at the Diffusion server, disabling transparent huge pages is still
recommended.

Having transparent huge pages enabled on the system your Diffusion server runs on can cause
extremely long pauses for garbage collection. For more information, see https://access.redhat.com/
solutions/46111.

Java

The Diffusion server is certified on Oracle Java 8 64-bit JDK

Only the Oracle® JDK is certified.

Ensure that you use the Oracle JDK and not the JRE.

JVM configuration

If you do SSL offloading of secure client connections at the Diffusion server, you must ensure that you
constrain the maximum heap size and the maximum direct memory size so that together these to
values do not use more than 80% of your system's RAM.

Networking

Push Technology recommends the following network configurations:

• 10 Gigabit network
• Load balancers with SSL offloading
• In virtualized environments, enable SR-IOV.

For more information about how to enable SR-IOV, see the documentation provided by your virtual
server provider. SR-IOV might be packaged using a vendor-specific name.

Client requirements

For information about the supported client platforms, see Platform support for the Diffusion Unified
API libraries on page 44.

Related concepts
The Diffusion license on page 531
Diffusion includes a development license that enables you to use make up to 5 concurrent connections
to the Diffusion server.

Installed files on page 534

https://access.redhat.com/solutions/46111
https://access.redhat.com/solutions/46111

Diffusion | 44

After installing Diffusion the following directory structure exists:

Related tasks
Installing the Diffusion server using the graphical installer on page 525
The Diffusion binary files are available from the Push Technology website. You can install Diffusion
using the graphical installer.

Installing the Diffusion server using the headless installer on page 527
The Diffusion binary files are available from the Push Technology website. You can install Diffusion
from the command line.

Installing the Diffusion server using Red Hat Package Manager on page 528
Diffusion is available as an RPM file from the Push Technology website.

Installing the Diffusion server using Docker on page 529
Diffusion is available as a Docker® image from Docker Hub.

Verifying the Diffusion installation on page 536
Start your Diffusion server, review the logs, and connect to the console to verify that your installation is
correct.

Platform support for the Diffusion Unified API libraries
Review this information when designing your clients to determine what platforms and transports the
Diffusion Unified API client libraries are supported on.

Supported platforms and protocols for the client libraries

Table 1: Supported platforms and transport protocols for the client libraries

Platform Minimum supported versions Supported transport protocols

JavaScript es6

(TypeScript 1.8)

WebSocket

HTTP (Polling XHR)

Apple for iOS Development
environment

Xcode 7
(iOS 9.0
SDK)

Runtime support

Deployment
target: iOS
7.0 or later

Device
architectures:
armv7,
armv7s,
arm64

WebSocket

http://kangax.github.io/compat-table/es5/

Diffusion | 45

Platform Minimum supported versions Supported transport protocols
Simulator
architectures:
i386,
x86_64

Apple for OS X/macOS Development
environment

Xcode
7 (OS X
10.11 SDK)

Runtime support

Deployment
target: OS
X 10.9 or
later

Device
architectures:
x86_64

WebSocket

Apple for tvOS Development
environment

Xcode 7
(tvOS 9.0
SDK)

Runtime support

Deployment
target:
tvOS 9.0 or
later

Device
architectures:
arm64

Simulator
architectures:
x86_64

WebSocket

Android API 19 / v4.4 / KitKat

Note: Push Technology
provides only best-
effort support for
Jelly Bean (API 16-18,
v4.1-4.3).

WebSocket

HTTP (polling)

DEPRECATED: DPT

DEPRECATED: HTTP (Full
duplex)

Java 8 (recommended), 7 (supported) WebSocket

HTTP (Polling)

DEPRECATED: DPT

Diffusion | 46

Platform Minimum supported versions Supported transport protocols
Note: We recommend
that you run your
clients on the JDK
rather than the JRE.

DEPRECATED: HTTP (Full
duplex)

.NET 4.5 WebSocket

DEPRECATED: DPT

DEPRECATED: HTTP (Full
duplex)

C for Linux Red Hat and CentOS™, version
7.2 and later

Ensure that you use a C99-
capable compiler.

WebSocket

DEPRECATED: DPT

C for Windows Visual C Compiler 2013 or later,
Windows 7 or later

WebSocket

DEPRECATED: DPT

C for OS X/macOS For building using GCC, use
Xcode 7.1 or later

WebSocket

DEPRECATED: DPT

Note: Protocols are supported for both secure and standard connections.

Feature support in the Diffusion Unified API
Review this information when designing your clients to determine which APIs provide the functionality
you require.

Features are sets of capabilities provided by the Diffusion Unified API. Some features are not
supported or not fully supported in some APIs.

The Diffusion libraries also provide capabilities that are not exposed through their APIs. Some of these
capabilities can be configured.

Table 2: Capabilities provided by the Diffusion client libraries

Capability JavaScript Apple Android Java .NET C

Connecting

Connect to
the Diffusion
server

Cascade
connection
through
multiple
transports

Diffusion | 47

Capability JavaScript Apple Android Java .NET C

Connect
asynchronously

Connect
synchronously

Connect
using a
URL-style
string as a
parameter

Connect
using
individual
parameters

Connect
securely

Configure
SSL context
or behavior

Connect
through an
HTTP proxy

Connect
through
a load
balancer

Pass a
request path
to a load
balancer

Reconnecting

Reconnect
to the
Diffusion
server

Failover to
a replicated
session on
a different
Diffusion
server

Configure a
reconnection
timeout

Define a
custom

Diffusion | 48

Capability JavaScript Apple Android Java .NET C
reconnection
strategy

Resynchronize
message
streams on
reconnect

Abort
reconnect if
resynchronization
fails

Maintain
a recovery
buffer of
messages to
resend on
reconnect

Configure
the recovery
buffer

Detect
disconnections
by
monitoring
activity

Detect
disconnections
by using TCP
state

Ping the
Diffusion
server

Change the
principal
used by the
connected
client
session

Receiving data from topics

Subscribe to
a topic or set
of topics

Receive
data as a
value stream
(JSON,
binary, and

Diffusion | 49

Capability JavaScript Apple Android Java .NET C
single value
topics)

Receive data
as content
(all topic
types)

Fetch the
state of a
topic

Managing topics

Create a
JSON or
binary topic

Create a
topic (not
including
JSON or
binary
topics)

Create a
topic from
an initial
value

Create a
topic with
metadata

Listen for
topic events
(including
topic has
subscribers
and topic
has zero
subscribers)

Delete a
topic

Delete a
branch of
the topic
tree

Mark a
branch of
the topic
tree for
deletion
when this
client

Diffusion | 50

Capability JavaScript Apple Android Java .NET C
session is
closed

Updating topics

Update a
JSON or
binary topic

Update a
topic (not
including
JSON and
binary
topics)

Perform
exclusive
updates

Perform
non-
exclusive
updates

Managing subscriptions

Subscribe or
unsubscribe
another
client to a
topic

Subscribe or
unsubscribe
another
client to a
topic based
on session
properties

Handling
subscriptions
to routing
topics

Handling
subscriptions
to missing
topics

Messaging

Send a
message to
a path

Send a
message

Diffusion | 51

Capability JavaScript Apple Android Java .NET C
directly to a
client

Send a
message
directly to a
client based
on session
properties

Receive
direct
messages

Handle
messages
sent to a
topic path

Managing security

Authenticate
client
sessions and
assign roles
to client
sessions

Configure
how the
Diffusion
server
authenticates
client
sessions and
assign roles
to client
sessions

Configure
the roles
assigned to
anonymous
sessions
and named
sessions

Configure
the
permissions
associated
with roles
assigned
to client
sessions

Managing other clients

Diffusion | 52

Capability JavaScript Apple Android Java .NET C

Receive
notifications
about client
session
events
including
session
properties

Get the
properties
of a specific
client
session

Receive
notifications
about client
queue
events

Conflate
and throttle
clients

Close a
client
session

Push notifications (The Push Notification Bridge must be enabled)

Receive
push
notifications

Request
that push
notifications
be sent from
a topic to a
client

Publish an
update to
a topic that
sends push
notifications

Other capabilities

Flow control

Diffusion | 53

Protocol support
Each client supports varying transports. A table of the supported transports for each client is
presented here.

All protocols supported by Diffusion can be used for both secure (using TLS) and standard
connections. For more information, see SSL and TLS support on page 53.

The following table lists the protocols supported for each client:

Table 3: Supported protocols by client

Client WebSocketHTTP
Polling

DEPRECATED:
DPT

DEPRECATED:
HTTP Full
Duplex

JavaScript
Unified API

Apple Unified
API

Android
Unified API

Java Unified
API

.NET Unified
API

C Unified API

Publisher
client

The JavaScript client is fully supported only on certain browsers. Best effort support is provided for
other browsers but the software/hardware combination might not be reproducible, particularly for
mobile browsers. For more information about supported browsers, see Browser support on page
55.

SSL and TLS support

Diffusion supports only those SSL versions and cipher suites with no known vulnerabilities.

The following SSL and TLS versions are supported by default:

• SSLv2Hello
• TLSv1
• TLSv1.1
• TLSv1.2

The following cipher suites are supported by default:

1 Supported by Flash®/Silverlight®

2 Supported natively and by Flash
3 Recommended

Diffusion | 54

• TLS_RSA_WITH_AES_128_CBC_SHA
• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
• TLS_RSA_WITH_AES_128_CBC_SHA256
• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
• TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA

For more information, see Network security on page 713.

DPT limitations

The following capabilities are not supported in for client sessions that connect to the Diffusion server
over DPT:

• Client-proposed reconnection time
• Connection activity monitoring
• Reliable reconnection

In addition, there are some behavior differences between client sessions that connect using DPT and
those that connect using other protocols:

• In the case where the roles a client session has are updated and that client no longer has
authorization to receive data from a topic, DPT provides CONTROL rather than AUTHORIZATION as
the reason for unsubscription.

Table 4: Supported protocols by client

Client WebSocketHTTP
Polling

DEPRECATED:
DPT

DEPRECATED:
HTTP
Full
Duplex

DEPRECATED:
HTTP
Chunked
Streaming

Java Classic
API

.NET Classic
API

JavaScript
Classic API 2 1

Flash
Classic API

Silverlight

iOS Classic
API

Android
Classic API

C Classic
API

Diffusion | 55

Browser support
Some of the client libraries are intended to be run within browser environments. Diffusion clients can
use most commercial browsers and their variants. However, some Diffusion API protocols might not be
available.

Diffusion supports the latest release of the following browser versions based on the original Diffusion
release date.

Table 5: Supported browsers

Browser Version

Google Chrome™ 53

Mozilla Firefox® 49

Microsoft® Internet Explorer® 11

Apple Safari® 8

• Push Technology runs full regression tests on the browsers and versions documented above for
every patch release.

• Push Technology carries out basic validation testing on the latest versions of these browsers but
full support is available only at the next minor release.

• Support for older versions of browsers is provided on a best-effort basis, unless specified
otherwise.

• Support for other browsers is provided on a best-effort basis.

For details about the operating systems and browsers supported by the Silverlight plugin, refer to the
“System Requirements” section on the following web page: Get Microsoft Silverlight

Mobile browsers

We do not test our JavaScript client libraries with mobile browsers or within mobile applications
that wrap a browser application in native code. If you are developing a Diffusion client for a mobile
platform, such as iOS or Android, we recommend that you use the provided client libraries for these
platforms to develop a native application.

Diffusion JavaScript clients running within a native wrapper or in a mobile browser are supported on a
best effort basis and we might not be able to provide support for older versions of the mobile platform.

Browser limitations
Some browsers cannot use all the Diffusion protocols or features. If you experience problems when
developing with protocols or client libraries that use the browser, check whether the browser supports
this function.

Browser environments are not uniform and some browsers might have functional limitations. It is
important to be aware of these limitations when developing for compliance with target browsers.

http://www.microsoft.com/getsilverlight/Get-Started/Install/Default.aspx

Diffusion | 56

WebSocket limitations
WebSocket is an Internet Engineering Task Force (IETF) protocol used by Diffusion to provide a full-
duplex communication channel over a single TCP connection. It is not supported by all browser
versions.

Table 6: Support for WebSocket

Version WebSocket support?

Internet Explorer 9.0 and
earlier

NO

Internet Explorer 10.0
and later

YES (see note)

Firefox YES

Chrome YES

Safari YES

Opera® YES

iOS YES

Android YES

Note: Internet Explorer 11 contains a bug that causes WebSocket connections to be dropped
after 30 seconds of inactivity. To work around this problem set the system ping frequency to 25
seconds or less. You can set the system ping frequency in the Server.xml configuration file.
For more information, see Server.xml on page 552

Cross-origin resource sharing limitations
CORS allows resources to be accessed by a web page from a different domain. Some browsers do not
support this capability.

Table 7: Support for CORS

Version WebSocket support?

Internet Explorer 9.0 and
earlier

NO

Internet Explorer 10.0
and later

YES (see note)

Firefox YES

Chrome YES

Safari YES

Opera YES

iOS YES

Android YES

Related concepts
JavaScript security model on page 647

Diffusion | 57

When a JavaScript client uses the XHR transport, this imposes security constraints on using cross
domain requests.

Browser connection limitations
Browsers limit the number of HTTP connections with the same domain name. This restriction is
defined in the HTTP specification (RFC2616). Most modern browsers allow six connections per domain.
Most older browsers allow only two connections per domain.

The HTTP 1.1 protocol states that single-user clients should not maintain more than two connections
with any server or proxy. This is the reason for browser limits. For more information, see RFC 2616 –
Hypertext Transfer Protocol, section 8 – Connections.

Modern browsers are less restrictive than this, allowing a larger number of connections. The RFC does
not specify how to prevent the limit being exceeded. Either connections can be blocked from opening
or existing connections can be closed.

• Internet Explorer
• Firefox
• Chrome
• Safari
• Opera
• iOS
• Android

Table 8: Maximum supported connections

Version Maximum connections

Internet Explorer 7.0 2

Internet Explorer 8.0 and
9.0

6

Internet Explorer 10.0 8

Internet Explorer 11.0 13

Firefox 6

Chrome 6

Safari 6

Opera 6

iOS 6

Android 6

Some Diffusion protocols like HTTP Polling (XHR) use up to two simultaneous connections per
Diffusion client. It is important to understand that the maximum number of connections is per browser
and not per browser tab. Attempting to run multiple clients within the same browser might cause this
limit to be reached.

Reconnection can be used to maintain a larger number of clients than is usually allowed. When TCP
connections for HTTP requests are closed, the Diffusion sends another HTTP request which the server
accepts. Be aware of cases where Diffusion tries to write a response to closed polling connections

http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1.4

Diffusion | 58

before the client can re-establish them. This behavior results in an IO Exception and the Diffusion
server closes the client unless reconnection is enabled. When the client tries to re-establish the poll, it
is aborted.

Another way to get around browser limits is by providing multiple subdomains. Each subdomain is
allowed the maximum number of connections. By using numbered subdomains, a client can pick a
random subdomain to connect to. Where the DNS server allows subdomains matching a pattern to be
resolved as the same server, tab limits can be mitigated substantially.

Designing your data model

Distribute your data in a data model that fits the needs of your organization and customers.

There are a number of things to consider when designing your data model:

• The structure of your topic tree
• The types of topic to use
• The format of your data
• How you publish data to topics
• Your conflation strategy
• Whether you also use messaging to send data.

These considerations are not separate. The decisions you make about one aspect of your data model
affect other aspects.

The data model is defined on the Diffusion server by your publishers or clients. The topic structure,
topic types, and data format are not persisted on the Diffusion server through a restart or upgrade.

Design your solution to create your data model on the Diffusion server afresh after the Diffusion server
is restarted or upgraded.

Topic tree
Diffusion primarily distributes data using a pub-sub model, where content is published to topics. These
topics are arranged as a tree.

What is the topic tree?

The topic tree is the organizational structure of the Diffusion topics. A topic of any type can be created
any point in the topic tree where a topic does not already exist.

Locations in the topic tree are referred to by their topic path, which is the level names in the tree that
lead to the topic, separated by the slash character (/).

Figure 1: Example topic tree

In the preceding image, topics exist at baz and qux. The topic path for baz is /foo/baz. The topic path
for qux is /foo/bar/qux

Diffusion | 59

You can create a topic at /foo/bar/qux without having to create topics at /foo or /foo/bar beforehand.

There can be multiple topics that have the same name, but topic paths are unique.

When interacting with topics in the topic tree, your clients can reference a topic by its topic path or by
a topic selector with a pattern expression that matches the topic path. Clients can use topic selectors
to reference sets of topics in the tree that all match the topic selector's pattern expression.

Considerations when designing your topic tree

• Does the source information have a logical organization?

If the data structure of the source information is complex, it can be mapped to a hierarchical
structure.

• How many topics?

If the number of topics is small, a flat topic tree might be appropriate.
• How do clients subscribe to the data?

If there are topics that clients generally subscribe to together, these topics can be organized in the
same branch of the topic tree. This enables a client use a topic selector to subscribe to the branch
of the topic tree and receive updates for all topics in that branch.

• The size of your topic tree can be constrained by your hardware.

An extremely large topic tree can cause long GC pauses. Ensure that you do sufficient testing with
your topic tree before going to production.

If the size of your topic tree structure is caused by a lot of duplication, use routing topics to reduce
it.

• A topic can not be bound to the / topic path. This is because a topic name must have one or more
characters. This means there can be no single topic that acts as the root topic for all possible topics
in the topic tree. Instead each top-level topic whose path contains a single part acts as the root
topic for their branch of the topic tree.

However, the / topic path can be used as a routing path when sending or receiving messages, which
uses paths but does not use any topics that are bound to them.

Related concepts
Topic selectors in the Unified API on page 60
A topic selector identifies one or more topics. You can create a topic selector object from a pattern
expression.

Topic selectors in the Classic API (deprecated) on page 67
A topic selector is a string that can be used by the Classic API to select more than one topic by
indicating that subordinate topics are to be included or by fuzzy matching on topic names or both.

Topic selectors in the Classic API (deprecated) on page 67
A topic selector is a string that can be used by the Classic API to select more than one topic by
indicating that subordinate topics are to be included or by fuzzy matching on topic names or both.

Topic naming
Consider the following restrictions when deciding on your topic names.

Restricted characters

A topic name can be made up of one or more Unicode characters but must not contain any of the
restricted characters mentioned below. The topic path is made up of the names of all topics in its path
separated by the slash character (/).

Diffusion | 60

The slash character (/) and the exclamation mark (!) are not permitted in any topic names.

Classic API restricted characters

In addition to the slash character (/) and the exclamation mark (!), which are restricted in all topic
names, the following characters are not permitted in topic names for topics that are accessed by any
clients that use the Classic API (deprecated):

Table 9: Restricted characters for topics used by Classic API clients.

Character Reason for restriction

[]\^$.|?*+() These are all metacharacters used in regular
expressions. Any topic String that contains any
of these characters is assumed to be a topic
selector. These characters cannot be used in
topic names.

Control/Reserved No characters with a hexadecimal value of less
than 0x2D. This includes some punctuation
characters such as comma (,).

Whitespace No characters defined as whitespace in Java (as
indicated by the isWhiteSpace method of the
Java Character class).

Reserved spaces

The Diffusion branch and the @ branch of the topic tree are reserved for internal use.

Recommendations

Although all Unicode characters (other than the restricted ones mentioned above) are supported to
allow for language variations it is highly recommended that only alphanumeric characters are ever
used in topic names. Hyphen (-) or underscore (_) can be used as break characters.

Topic selectors in the Unified API
A topic selector identifies one or more topics. You can create a topic selector object from a pattern
expression.

Supported in: JavaScript Unified API, Java Unified API, .NET Unified API, Apple Unified API, Android
Unified API, C Unified API

Pattern expressions

Use pattern expressions to create a topic selector of one of the types described in the following table.
The type of the topic selector is indicated by the first character of the pattern expression.

Table 10: Types of topic selector

Topic selector
type

Initial character Description

Path > A path pattern expression must contain a valid topic path. A
valid topic path comprises topic names separated by path
separators (/). A topic name comprises one or more UTF
characters except for slash (/).

Diffusion | 61

Topic selector
type

Initial character Description

A PATH selector returns only the topic with the given path.
See Path examples on page 62

Abbreviated path Any character
except the
following:

• Hash symbol
(#)

• Question mark
(?)

• Greater than
symbol (>)

• Asterisk (*)
• Dollar sign ($)
• Percentage

symbol (%)
• Ampersand (&)
• Less than

symbol (<)

An abbreviated path pattern expression is an alternative
syntax for a path pattern selector. It must be a valid topic
path.

A valid topic path comprises topic names separated by path
separators (/). A topic name comprises one or more UTF
characters except for slash (/).

Abbreviated path pattern expressions are converted into
PATHselectors and return only the topic with the given
path. See Abbreviated path examples on page 63

Split-path ? A split-path pattern expression contains a list of
regular expressions separated by the / character. Each
regular expression describes a part of the topic path. A
SPLIT_PATH_PATTERN selector returns topics for which
each regular expression matches the part of the topic path
at the corresponding level. See Split-path examples on
page 64

Full-path * A full-path pattern expression contains a regular
expression. A FULL_PATH_PATTERN selector returns topics
for which the regular expression matches the full topic
path. See Full-path examples on page 64

Note: Full-path pattern topic selectors are more
powerful than split-path pattern topic selectors,
but are evaluated less efficiently at the server. If
you are combining expressions, use selector sets
instead.

Selector set # A selector set pattern expression contains a list of selectors
separated by the separator ////. A SELECTOR_SET topic
selector returns topics that match any of the selectors.

Note: Use the anyOf() method for a simpler
method of constructing SELECTOR_SET topic
selectors.

See Selector set examples on page 65

Regular expressions

Diffusion topic selectors use regular expressions. Any regular expression can be used in split-path and
full-path patterns, with the following restrictions:

• It cannot be empty

Diffusion | 62

• In split-path patterns, it cannot contain the path separator (/)
• In full-path patterns, it cannot contain the selector set separator (////)

Depending on what the topic selector is used for, regular expressions in topic selectors can be
evaluated on the client or on the Diffusion server. For more information, see Regular expressions on
page 66.

Descendant pattern qualifiers

You can modify split-path or full-path pattern expressions by appending a descendant pattern
qualifier. These are described in the following table:

Table 11: Descendant pattern qualifiers

Qualifier Behavior

None Select only those topics that match the selector.

/ Select only the descendants of the matching topics and exclude the
matching topics.

// Select both the matching topics and their descendants.

Topic path prefixes

The topic selector capabilities in the Unified API provide methods that enable you to get the topic path
prefix from a topic selector.

A topic path prefix is a concrete topic path to the most specific part of the topic tree that contains all
topics that the selector can specify. For example, for the topic selector ?foo/bar/baz/.*/bing,
the topic path prefix is foo/bar/baz.

The topic path prefix of a selector set is the topic path prefix that is common to all topic selectors in
the selector set.

Path examples

The following table contains examples of path pattern expressions:

Expression Matches alpha/beta? Matches alpha/beta/
gamma?

Notes

>alpha/beta yes no

>/alpha/beta/ yes no This pattern expression
is equivalent to the
pattern expression
in the preceding
row. In an absolute
topic path, single
leading or trailing
slash characters (/) are
removed because the
topic path is converted
to canonical form.

A path pattern
expression can return
a maximum of one
topic. The trailing

Diffusion | 63

Expression Matches alpha/beta? Matches alpha/beta/
gamma?

Notes

slash in this example
is not treated as a
descendant qualifier
and is removed.

>alpha/beta/gamma no yes

>beta no no The full topic path must
be specified for a path
pattern expression to
match a topic.

>.*/.* no no For clients using the
Unified API, the period
(.) and asterisk (*)
characters are valid
in topic names. In a
path pattern expression
these characters match
themselves and are not
evaluated as part of a
regular expression.

Abbreviated path examples

The following table contains examples of abbreviated path pattern expressions:

Expression Matches alpha/beta? Matches alpha/beta/
gamma?

Notes

alpha/beta yes no

/alpha/beta/ yes no This pattern expression
is equivalent to the
pattern expression
in the preceding row.
In an absolute topic
path, single leading
and trailing slash
characters (/) are
removed because the
topic path is converted
to canonical form.

A path pattern
expression can return
a maximum of one
topic. The trailing
slash in this example
is not treated as a
descendant qualifier
and is removed.

alpha/beta/gamma no yes

Diffusion | 64

Expression Matches alpha/beta? Matches alpha/beta/
gamma?

Notes

beta no no The full topic path must
be specified for a path
pattern expression to
match a topic.

Split-path examples

The following table contains examples of split-path pattern expressions:

Expression Matches alpha/
beta?

Matches alpha/
beta/gamma?

Notes

?alpha/beta yes no

?alpha/beta/ no yes The trailing slash character (/) is
treated as a descendant pattern
qualifier in split-path pattern
expressions. It returns descendants
of the matching topics, but not the
matching topics themselves.

?alpha/beta// yes yes Two trailing slash characters (//)
is treated as a descendant pattern
qualifier in split-path pattern
expressions. It returns matching topics
and their descendants.

?alpha/beta/
gamma

no yes

?beta no no

?.* no no Each level of a topic path must have a
regular expression specified for it for a
split-path pattern expression to match
a topic.

?.*/.* yes no

?alpha/.*// yes yes In this pattern expression, “alpha/.*”
matches all topics in the alpha branch
of the topic tree. The descendant
pattern qualifier (//) indicates that the
matching topics and their descendants
are to be returned.

Full-path examples

The following table contains examples of full-path pattern expressions:

Expression Matches alpha/
beta?

Matches alpha/
beta/gamma?

Notes

*alpha/beta yes no

*alpha/beta/
gamma

no yes

Diffusion | 65

Expression Matches alpha/
beta?

Matches alpha/
beta/gamma?

Notes

*alpha/beta/ no yes The trailing slash character (/) is
treated as a descendant pattern
qualifier in split-path pattern
expressions. It returns descendants
of the matching topics, but not the
matching topics themselves.

*alpha/beta// yes yes Two trailing slash characters (//)
is treated as a descendant pattern
qualifier in split-path pattern
expressions. It returns matching topics
and their descendants.

*beta no no In a full-path pattern selector the
regular expression must match the full
topic path for a topic to be matched.

*.*beta yes no The regular expression matches the
whole topic path including topic
separators (/).

Selector set examples

Use the anyOf methods to create a SELECTOR_SET TopicSelector object.

The following example code shows how to use the anyOf(TopicSelector... selectors)
method to create a selector set topic selector:

// Use your session to create a TopicSelectors instance
TopicSelectors selectors = session.topicSelectors();

// Create topic selectors for the individual pattern expressions
TopicSelector pathSelector = selectors.parse(">foo/bar");
TopicSelector splitPathSelector = selectors.parse("?f.*/bar\d+");
TopicSelector fullPathSelector = selectors.parse("*f.*\d+");

// Use the individual topic selectors to create the selector set
 topic selector
TopicSelector selector = selectors.anyOf(pathSelector,
 splitPathSelector, fullPathSelector);

// Use the topic selector as a parameter to methods that perform
 actions on topics or groups of topics

The following example code shows how to use the anyOf(String... selectors) method to
create the same topic selector as in the previous code example, but in fewer steps:

// Use your session to create a TopicSelectors instance
TopicSelectors selectors = session.topicSelectors();

// Create the selector set topic selector by passing in a list of
// pattern expressions
TopicSelector selector = selectors.anyOf(">foo/bar", "?f.*/bar\d+",
 "*f.*\d+");

// Use the topic selector as a parameter to methods that perform
 actions on topics or groups of topics

Diffusion | 66

Related concepts
Topic tree on page 58
Diffusion primarily distributes data using a pub-sub model, where content is published to topics. These
topics are arranged as a tree.

Topic selectors in the Classic API (deprecated) on page 67
A topic selector is a string that can be used by the Classic API to select more than one topic by
indicating that subordinate topics are to be included or by fuzzy matching on topic names or both.

Regular expressions
Depending on what the topic selector is used for, regular expressions in topic selectors can be
evaluated on the client or on the Diffusion server. On the Diffusion server, regular expressions are
evaluated as Java-style regular expressions. On clients, regular expressions are evaluated according to
the conventions of the client library.

The following client uses of topic selectors are evaluated on the Diffusion server:

• Subscribing to topics
• Unsubscribing from topics
• Subscribing another client to topics
• Unsubscribing another client from topics
• Fetching topic states
• Removing topics

The following client uses of topic selectors are evaluated on the client:

• Creating a stream to receive updates published to topics
• Creating a stream to receive messages sent on topic paths

The regular expression evaluation on each of the client libraries and on the Diffusion server are all
based on the same style of regular expressions. The behavior of topic selectors on the clients and on
the Diffusion server is the same for all standard uses of regular expressions. More advanced or complex
regular expressions might differ slightly in behavior.

See the following sections for platform-specific information.

On the Diffusion server

Topic selectors evaluated on the Diffusion server are evaluated as Java-style regular expressions and
are based on java.util.regex.Pattern.

For more information about Java-style regular expressions, see Java regular expressions.

On Java and Android clients

Topic selectors evaluated on these clients are evaluated as Java-style regular expressions. There are
no differences between how a regular expression is evaluated on these clients and how it is evaluated
on the Diffusion server.

For more information about Java-style regular expressions, see Java regular expressions.

On .NET clients

Topic selectors evaluated on the .NET client are evaluated as .NET Framework regular expressions,
these are compatible with Perl 5 regular expressions. For more information about .NET regular
expressions, see https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx.

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx

Diffusion | 67

The .NET evaluation of regular expressions can differ from the Java evaluation of the same
regular expression on the Diffusion server. For examples of how these can differ, see http://
stackoverflow.com/a/545348.

Ensure that you test the behavior of complex regular expressions that you use with the .NET client.

On Apple clients

Topic selectors evaluated on the Apple client are evaluated according to the
NSRegularExpression class, which uses ICU regular expression syntax. For more information
about Apple regular expressions, see https://developer.apple.com/library/ios/documentation/
Foundation/Reference/NSRegularExpression_Class/ and http://userguide.icu-project.org/strings/
regexp.

The Apple evaluation of regular expressions can differ from the Java evaluation of the same regular
expression on the Diffusion server. Ensure that you test the behavior of complex regular expressions
that you use with the Apple client.

On JavaScript clients

Topic selectors evaluated on the JavaScript client are based on the ECMAScript standard. For more
information about JavaScript regular expressions, see https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global_Objects/RegExp, https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Guide/Regular_Expressions, and http://www.ecma-international.org/ecma-262/5.1/
#sec-7.8.5.

The JavaScript evaluation of regular expressions can differ from the Java evaluation of the same
regular expression on the Diffusion server. Ensure that you test the behavior of complex regular
expressions that you use with the JavaScript client.

On C clients

Topic selectors evaluated on the C client use PCRE. For more information about C regular expressions,
see http://www.pcre.org/.

The C evaluation of regular expressions can differ from the Java evaluation of the same regular
expression on the Diffusion server. Ensure that you test the behavior of complex regular expressions
that you use with the C client.

Topic selectors in the Classic API (deprecated)
A topic selector is a string that can be used by the Classic API to select more than one topic by
indicating that subordinate topics are to be included or by fuzzy matching on topic names or both.

Supported in: JavaScript Classic API, Java Classic API, .NET Classic API, C Classic API, iOS Classic API,
Android Classic API, Flash Classic API, Silverlight Classic API

Including subordinate topics

When specifying a topic name you can also indicate that all of its subordinate topics are to be included
by suffixing the name with a slash character (/).

For example, to select all of the subordinate topics of a topic named MyTopic use a selector of the
format MyTopic/.

This notation can also be used with topic paths. So to select all topics subordinate to the topic named
A/B, use a selector of the following format:

A/B/

http://stackoverflow.com/a/545348
http://stackoverflow.com/a/545348
https://developer.apple.com/library/ios/documentation/Foundation/Reference/NSRegularExpression_Class/
https://developer.apple.com/library/ios/documentation/Foundation/Reference/NSRegularExpression_Class/
http://userguide.icu-project.org/strings/regexp
http://userguide.icu-project.org/strings/regexp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
http://www.ecma-international.org/ecma-262/5.1/#sec-7.8.5
http://www.ecma-international.org/ecma-262/5.1/#sec-7.8.5
http://www.pcre.org/

Diffusion | 68

Specifying a suffix of “/” does not include the topic named prior to the final “/”. To include the
specified topic and all of its subordinates, use “//”.

For example, to select the topic A/B and all of its subordinates, specify the following selector:

A/B//

Fuzzy matching

A number of topics can be selected using a single topic selector which uses regular expressions to
match against topic names.

Regular expressions provide a powerful mechanism for String pattern matching which is not discussed
here. A Java tutorial is available for those familiar with Java or a more generic tutorial can be
consulted for other language users. The regular expression syntax supported by Diffusion is defined by
the Java Pattern class.

The important point to note about the use of regular expressions in topic selectors is that they have
multiple parts (separated by /) and that each part of a selector can be a regular expression pattern. A
multi-part selector is evaluated part by part starting from the top level of the topic tree in an attempt
to find a matching topic in the tree.

If there is no “/” in the selector string but there are regex characters then the whole string is applied as
a regex against the full topic name. This can be useful in some circumstances, for example when you
do not know how many topic levels exist but it is far less efficient than per-level matching.

Example of selector regular expression processing

Consider the following topic selector:

A.*/B/.*X

As the above selector has three specifications it only matches with topic names with three parts.

The first check is to select any topics at the top-level of the topic tree whose name matches the pattern
“A.*”. In regular expression notation this pattern matches with any String that starts with “A” and is
followed by zero or more other characters. So if there are no top-level topics that start with an “A”
then this selector matches with no topics at all. However, for any top-level topic that does match,
processing goes to the next part which is a simple String “B” and only matches with a subordinate
topic called “B”. So if any topics called “B” are found under the top-level topics starting with “A”,
processing goes onto the final pattern “.*X” which in regex notation indicates any String with any
number of characters before a final “X” (a String ending with “X”).

So to summarize, the above selector matches only with topic paths with 3 elements where the first
element starts with an “A”, the second element is “B” and the third element ends with an “X”.

The following are matches:

Accounts/B/TAX

A/B/X

Admin/B/ProjectX

But the following are not:

Accounts/TAX

Admin/B/ProjectYHR/B/TAX

If you do not know how many levels you are dealing with but want to select topics where the lowest
level topic name is ABC, you must use a whole topic name selector as follows:

.*\x2FABC

Diffusion | 69

The use of “\x2F” is necessary to represent a “/” as otherwise the selector evaluates per level.

So this selector matches with:

A/B/ABCX/Y/ZZZ/wwwwww/ABC

but not with:

A/B/CABC

Mixed Mode selectors

It is permitted to mix regex pattern handling and subordinate topic suffixes in the same topic selector
pattern.

So it is permitted to use a selector of the form A.*/Address/ which has the effect of selecting all of the
topics subordinate to the topic named Address within any top level topic starting with “A”.

Selector examples

Table 12: Selector examples

Selector pattern Selects Examples

A/ All topics subordinate to, but
not including the top-level topic
named “A”.

A/B, A/B/C

A// The top level topic named “A”
and all topics subordinate to it.

A, A/B, A/B/C

A.* All topics that start with the
letter “A”

A, Accounts, Admin

A.*// All topics that start with
the letter “A” and their
subordinates.

A, Accounts, A/B, Admin/X/Y

Counties/.*ex All topics under the top-level
topic called Counties whose
name ends in “ex”.

Counties/Middlesex, Counties/
Sussex

.*folk All topics whose full name ends
in “folk” regardless of level.

UK/Counties/Suffolk, Counties/
Norfolk

When is a topic string a selector?

In certain parts of the APIs only topic names can be specified (for example, when adding a topic) but in
other areas selectors are allowed (for example, in subscription).

A topic string is considered to be a selector if it is terminated by a “/” or it contains any one of the
regular expression metacharacters which are defined as the following characters: []\^$.|?*+()

Related concepts
Topic tree on page 58
Diffusion primarily distributes data using a pub-sub model, where content is published to topics. These
topics are arranged as a tree.

Topic selectors in the Unified API on page 60

Diffusion | 70

A topic selector identifies one or more topics. You can create a topic selector object from a pattern
expression.

Topics
Consider the types of topic you want to use and how. You can also consider the attributes that topics
have. The attributes a topic can have can change depending on the topic type.

Topics that provide data

You can publish data to these topics and the data is streamed to subscribing clients.

• JSON
• Binary
• Single value
• Record
• Stateless

Advanced topics

Diffusion includes advanced topic types that provide additional capabilities such as routing
subscriptions to other topics or presenting data in paged form.

JSON topics
A topic that provides data in JSON format. The data is transmitted in a binary form for increased
efficiency. JSON topics are stateful: their state is maintained on the Diffusion server.

Note: JSON topics are fully supported by the JavaScript Unified API, Android Unified API, Java
Unified API, and .NET Unified API,

Why use a JSON topic?

JSON provides the ability for you to structure your data in a human-readable, industry-standard
format. For more information about JSON, see http://www.json.org/.

The value of the topic is transmitted as CBOR. For more information about CBOR, see http://cbor.io/.

The value of the topic is accessible both as JSON and CBOR.

Why use a JSON topic?

JSON is a human-readable, industry-standard format for your data. JSON is natively supported by
JavaScript and there are third-party libraries available for other platforms.

A JSON topic enables multiple fields to be maintained in the same topic as part of a composite data
type. All updates made at the same time to parts of a JSON topic are sent out to the client together.
This enables a set of parts to be treated as a transactional group.

Deltas of change are calculated at the Diffusion server such that only those parts that have changed
since the last update are sent out to the subscribed clients. This ensures that the minimum amount of
data is sent to clients.

The current value of the topic is cached on the client. When deltas are sent, the client can
automatically apply these deltas to the value to calculate the new value.

http://www.json.org/
http://cbor.io/

Diffusion | 71

If your data structure is too complex to be represented by a topic tree or might make the topic tree
structure difficult to manage, it might be more appropriate to represent part of the data structure
inside a JSON topic as JSON objects.

Properties of a JSON topic

When you create a JSON topic you can specify the following properties in the topic specification:

PUBLISH_VALUES_ONLY
If set to true, all values are published in full. Otherwise, deltas are published if they
are more efficient to send than the full values.

If there is little or no relationship between values published to a topic, delta streams
will not reduce the amount of data transmitted. For such topics, it is better to set
PUBLISH_VALUES_ONLY.

VALIDATE_VALUES
If set to true, the topic checks that the update made to it by an updating client is a
valid instance of the JSON datatype. If the update is not valid, the update is discarded
and the updating client notified of the failure.

If set to anything other than true, no validation is performed and all values are
streamed to subscribing clients whether they are valid JSON data or not.

Validation has a performance overhead and is disabled by default.

Considerations when using a JSON topic

JSON is only native to JavaScript. Other languages must parse it as text. However, there are many
third-party libraries you can use for this parsing.

JSON does not support binary data. If you want to use binary data, you can use binary topics. For more
information, see Binary topics on page 72.

Classic API clients (deprecated) do not support any interaction with JSON topics.

JSON topics are currently fully supported by only the following APIs:

• JavaScript Unified API
• Java Unified API
• Android Unified API
• .NET Unified API

The following APIs offer limited support:

• C Unified API
• Apple Unified API

Use this API to create JSON topics and to receive data from JSON topics. Updating JSON topics is
not yet fully supported.

The Publisher API provides the capability to create and update JSON topics using
TopicDataFactory.newUniversalData.

If you use value streams to receive updates from a JSON topic, this can cause problems in the event of
client reconnection. We recommend that when using value streams, you configure your clients not to
attempt to reconnect to a session, but instead to connect again with a new session and resubscribe to
topics.

Diffusion | 72

Binary topics
A topic that streams binary data as bytes and uses efficient binary deltas to stream only the data that
changes between updates. Binary topics are stateful: their state is maintained on the Diffusion server.

Note: Binary topics are fully supported by the JavaScript Unified API, Android Unified API,
Java Unified API, and .NET Unified API,

Why use a binary topic?

You can use a binary topic to transmit any arbitrary binary data without the overhead of encoding it to
a string or the risk of the binary data being incorrectly escaped.

Binary topics can use binary deltas to send only the data that has changed when this is more efficient
than sending the full value.

You can use a binary topic to transmit very large strings. This enables a client to use the binary delta
capability to transmit only the changed parts of a string rather than the whole value. This reduces the
amount of data transmitted over the network.

Binary formats, such as Google protocol buffers, can be streamed using a binary topic. Though
Diffusion provides a Google protocol buffer topic type, the protocol buffer topic requires that a
compiled .proto class must be present on the Diffusion server classpath. We recommend that you use
a binary topic instead and handle the serialization and deserialization of the protocol buffers in your
clients.

Properties of a binary topic

When you create a binary topic you can specify the following properties in the topic specification:

PUBLISH_VALUES_ONLY
If set to true, all values are published in full. Otherwise, deltas are published if they
are more efficient to send than the full values.

If there is little or no relationship between values published to a topic, delta streams
will not reduce the amount of data transmitted. For such topics, it is better to set
PUBLISH_VALUES_ONLY.

Considerations when using a binary topic

Data on binary topics contains no implicit information about its structure.

Data on binary topics cannot be viewed in the console.

Classic API clients (deprecated) do not support any interaction with binary topics.

Binary topics are currently fully supported by only the following APIs:

• JavaScript Unified API
• Java Unified API
• Android Unified API
• .NET Unified API

The following APIs offer limited support:

• C Unified API
• Apple Unified API

Use this API to create binary topics and to receive data from binary topics. Updating binary topics is
not yet fully supported.

The Publisher API provides the capability to create and update JSON topics using
TopicDataFactory.newUniversalData.

Diffusion | 73

If you use value streams to receive updates from a binary topic, this can cause problems in the event of
client reconnection. We recommend that when using value streams, you configure your clients not to
attempt to reconnect to a session, but instead to connect again with a new session and resubscribe to
topics.

Single value topics
A topic that streams data as a single value that can be constrained to a defined data type. Single value
topics are stateful: their state is maintained on the Diffusion server.

The value of the topic state is stored as a string. However, the type of the single value can be
constrained in certain ways, for example, to hold a string, an integer, or a decimal number. The type of
the single value is described using field metadata in the schema. For more information, see Metadata
on page 74.

Why use a single value topic?

For the majority of use cases, single value topics are the most appropriate model for the your data.
Single value topics are easy to create and update, and the data the topic contains is simpler.

If a structure is required for your data, you can use the design of your topic tree to define the structure.

Single value topics are supported by all client APIs.

By defining the type of the single value of the topic, you benefit from automatic validation and
formatting of the data.

Considerations when using a single value topic

A single value topic can only hold textual data. This type of topic data cannot be used to publish non-
textual data, such as a PNG or PDF file.

Single value topics cannot be used to make multiple updates transactionally. If you have multiple
items of data that you want to publish at the same time and have received by subscribing clients at
the same time, you cannot split these items of data across multiple single value topics. In this case,
it is more appropriate to use a topic with a composite data type such as a JSON topic, CBOR topic, or
record topic. A topic with a composite data type can contain fields for each of the data items.

If you use value streams to receive updates from a single value topic, this can cause problems in the
event of client reconnection. We recommend that when using value streams, you configure your
clients not to attempt to reconnect to a session, but instead to connect again with a new session and
resubscribe to topics.

Record topics
A topic that streams data in Diffusion record format. Record format comprises strings separated by
field or record delimiters or both. Record topics are stateful: their state is maintained on the Diffusion
server.

Describe the layout of the data by using content metadata in the schema. For more information, see
Metadata on page 74.

Why use a record topic?

A record topic enables multiple fields to be maintained in the same topic as part of a composite data
type. All updates made at the same time to fields on a record topic are sent out to the client together.
This enables a set of fields to be treated as a transactional group.

Deltas of change are calculated at the server such that only those fields that have changed since the
last update are sent out to the subscribed clients. This ensures that the minimum amount of data is
sent to clients.

Diffusion | 74

Considerations when using a record topic

You must define the metadata when you create the record topic. This is more complex than using a
JSON or CBOR topic for composite data.

The metadata format used by record topics is only used by Diffusion. If you require a topic with a
composite data type, you can use JSON or CBOR topics

Record topic updates represent all possible records and fields within the content. Fields that have
not changed are sent within delta updates as zero-length strings. Because unchanged fields are
represented this way a client cannot differentiate between a field that has not changed and an empty
field. You can specify a special character that is used to represent an empty field.

The current value of a record topic is not cached on the client. Because of this, deltas are not
processed automatically and your application code must cache the topic value and correctly apply
incoming deltas. This lack of caching also requires that a client must register a stream against a topic
before subscribing to the topic in order to receive a value. If a client subscribes to a record topic then
registers a stream, the client receives only deltas until the next time a full value is published.

Metadata
Metadata defines how data is formatted when it is published on a topic. Define the metadata structure
for a topic that describes the grouping, order, type, and multiplicity of data items published on a topic.

Updates and messages contain byte data. This byte data can be formatted in whatever way your
application requires. For example,

• When creating a record topic, define a metadata structure that describes the data format both for
updates published on that topic and those sent on to the subscribing clients.

• When creating a single value topic, you can define field metadata that constrains the data type that
updates published to the topic can have.

• When sending a message through a topic path, you can use metadata to create the content of your
message.

Metadata structure

The metadata structure is made up of nested records and fields. The outer container is the content.
This contains one or more records. Each record can contain one or many fields.

Fields and records are identified by a name. Every record must have a name that is unique within the
content. Every field must have a name that is unique within the enclosing record.

Every field or record defined in the metadata structure can represent one or more possible
occurrences of that field or record in the byte data. The number of possible occurrences of a record or
field is described by its multiplicity.

The order in which records and fields are defined within their enclosing container defines the order
that they appear in byte data.

Field metadata

A metadata field defines an elementary data item within a record.

Every field has the following properties:

Diffusion | 75

• Data type
• Multiplicity
• Default value

Data type

The data type of a field defines its actual representation within the byte data. The following table
describes the data types that are available.

Table 13: Data types for metadata fields

Data type Description Default

String A character string. Zero-length string

Integer string An integer represented in the content as a
character string.

If a field is defined as this type, it can only contain
numeric digits with an optional leading sign.
Fields of this type cannot be empty.

0

Decimal string A decimal number represented in the content as
a character string.

Decimal fields have the number of places to
the right of the decimal point defined by the
scale, the default being 2. Such values can be
parsed from a character string with any number
of digits to the right of the decimal point. Half-up
rounding is applied to achieve the target scale.
Output of the field is rendered with the specified
scale. Fields of this type cannot be empty.

For comparison purposes the scale is ignored: a
value of 1.50 is the same as 1.5.

0.00 (depending on
scale)

Custom string This is a special type where the behavior is
delegated to a user-written custom field handler.

This type is available in all topic data types.

-

Multiplicity

The multiplicity of a metadata field or record defines the number of times the corresponding byte data
can occur within the enclosing record or content.

Multiplicity is defined in terms of the minimum and maximum number of occurrences. Some byte
data representations support variable numbers of records and field, whereas others (such a record
data) only support fixed number of records and fields (where minimum=maximum) except in the last
position.

Fixed multiplicity is defined by a single number. For example, a multiplicity of 5 on a field indicates
that there must be exactly five occurrences of the field within its enclosing record.

Variable multiplicity is defined by a minimum value and a maximum value and is represented with the
notation n..n. For example, multiplicity of 1..5 on a field specifies that there must be between one and
five occurrences of the field within its enclosing record.

Diffusion | 76

A special maximum value of -1 is used to represent no maximum. For example, a multiplicity of 1..-1 on
a field specifies there can be any number of occurrences of the field, but there must be at least one.

Optional nodes are defined by a minimum value of 0. For example, a multiplicity of 0..1 on a field
specifies that there can be zero of one occurrences of the field within its enclosing record. A fixed
multiplicity of 0 is not allowed.

Variable multiplicity fields must be defined at the end of their containing record. Variable multiplicity
records must be defined at the end of the content.

Default value

You can specify a default value for a field. If you do not specify a default value, the default value for the
data type is used. When content is created using metadata, default initialization applies the default
values specified for each field.

Stateless topics
A topic that has no state held on the Diffusion server or on the client that publishes to it.

A stateless topic has no state. It can be used for publishing and receiving updates, but not for fetching
the current topic state.

Stateless topics are the only type of topic provided in other typical pub-sub solutions.

Why use a stateless topic?

You can use stateless topics for data streams where there is no current state of the data, only updates.
For example, a feed of news items.

All handling of the topic and topic data of a stateless topic is done by your client application. Because
of this, the format of the data published on a stateless topic is entirely flexible. The topic content
is treated as byte data by the Diffusion server. How that byte data is handled and interpreted is
determined by your client applications.

Considerations when using a stateless topic

A stateless topic does not store state. You cannot fetch the topic state and when you first subscribe to
a stateless topic you do not receive the topic state as a value as you do with a stateful topic.

You must write all of the logic in your client to handle the byte data that is published on a stateless
topic. This might mean it takes longer to get started using a stateless topic compared to topics that are
handled by the Diffusion server.

You also lose some of the benefits of having a topic whose content is understood by the Diffusion
server, such as validation, formatting, conflation, and deltas.

Advanced topics
Advanced topics are those types of topic that either provide data in a tabular form, do not provide
data directly, or provide additional capabilities.

Advanced topics can be divided into the following categories:

Advanced data-providing topics
You can publish data to these topics, but they require additional configuration on the
Diffusion server:

• Protocol buffer
• Custom

Functional topics

Diffusion | 77

You cannot publish data to these topics. Instead, functional topics provide other
capabilities to subscribing clients, for example notifications.

The following types of topic are functional topics:

• Slave
• Routing
• DEPRECATED: Child list
• DEPRECATED: Service
• DEPRECATED: Topic notify

DEPRECATED: Paged topics

You can transmit data through these topics, but paged topics do not use the same
pub-sub mechanism as publishing topics.

Paged topics have state which is stored in a tabular format, as pages of lines. Unlike
publishing topics, clients do not publish updates to a paged topic to change the state.
Instead clients add, update, or remove lines in the topic.

Paged topics can be ordered or unordered. You can define the ordering of a paged
topic by using a user-defined comparator class that is located on the Diffusion server
or by declaring the rules that are used for the ordering when you create the topic.
Lines that are added to unordered paged topics are added at the end. Lines that are
added to ordered paged topics are added at the position defined by the comparator
or rules.

A client must subscribe to a paged topic to be able to access the data on it. However,
unlike publishing topics clients do not receive updates whenever changes are made
to the paged topic state. To access the data, the client must open a view on the
paged topic and specify how many lines per page and what page to open the view
on. The client can then page through the data. If the state of the client's current page
changes, the client is notified and can choose to refresh the page.

The following types of topic are paged topics:

• Paged string
• Paged record

Routing topics
A special type of topic, which can map to a different real topic for every client that subscribes to it. In
this way, different clients can see different values for what is effectively the same topic from the client
point of view.

When a client subscribes to a routing topic, the request is either passed to a client that has registered
as a routing subscription handler for the topic or handled by a server-side routing handler. The routing
handler assigns a linked topic to represent it to that client.

The routing handler can assign a different linked topic to each client that subscribes to the routing
topic. The linked topic can be a topic of one of the following types:

• JSON
• Binary
• Single value
• Record
• Stateless
• Protocol buffer
• Custom

Diffusion | 78

When updates are received on the linked topic, those updates are propagated through the routing
topic to the subscribing clients.

The subscribing client is not aware of the linked topic. It is subscribed to the routing topic and all the
updates that the client receives contain only the routing topic path and not the linked topic path.

Why use a routing topic?

Use routing topics when you want your subscribing clients to all have the same subscription behavior,
but the data they receive to be decided by a routing handler depending on criteria about that client.

For example, your subscribing clients can subscribe to a routing topic called Price, but the routing
handler assigns each client a different linked topic depending on the client's geographic location. This
way, clients in different countries can act in the same way, but receive localized information.

Considerations when using a routing topic

Using routing topics requires that you write a routing handler that is either hosted on the server or
registered by a client with the required permissions. The following client APIs can register a routing
handler: Java, .NET, or Android Unified API.

A subscribing client only needs permission to subscribe to the routing topic. Permission to subscribe to
the linked topic is not required.

If the linked topic is removed, subscribing clients are automatically unsubscribed from the routing
topic.

If you attempt to fetch from a routing topic that routes to a stateless topic, no data is returned.

You cannot use topic replication to replicate routing topics between Diffusion servers.

When using automatic fan-out to propagate topics from a primary server to one or more secondary
servers, the routing subscription handlers for a routing topic must be registered at the primary and all
secondary servers. The routing logic provided by the handlers on the primary and secondary server
must be identical.

Slave topics
A special type of topic that has no state of its own but is a reference to the state of another topic.

A slave topic acts as an alias to another topic, the master topic. Updates published to the master are
fanned out to subscribers of the slave. The slave cannot be updated directly. The master topic must be
one of the following types of topic:

• JSON
• Binary
• Single value
• Record
• Protocol buffer
• Custom

The link between a slave topic and a master topic is defined when the slave topic is created. This is
different to routing topics where the link between topics is defined when a client subscribes.

Why use a slave topic?

You can use slave topics to provide the same data from multiple topic paths and manage the topics
from only one topic.

Diffusion | 79

You can use a slave topic to act as a redirection to a succession of master topics. For example, you
can create a slave topic called latest that is linked to a master topic where data is published about a
current event. When that event is no longer current, you can remove the slave topic and recreate it
now linked to the master topic where data is published about what is now the current event.

The subscribing clients can subscribe to the latest slave topic and they continue to be subscribed to
the slave topic and receive the latest data, even as the master topic that provides the data changes.

Considerations when using a slave topic

A client only needs permissions on the slave topic. Permission to subscribe to the linked topic is not
required.

More than one slave can point to the same master topic.

A slave topic cannot also act as a master topic to another slave topic.

Removing a master topic causes all linked slave topics to be removed.

You cannot use topic replication to replicate slave topics between Diffusion servers.

When using automatic fan-out to propagate topics from a primary server to one or more secondary
servers, be aware that the order of topic creation on the secondary server can prevent slave topics
from being replicated. For example, if a slave topic refers to a topic that does not yet exist because it is
in a branch not yet replicated or because it is lower down the link hierarchy.

DEPRECATED: Custom topics
A topic that has its state maintained at the server by a user-written Diffusion class.

By implementing CustomTopicDataHandler, you can define the types, formatting, and structure
data on a custom topic. By writing a custom topic handler you can define how that data is maintained,
compared, and sent to subscribing clients.

These user-written classes must be on the classpath of the Diffusion server.

The topic state is delegated to an instance of the class and is handled on the server side. Updates from
a client are passed to the custom topic handler for processing. The custom topic handler can hold the
topic state internally or elsewhere.

Why use a custom topic?

Custom topics enable you to use data types and layouts that are not supported directly by Diffusion.

Considerations when using a custom topic

The custom topic handler must be present on the classpath of the Diffusion server. If your solution
uses multiple Diffusion servers that all host the same custom topic, the same custom topic handler
must be present on all of their classpaths.

Custom topic handlers can only be implemented in Java.

DEPRECATED: Topic notify topics
A functional topic that can be used by clients to receive notifications whenever topics are created,
modified, or removed in a part of the topic tree.

A client can subscribe to a topic notify topic to request notifications that contain one of the following
levels of notification when a topic is added:

• topic name and type
• topic name, type, and properties
• topic name, type, and metadata

Diffusion | 80

• full topic definition (including name, type, properties, and metadata)

The client uses a handler to handle topic notifications. To receive notifications, the handler must
select which parts of the topic tree to receive notifications on. You can use topic names or topic
selectors or both to define these parts of the topic tree.

Considerations when using a topic notify topic

In some APIs, a client that subscribes to a topic notify topic must provide the handler that handles the
notifications.

DEPRECATED: Child list topics
A functional topic that maintains a list of child topics and notifies subscribed clients when a child topic
is added or removed directly.

A child topic is a topic that is directly beneath the child list topic in the topic tree. For example, if the
child list topic is at the path foo, the topics foo/bar and foo/fred are its child topics. However, the topic
foo/bar/baz is not a child topic of foo.

Why use a child list topic?

You can use child list topics to group sets of related data items. Each data item is a child topic beneath
the child list topic. A client can subscribe to the child list topic and receive a notification when data
item is added to a set (that is, when a child topic is added or removed).

Considerations when using a child list topic

Child list topics are supported only by the Classic API.

DEPRECATED: Paged string topics
A topic that maintains server-side state as a number of lines of string data. A client can view the data
as pages made up of one or more lines and can page forward and backward through the data.

Note:

Paged topics are deprecated. They will be replaced with an equivalent capability in a future
release.

It can be simpler to use a JSON topic with delta updates enabled. Although the whole value is
published to a client when it first subscribes, subsequent updates are published incrementally.

Paged topics have state which is stored in a tabular format, as pages of lines. Unlike publishing topics,
clients do not publish updates to a paged topic to change the state. Instead clients add, update, or
remove lines in the topic.

Paged topics can be ordered or unordered. You can define the ordering of a paged topic by using a
user-defined comparator class that is located on the Diffusion server or by declaring the rules that are
used for the ordering when you create the topic. Lines that are added to unordered paged topics are
added at the end. Lines that are added to ordered paged topics are added at the position defined by
the comparator or rules.

A client must subscribe to a paged topic to be able to access the data on it. However, unlike publishing
topics clients do not receive updates whenever changes are made to the paged topic state. To access
the data, the client must open a view on the paged topic and specify how many lines per page and
what page to open the view on. The client can then page through the data. If the state of the client's
current page changes, the client is notified and can choose to refresh the page.

Diffusion | 81

Why use a paged string topic?

Unlike most publishing topics, paged topics are not designed to distribute streaming data. Paged
topics store tabular data. If your data is of a more tabular form — for example, news items — a paged
topic might be most appropriate.

A paged string topic is suitable for simple items of data that can be represented as text.

The state of publishing topics is constantly changing, with no capability to look back at its previous
values. With a paged topic you can store all updates on the topic and a client can view the history of
previous values, without the client having to store them.

A paged topic can serve different parts of its state to different clients. Any subscribed client can view
any page of the data that is required.

If the order of your data is important, a paged record topic ensures that updates are added in the
appropriate position. This removes the requirement for a client to have to order the stored data before
using or displaying it.

Considerations when using a paged string topic

Viewing paged topics is supported only by the Classic API.

You must be subscribed to a paged topic to open a view on it.

The lines of a paged topic are UTF-8 encoded.

You cannot use topic replication to replicate paged topics between Diffusion servers.

Paged topic data is not supported by the Introspector or the console.

DEPRECATED: Paged record topics
A topic that maintains server-side state as a number of lines of record data. The schema defines the
record metadata that defines the lines. A client can view the data as pages made up of one or more
lines and can page forward and backward through the data.

Note:

Paged topics are deprecated. They will be replaced with an equivalent capability in a future
release.

It can be simpler to use a JSON topic with delta updates enabled. Although the whole value is
published to a client when it first subscribes, subsequent updates are published incrementally.

Paged topics have state which is stored in a tabular format, as pages of lines. Unlike publishing topics,
clients do not publish updates to a paged topic to change the state. Instead clients add, update, or
remove lines in the topic.

Paged topics can be ordered or unordered. You can define the ordering of a paged topic by using a
user-defined comparator class that is located on the Diffusion server or by declaring the rules that are
used for the ordering when you create the topic. Lines that are added to unordered paged topics are
added at the end. Lines that are added to ordered paged topics are added at the position defined by
the comparator or rules.

A client must subscribe to a paged topic to be able to access the data on it. However, unlike publishing
topics clients do not receive updates whenever changes are made to the paged topic state. To access
the data, the client must open a view on the paged topic and specify how many lines per page and
what page to open the view on. The client can then page through the data. If the state of the client's
current page changes, the client is notified and can choose to refresh the page.

Diffusion | 82

Why use a paged record topic?

Unlike most publishing topics, paged topics are not designed to distribute streaming data. Paged
topics store tabular data. If your data is of a more tabular form — for example, news items — a paged
topic might be most appropriate.

A paged record topic, enables you to use metadata to define the format of each line of data. If each line
contains multiple items of data, paged record topics enables you structure this data, where a paged
string topic does not.

The state of publishing topics is constantly changing, with no capability to look back at its previous
values. With a paged topic you can store all updates on the topic and a client can view the history of
previous values, without the client having to store them.

A paged topic can serve different parts of its state to different clients. Any subscribed client can view
any page of the data that is required.

If the order of your data is important, a paged record topic ensures that updates are added in the
appropriate position. This removes the requirement for a client to have to order the stored data before
using or displaying it.

Considerations when using a paged record topic

Viewing paged topics is supported only by the Classic API.

You must be subscribed to a paged topic to open a view on it.

The lines of a paged topic are UTF-8 encoded.

You cannot use topic replication to replicate paged topics between Diffusion servers.

DEPRECATED: Service topics
A functional topic that implements a request/response type service. The service is implemented as a
user-written server-side Diffusion class.

Note: Service topics are deprecated and will be removed in a future release. We recommend
that you use the Messaging and MessagingControl features of the Unified API to implement
request/response behavior.

Service topic data

Service topic data

Functional topic data that provides an Asynchronous Request/Response service

This is a special form of topic data that provides a request/response service framework.

It is a common requirement for clients to be able to send some form of command through a topic to a
publisher, which performs some processing and optionally return some form of response on the same
topic.

Service topic data provides the following functionality to support such a service paradigm:

• Adding service topic data to a topic makes that topic a service (or command based) topic where
all inbound messages from the client are routed directly to the topic data instance for execution
rather than to the publisher.

• A user written service handler is specified to perform the processing for a topic and this are invoked
for every command message received on that topic.

• The handler can return a response immediately (synchronous processing) or return no response
but delegate the return of the response to some later process (asynchronous processing).

Diffusion | 83

• Subscription actions (sending of topic load) happens automatically, so no handling needed in
Publisher.subscription() method.

• Automatic timeout mechanism for asynchronous requests.
• Built in error reporting mechanism.

Creating service topic data

Service topic data is created as follows:

ServiceTopicData topicData =
 TopicDataFactory.newServiceData("Service1", new MyServiceHandler());

Configuring service topic data

Service topic data does not have state to be initialized as other topics do but there are some options to
configure the behavior of the topic data before it is added to the topic:

Service data

Even though service topic data does not have data state there is the option to specify some static
data for the topic which is sent to the client upon subscription (in the topic load message). The data is
specified in the form of a Message which can contain headers and/or data.

The following example shows some service data being specified:

TopicMessage serviceData = createDeltaMessage("Service1");
serviceData.putFields("A","B","C");
topicData.setServiceData(serviceData);

Target topic Name

The ServiceRequest object passed to the ServiceHandler contains a message containing the
data from the request passed from the client. By default, this message has its topic name set to that of
the topic that owns the topic data. However, this can be changed if required, for example if the request
is to be passed to another process that requires a different topic name. The setTargetTopicName
method can be used to specify a different topic name.

When only synchronous processing is in use there is probably no point in changing the topic name in
the message.

Header Options

The ServiceRequest object passed to the ServiceHandler contains a message containing the
headers from the request passed from the client but might also have other headers automatically
included. This is done using the setHeaderOptions method which allows a list of header types to
be specified. Any headers specified in this list are included in the message within the request before
any user headers passed from the client.

Such headers are required only for asynchronous processing as all of the specified information is
available in the ServiceRequest object anyway when processing synchronously. The purpose of
adding such headers is only for the sake of a process to which the request message can be sent.

The following header options are available:

SERVICE_TYPE

The value of the service type specified when the topic data was created.

REQUEST_TYPE

Diffusion | 84

The request type is passed with the request from the client. This is needed to
differentiate between different types of requests. However, if there is only ever one
type of request, request type is not required.

CLIENT_ID

The client identifier of the client that sent the request.

REQUEST_ID

The request identifier sent from the client with the request which uniquely identifies
the request for the client.

By default no additional headers are added.

Asynchronous Request Timeout

When asynchronously processed the topic data only waits for a certain amount of time before timing
out the request and automatically sending a timeout error to the Client. By default this value is set to 5
seconds but can be changed using the setRequestTimeout method.

Writing a service handler

How to write the handler for a service topic

The key element of a service topic is the user written service handler which performs the actual
processing. The service topic data itself is merely a framework within which to execute service
handlers.

Service requests are sent from the client and routed through the topic data to an instance of the
service handler as specified to the topic data.

A service handler must implement the ServiceHandler interface.

Requests are formatted into ServiceRequest objects and passed to the Service handler on its
serviceRequest method. The ServiceRequest has information like the client details, a unique
request identifier (from the client), a request type and request data in the form of a message. The
request data comes from the message received from the client and can comprise user headers and/or
data. It is also permissible to have no request data, just a request type.

The service handler can process the request and immediately return a ServiceResponse
object encapsulating the details of the response to send back to the client. This is synchronous
processing. The handler might also choose to delegate the processing to some other process which
will asynchronously return the response at some later point using the serviceResponse method
on the topic data.

For synchronous processing an error can be reported by throwing a ServiceException from the
handler. This is formatted and returned to the client. For asynchronous processing a callback to the
serviceError method on the topic data might be used to report a failure in processing.

Client handling of service topic data

How a client handles a service topic

At the client end the client application must be able to handle the service topic Protocol. Most client
APIs provide the capability for handling such topics transparently. This section shows how it is handled
in the Java client API.

Handling a topic load

A client receives messages on its listener methods and can detect a load message from a service
topic by means of the isServiceLoad() method. On receipt of such a load message the
client application must create a ServiceTopicHandler to handle the topic. This handler

Diffusion | 85

provides the facility to send requests to the topic and also routes responses and errors from
the topic to a specified ServiceTopicListener. Such a handler can be created using the
ExternalClientConnection.createServiceTopicHandler method.

The following code sample shows how to create a suitable topic handler on receipt of a service load
message:

public void messageFromServer(ServerConnection serverConnection,
 TopicMessage message) {
 if (message.isServiceLoad()) {
 try {
 theHandler=theConnection.createServiceTopicHandler(message,this);
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

The returned handler is of type ServiceTopicHandler and the above example assumes the calling
class implements ServiceTopicListener and process service responses and errors.

Having created such a handler no further messages are received for that topic on the
messageFromServer method as they are all consumed by the handler.

Service type and service data

After creating the handler the service type and any service data sent from the server can be obtained
from it. The service type identifies the service to the server, and can be used by the client to
differentiate between different types of service. The server might also have returned service data
which can be used by the service to return any information that might be required by the client. The
way in which service type and service data is used is entirely up to the service implementation at the
server.

Sending Requests

A service request can be sent to the server through the handler using the request method. A request
must specify a request type which must be a request type understood by the service. It can also
optionally specify a message containing headers and/or data which is sent with the request. The
message can be used to provide parameters to the service request.

The following example shows the simplest case where no parameters are required to the request:

String requestId = theHandler.request("GetAccounts",null);

The method returns a unique request identifier which can be used to correlate the response (or any
error) returned from the service with the request.

The following example shows a message being used to pass a parameter-

TopicMessage message = theConnection.createDeltaMessage("XYZ",50);
message.put("12435");
String requestId = theHandler.request("GetAccountDetails",message);

The topic name specified for the message is not important as it is replaced by the handler in the actual
request that is sent.

Diffusion | 86

Handling Responses

Responses to requests are returned using the serviceResponse method on the
ServiceTopicListener specified when creating the service Handler. The serviceResponse
method passes a ServiceTopicResponse object from which can be obtained the following:

Table 14: Handling Responses

requestId This is the request identifier that was returned when the
request was originally sent.

responseType This is a response type as sent by the service and is used to
allow the client to differentiate between different possible
responses.

responseMessage This is a message containing any headers and/or data
returned by the service. This can be an empty message if the
service did not return any data.

Handling Errors

If the service request fails in any way at the server, an error is returned through the serviceError
method on the ServiceTopicListener specified when creating the service handler. The
serviceError method passes a ServiceTopicError object from which can be obtained the
following:

Table 15: Handling Errors

requestId This is the request identifier that was returned when the
request was originally sent.

errorType This is an enum with one of the following possible values:

errorMessage This is the error message associated with the error. This will
always be present.

exceptionMessage This is an optional exception message which can be returned
if the error was due to an exception. This can be null.

additionalDetails This can return optional additional data associated with an
exception. This can be null.

Table 16: Error types

SERVICE An error has occurred whilst executing the service

INVALID The service request was invalid

TIMEOUT The request was executed asynchronously at the server but
was timed out before a response was returned.

USER An error was returned by the user written service handler.

DUPLICATE A duplicate request identifier was sent. This cannot happen
when using the Java API interface but is present for
completeness.

Diffusion | 87

Unsubscribing

When the client application unsubscribes from the service topic then the handler will become
unusable and any outstanding requests for which responses have not been returned are discarded.

DEPRECATED: Protocol buffer topics
A topic that maintains state at the server in Google protocol buffers format.

Note: Protocol buffer topics are deprecated and will be removed in a future release. We
recommend that you stream your protocol buffer data using a binary topic instead and handle
serialization and deserialization of the binary data at your clients.

Protocol buffers provide an extensible mechanism for serializing structured data.

For more information about protocol buffers, see https://developers.google.com/protocol-buffers/.

Define the format of data on a protocol buffer topic by using a .proto file. Compile the .proto file
into a Java class and ensure that the class is on the Diffusion server classpath.

The schema defines a compiled .proto class which must exist at the server and the name of a message
definition within the class that defines the topic data layout.

Why use a protocol buffer topic?

Data on protocol buffers topics is simple and small, and can be transmitted and parsed quickly.

A protocol buffer topic benefits from the same delta-processing capability at the server as a record
topic.

Serialization and deserialization code can be automatically generated for the data on the topic.

Considerations when using a protocol buffer topic

The compiled .proto Java class must be present on the classpath of the Diffusion server. If your
solution uses multiple Diffusion servers that all host a protocol buffer topic with the same message
definition, the same compiled .proto class must be present on all of their classpaths.

Protocol buffer definitions must be compiled into Java.

The supported version of protoc is 2.6.1.

Publication
Having decided on your topic structure and the format of your data, consider how you publish the data
through the topics.

Pub-sub is the primary model of data distribution used by Diffusion. Clients subscribe to a topic. When
data is published to the topic as an update, the Diffusion server pushes that update out to all of the
subscribed clients.

https://developers.google.com/protocol-buffers/

Diffusion | 88

Figure 2: Pub-sub model

A client can both publish to topics and subscribe to topics, depending on the permissions that client
has.

Concepts

Update
An update is data published to a topic by a client or publisher that is applied to
the topic to change the topic state. The updated data is then pushed out to all
subscribing clients.

State
The latest published values of all data items on the topic. The state of a topic is stored
on the Diffusion server.

Value
A value is an update that contains the current state of all data on the topic.

Delta
A delta is an update that contains only those items of data that have changed on the
topic since the last update was sent.

Topic loading
When a client first subscribes to a topic, it is sent a topic load message. A topic load is
a value update that contains the current state of the topic.

Fetch
A request for the current state of all data on the topic. A client can fetch a topic's state
without being subscribed to the topic. This request-response mechanism of getting
data from a topic is separate from the pub-sub mechanism.

Publishing data
Consider the following information when deciding how to publish data to topics.

Data type

The updates that you publish to a topic must have a data type and format that matches the data type
of the topic.

For example, if your topic is a single value topic where the data is of type integer, all updates published
to the topic must contain a single piece of integer data.

Similarly, if your topic is a record topic with a metadata structure defined, all updates published to the
topic must have the same metadata structure.

Diffusion | 89

Updaters

You can use one of the following types of updater:

Value updater
This is the preferred type of updater to use with JSON and binary topics. When used
as exclusive updaters, value updaters cache the values they use to update topics. This
enables them to calculate and send deltas, reducing the volume of data sent to the
Diffusion server.

Standard updater
This type of updater updates topics that use content to represent their data values.
Updaters do not cache values and send all of the data passed to them to the Diffusion
server without performing any optimization.

Both updater types can be used exclusively or non-exclusively.

For more information, see Updaters.

Exclusive updating

To update a topic exclusively, a client registers as the update source for that topic. Only one client can
be the active update source for a topic and any attempts by other clients to update that topic fail.

Implementing exclusive updating is more complex than non-exclusive updating as it involves the extra
step of registering as an update source.

A single client acting as the exclusive updater can be an advantage if you require that a single client
has ownership of a topic or branch of the topic tree. This requires less coordination and management
than updating a single topic from multiple clients.

If the ordering of the updates is important, use exclusive updating to ensure that a single client has
control over what data is published and when.

If you are using high-availability topic replication, clients must update the replicated topics
exclusively. Non-exclusive updates are not replicated by high-availability topic replication.

Non-exclusive updating

To update a topic non-exclusively, a client publishes updates to the topic and, if no other client has
registered to update the topic exclusively, the update is applied to the topic.

Non-exclusive updating is the simpler way to update a topic.

Clients that update a topic non-exclusively risk their updates being overwritten by updates from other
clients or that updates from multiple clients are published in a different order than intended.

If you use a value updater non-exclusively, the updater does not cache the value used to update the
topic.

Non-exclusive updating is not supported with topics that are replicated using the high-availability
capability.

Dynamically adding topics

A publishing client can create topics dynamically as and when the topics are required. For example, in
response to a subscription request from another client for a non-existent topic.

Security

To publish data to a topic, a client must have the update_topic permission for that topic.

For more information, see Permissions on page 132.

Diffusion | 90

Subscribing to topics
Consider the following information when deciding how clients subscribe to topics.

Registering streams

When you subscribe to topics the updates to that topics are received through streams. Register a
stream against a set of topics in the topic tree that contains the topic or topics you subscribe to. This
ensures that the client receives updates for a subscribed topic.

For more information, see Streams.

Subscribing to multiple topics

A client can subscribe to multiple topics in a single subscribe request. This subscription can be to
topics that match a particular regular expression or to topics in a particular branch of the topic tree.

Use topic selectors to define a set of topics.

For more information, see Topic selectors in the Unified API on page 60 and Topic selectors in the
Classic API (deprecated) on page 67

Subscribing to topics that do not exist

A client can subscribe to a topic that does not exist. This is pre-emptive subscription. Diffusion keeps
track of all subscribe and unsubscribe requests from a client, including for topics that do not exist.
When a new topic is created, if a client has subscribed to that topic path, the client is subscribed to the
new topic and receives updates from it.

Forced subscription

A publisher or a client with the required permissions can force other clients to become subscribed to a
topic or set of topics, even if the subscribing client did not request the subscription.

Security

To subscribe to a topic, a client must have the read_topic permission for that topic.

For more information, see Permissions on page 132.

Messaging
In addition to publishing data to topics as updates, you can send data as messages to specific clients
or to registered message handlers on topic paths.

Messaging and pub-sub are separate capabilities. Messaging uses topic paths to route the messages,
but does not use the topics bound to those paths. Sending messages does not change the state of data
on the topic, nor does it cause updates to be sent.

There are two ways in which messages are sent through topic paths:

Diffusion | 91

Send messages to a topic path

Figure 3: A client registers a handler on part of the topic tree

A client with the send_to_message_handler permission can send messages on a topic path. The
sending client does not know which client or publisher, if any, receives the message.

A client with the register_handler permission can register a handler on a part of the topic tree. This
client receives any messages that are sent on topic paths in that part of the topic tree.

Send messages to a client session

Figure 4: A client can send messages through a topic path to known client sessions

A client with the send_to_session and view_session permissions that knows the session ID of a client
session can send messages through a topic path to the known client session.

The receiving client must have a message stream registered against a topic path to receive messages
sent through that topic path. For more information, see Streams.

Considerations when using messaging

• The data type of the value sent in the message is not required to match the data type of the topic, if
any, bound to the topic path you use to send the message.

• A message can include headers. These headers are a set of string values that are separate to the
message content.

• You can set a priority on messages sent to client sessions. This priority affects the order in which
the messages are queued on the Diffusion server for delivery to the client.

• The following APIs require that a topic exists at a topic path to send a message through it and that
they are subscribed to a topic path to receive a message through it:

• Android Classic API (deprecated)
• Flash Classic API (deprecated)
• iOS Classic API (deprecated)
• Silverlight Classic API (deprecated)
• C Classic API (deprecated)
• Java Classic API (deprecated)
• JavaScript Classic API (deprecated)
• .NET Classic API (deprecated)

Diffusion | 92

Advanced usage
This section contains information about the advanced capabilities available when interacting with
your data.

Conflation
Conflation of messages is the facility to treat two messages as being essentially the same and avoiding
sending duplicate information to clients.

Updates and messages for a client are queued on the Diffusion server. Each client has its own
outbound queue.

Conflation removes an existing message from the outbound client queue and replaces it with a newer,
equivalent message either at the position of the old message or at the end of the client queue. The
replacement message can either be a new update or a merge of the new update and an existing
update.

Conflation is an optional feature that can be applied to all clients, clients connecting through a specific
connector, or can be applied programmatically on a client-by-client basis.

Advantages of message conflation

There are many scenarios in realtime data distribution where data being communicated need not
only be current, but must always be consistent. Structural conflation maximizes for concurrency while
ensuring consistent delivery.

Concurrency

Both simple and structural conflation maximize for concurrency through avoiding
distributing soon to be stale data. The higher the rate of change, the higher the value
extracted. On other words, where clients or servers are running near to saturation
based on available connectivity Diffusion can automatically adapt to this load by
minimizing the data distributed.

In addition to the load-adaptive nature of conflation the effect is fair for clients
connected to the same topic. The frequency of distributed changes is evenly
amortized across clients.

Conflation favors currency and reduces (but cannot entirely eliminate) the delivery of
stale data.

Consistency
Structural conflation synthesizes complex event processing techniques in a highly
efficient (lock-free wait-free concurrency) form inside the server. The specific
knowledge of data structures and the semantic concerns for distributing data for a
given topic in a given system allows consistent views of the data to be delivered in a
way that is not possible with messaging technologies that treat messages as opaque.

Considerations when using conflation

• Do not use conflation if there are relationships or dependencies between topics. Conflation
alters the order of updates. If a conflated topic is temporally or causally related to another topic,
conflation can cause unwanted behavior.

• Do not use conflation if individual updates carry forensic storage or audit trail requirements.
• Delta updates are conflated. Snapshots are not conflated.
• Normal priority updates are conflated. High or low priority updates are not conflated.
• Messages that require acknowledgment are not conflated.

Diffusion | 93

Types of message conflation
The types of conflation are simple conflation, where a new update replaces an older update, and
structural conflation, where the data from two updates is combined in accordance with a user-defined
operation to create a new update. Both types of conflation can either append the new update to the
end of the queue or replace an existing update on the queue.

No conflation

Figure 5: Message flow without conflation enabled

With no conflation, a stream of messages to a client is delivered to the client in the order that they are
published or sent. In example shown in the diagram, two messages for topic A, one message for topic
B, and two messages for topic C are ready to send to the client.

This is a scenario common to all messaging platforms.

Simple conflation

When a new message is published or sent to a topic, simple conflation removes any earlier messages
for that topic from the queue. The new message can be added to the queue either in the position of
the earlier message that was removed (replace) or at the end, preserving the original message order
(append).

Figure 6: Message flow with simple replace conflation enabled

With simple replace conflation, only the most recent message for a topic is delivered to the client.
In the example shown in the diagram, the first message published or sent to topic A is removed and
the second message is added to the queue in the position that the first message occupied. The same
occurs for the messages sent to topic C.

Figure 7: Message flow with simple append conflation enabled

With simple append conflation, only the most recent message for a topic is delivered to the client.
Messages are delivered in time order. In the example shown in the diagram, the first message
published or sent to topic A is removed and the second message is added to the end of the queue. The
same occurs for the messages sent to topic C.

Note: Use this option with care because there is the possibility that messages for a topic can
continue to be added to the end of the queue and a value not be delivered for the topic.

In both the append and the replace example, although five messages were ready to send, only three
messages were sent. This saves bandwidth and ensures clients receive current data only.

Diffusion | 94

Structural conflation

Structural conflation allows a user-defined operation to be plugged into Diffusion so that rather than
refreshing stale data with fresh data, a computation can be performed to merge, aggregate, reverse or
combine the effects of multiple changes into a single consistent and current notification to the client.

Figure 8: Message flow with merge and replace conflation enabled

In the example shown in the diagram, the operation is the summation of numeric data. The user
provides the merge algorithm, that is the summing of the values of two successive messages, and
Diffusion sends a single resulting message rather than the individual messages that were combined.
The messages A3 and C3 are new messages generated from the merging process.

This is suitable for any scenario where the result is required but individual components that combine
to form the result are not required.

The preceding example shows merge and replace. You can merge and append in a similar way as
described for simple conflation above.

Various options are available to the user-written merger so that instead of returning a merged
message it can indicate that either of the input messages be queued or that the no conflation option
be chosen.

Selection of messages for conflation

The preceding examples assume that when a new message is queued for a client it replaces or merges
with the last message queued for the message topic. This is the default behavior. When operating
conflation in this way there is only ever one message per conflated topic awaiting delivery to the client.

You can specify a user-defined matcher that is used to determine the message that is to be replaced
or merged with. This can be used to inspect the content of the messages queued for a topic to select
which to conflate. When operating conflation in this way it is likely there can be more than one
message per conflated topic awaiting delivery to the client.

How conflation works
Conflation is implemented as a lock-free, wait-free algorithm and can be scaled to meet demands of
large numbers of concurrently subscribed clients.

Conflation policies

Conflation policies configure how conflation takes place on topics. One or more conflation policies can
be configured, each defining different conflation mechanisms. The policies can define the following
behaviors:

• How messages are matched
• Whether replacement is done in place or by appending
• How to merge the two messages

Diffusion | 95

Conflation process

When conflation is enabled for a client, every time a new update is enqueued for the client it is
considered for conflation.

1. The Diffusion server checks whether a conflation policy is mapped to the topic that the update is
published on.

2. If a policy is mapped to the topic, the matching criteria of the policy is used to scan the updates
for that topic that exist on the queue (from newest to oldest) for an existing update that matches
the one being queued. If no match is found, the new update is queued at the end of the queue as
normal.

Note:

Fast caches and lookup mechanisms are used to find policies and updates in the queue.
The whole client queue is not scanned when looking for a match, only updates for the same
topic.

If default matching (by topic) is used, no comparison with the existing updates is required.
This means that the conflation mechanism is as efficient as possible.

3. If the matching criteria finds a matching update in the queue, the conflation policy defines the
following behaviors:

• Whether the update to queue as a result of conflation is the new update or an update produced
by merging the content of the matching update and new update.

• Whether the update to queue replaces the matching update or the matching update is removed
and the new update added to the end of the queue.

Conflation occurs on a client-by-client basis in the multiplexer thread. Results of merge actions are
cached to ensure that merges of identical message pairs are not repeated for different clients.

DEPRECATED: Distributing and viewing data as pages
Paged topics act differently to standard publishing topics. Distributing data through paged topics

Concepts

Page
A page is a subset of the tabular data stored on a paged topic. Each page is made up
of a certain number of lines.

Line
A line is a single item of data stored on a paged topic. A line can be a string or a
record.

Add
Lines are added to a paged topic.

Update
The content of lines can be updated.

Remove
Lines can be removed from a paged topic.

View
A view is a representation of data on a paged topic that can be opened by a
subscribing client. The subscribing client can open a view on the paged topic that
includes a specified number of lines of the topic data.

Ordering
Lines on a paged topic can be ordered according to simple or user-defined criteria.

Diffusion | 96

Dirty
If a line is added into a paged topic in a position that is open in a subscribing client's
view. That view is dirty and must be refreshed to show the latest topic data.

Behavior

Paged topics have state which is stored in a tabular format, as pages of lines. Unlike publishing topics,
clients do not publish updates to a paged topic to change the state. Instead clients add, update, or
remove lines in the topic.

Paged topics can be ordered or unordered. You can define the ordering of a paged topic by using a
user-defined comparator class that is located on the Diffusion server or by declaring the rules that are
used for the ordering when you create the topic. Lines that are added to unordered paged topics are
added at the end. Lines that are added to ordered paged topics are added at the position defined by
the comparator or rules.

A client must subscribe to a paged topic to be able to access the data on it. However, unlike publishing
topics clients do not receive updates whenever changes are made to the paged topic state. To access
the data, the client must open a view on the paged topic and specify how many lines per page and
what page to open the view on. The client can then page through the data. If the state of the client's
current page changes, the client is notified and can choose to refresh the page.

Designing your solution

Decide how your solution components interact to most efficiently and securely distribute your data.

There are a number of things to consider when designing your Diffusion solution:

• The number, distribution, and configuration of your Diffusion servers
• How you use clients in your solution
• The additional components to develop
• The third party components you might include in your solution
• Securing your solution

These considerations are not separate. The decisions you make about one aspect of your solution can
affect other aspects.

Servers
Consider the quantity, distribution, location and configuration of your Diffusion servers.

How many Diffusion servers?

Consider the following factors when deciding how many Diffusion servers to use in your solution:

Number of client connections
How many client connections do you expect to occur concurrently? For a greater
number of concurrent client connections, you might require more Diffusion servers to
spread the load between.

Volume of data
At what rate are you publishing updates and sending messages? How large are the
updates and messages? If you are distributing a greater volume of data, you might
require more Diffusion servers to spread the load between.

Hardware capabilities

Diffusion | 97

The number of concurrent client connections and the volume of data that a single
Diffusion server can handle depend on the hardware that the Diffusion server runs on.

In order of importance, the following hardware components have the biggest impact
on the server performance:

• Network interface controller (NIC)
• Central processing unit (CPU)
• Random access memory (RAM)

Resilience and failover requirements
Ensure that you have enough Diffusion servers that if one or more becomes
unavailable, for example when updating the server or due to a failure of the hosting
system, the remaining Diffusion servers can spread the resulting load increase.

You can also use replication between Diffusion servers to increase your solution's
resilience. For more information, see High availability on page 102.

Distribution of servers
How you wish to distribute your servers has an effect on how many servers you
require.

For example, if your client base is distributed geographically, you might want to
locate your Diffusion servers in different territories. This enables your servers to be
more responsive because of their proximity to clients. In this case, the number of
territories your client base is spread over affects the number of servers you require.

You can easily scale your solution by adding additional Diffusion servers if your requirements change.

How are your Diffusion servers configured?

Consider the following factors when deciding how to configure the Diffusion servers in your solution:

Ports
What ports do you want to provide access to your Diffusion server on? You can
configure the Diffusion server to allow the following kinds of connections on
individual ports:

• Unified API clients only
• Classic API clients only
• Both Unified API and Classic API clients
• Policy file requests only
• JMX clients

By default, your Diffusion server supports client connections on port 8080.

Reconnection behavior
Do you want to allow clients that lose their connection to reconnect to the server?
How long do you want to keep client sessions available after the client loses
connection?

Not all client types can take advantage of reconnection. For more information, see
the section of the manual for each specific API.

Replication
Replication enables Diffusion servers to share information about topics and client
sessions with each other through a data grid.

For more information, see High availability on page 102.

Performance

Diffusion | 98

Tuning your Diffusion servers for performance is best done as part of testing your
solution before going to production. This enables you to observe the behavior of your
solution in action and configure its performance accordingly.

For more information, see Tuning on page 783.

For more information, see Configuring your Diffusion server on page 538.

This manual describes the factors that you must consider when designing your Diffusion solution.
However, these factors are too many and too interlinked for this manual to provide specific guidance.

Push Technology provides Consulting Services that can work with you to advise on a solution that best
fits your requirements. Email Sales at Push Technology for more information.

Fan-out
Consider whether to use fan-out to replicate topic information from primary servers on one or more
secondary servers.

A fan-out distribution comprises many servers that host the same topic or topics. When the topic is
updated on a primary server, the update is fanned out to replica topics on secondary servers.

Why use fan-out?

Having a primary server feed out updates to a number of secondary servers provides a solution where
the same topics and data are available from multiple servers. You can use this solution to load balance
a large number of client connections across a set of Diffusion servers and provide those clients with
the same access to data.

How fan-out works

Fan-out is configured on the secondary server or secondary servers in the solution.

Figure 9: Fan-out

• A secondary server connects to a primary server as a client.
• The secondary server subscribes to a set of topics on the primary server.

This set of topics is defined by a selector in the configuration of the secondary server.

http://more.pushtechnology.com/talk-to-sales

Diffusion | 99

• The secondary server replicates the subscribed topics locally.
• When updates are made to the topics on the primary server, the secondary server receives these

updates through the standard pub-sub feature in the same way as any other client of the primary
server.

• The secondary server applies the updates to its replica topics.
• Any clients subscribed to a replica topic on the secondary server receive the updates through the

standard pub-sub feature.
• If a topic is removed at the primary server, the secondary server removes its replica topic.
• If a topic is added at the primary server that matches the set of topics subscribed by the secondary

server, the secondary server creates a local replica topic.

A secondary server can connect as a client and subscribe to topics on more than one primary server.
However, ensure that the secondary server does not attempt to replicate the same topic from multiple
sources as this can cause the data on the topic to be incorrect.

Considerations when using fan-out

Fan-out supports only the following types of topic:

• JSON
• Binary
• Single value topics
• Record topics
• Stateless topics
• Slave topics

The order of topic creation on the secondary server can prevent slave topics from being replicated.
For example, if a slave topic refers to a topic that does not yet exist because it is in a branch not yet
replicated or because it is lower down the link hierarchy.

• Routing topics

To use fan-out with routing topics, the routing subscription handlers for a routing topic must be
registered at the primary and all secondary servers. The routing logic provided by the handlers on
the primary and secondary server must be identical.

• DEPRECATED: Paged string topics
• DPERECATED: Paged record topics
• DEPRECATED: Custom topics

The custom class for that topic must be available on the classpath of all Diffusion servers
replicating that topic.

• DEPRECATED: Protocol buffer topics

The compiled .proto file that defines the format of the data on a protocol buffer topic must be
available on the classpath of all Diffusion servers replicating that topic.

Topics that match the selector, but are not of one of these topic types, are not replicated by the
secondary server.

A secondary server cannot replicate the same topic from more than one primary server or multiple
times from the same primary server. Validation of the root path part of the selectors is in place to
prevent this occurring, but the use of regular expressions in topic selectors can result in an overlap of
replication which can cause problems.

Missing topic notifications generated by subscription or fetch requests to a secondary server are
propagated to missing topic handlers registered against the primary servers. For more information,
see Using missing topic notifications with fan-out on page 100.

Diffusion | 100

You can configure fan-out servers to use the standard reconnect mechanism. If the connection
between the secondary server and the primary server is lost, the secondary server can reconnect
to the same session. However, if messages are lost between the primary and secondary server, the
reconnection is aborted and the session closed. The secondary server must connect again to the
primary server with a new session.

If a disconnection between the primary and secondary server results in the session being closed, the
secondary server removes all the topics that it has replicated from that primary server. (Only topics
explicitly defined by a selector are removed.) Clients subscribing to these topics on the secondary
server become unsubscribed. If the secondary server connects again to that primary server with a new
session, the secondary server recreates the topics. Clients connecting to the secondary server become
resubscribed to the topics.

Creating topics on the primary server is an asynchronous action, because of this a client or publisher
that creates a topic on the primary server receives a completed callback saying that the topic has been
created. However, receiving this callback does not indicate that the topic has been replicated by fan-
out and created on a secondary server.

Topic aliasing is not supported for topics that are replicated by fan-out. Ensure that aliasing is not
enabled at the primary server.

Related concepts
Configuring fan-out on page 544
Configure the the Diffusion server to act as a client to one or more other Diffusion servers and replicate
topics from those servers.

Using missing topic notifications with fan-out
Missing topic notifications generated by subscription or fetch requests to a secondary server are
propagated to missing topic handlers registered against the primary servers.

Control client sessions can use missing topic notifications to monitor the activity of end-user client
sessions. In response to subscription or fetch requests to missing topics, the control client session can
choose to take an action, such as creating the missing topic.

For more information, see Handling subscriptions to missing topics on page 315.

How notification propagation works

A missing topic notification is propagated from a secondary server to a missing topic handler
registered against a primary server if and only if all of the following conditions are met:

• There is a session between the secondary server and the primary server.
• The selector used for the subscription or fetch request to the secondary server intersects with one

or more of the fan-out links to the primary server that are configured at the secondary server.
• On the secondary server, there are no currently replicated topics that match both the fan-out link

and selector used in the subscription or fetch request.
• The primary server has no topics that match the selector used in the subscription or fetch request.
• One or more missing topic handlers are registered against the primary server for a path that

matches the selector. The following rules are used to select which missing topic handler receives
the notification:

• If multiple handlers are registered for the branch, the handler for the most specific topic path is
notified.

• If there is more than one handler for a path, the Diffusion server notifies a single handler.

The handler can use the supplied callback to respond proceed or cancel. The subscription or fetch
operation is delayed until the handler responds, and is abandoned if the response is cancel.

Diffusion | 101

Example flow

Figure 10: Missing topic notification propagation

1. A control client connects to the primary server and registers a missing topic notification handler
against the A branch of the topic tree.

2. A secondary server connects to the primary server and replicates the A branch of the topic tree.
3. On the secondary server the replicated part of the topic tree comprises the following topics: A, A/B

and A/C.
4. An end-user client attempts to subscribe to A/D, which does not exist.
5. The topic A/D is in part of the topic tree that is matched by a fan-out link selector, so the secondary

server propagates the missing topic notification to the primary server.
6. The topic A/D does not exist on the primary server, so the primary server sends the missing topic

notification to the handler registered by the control client.

Missing topic notification handlers at both the primary and secondary servers

A single subscription or fetch can cause a missing topic notification to be sent to a handler registered
against the secondary server as well as a handler registered against a primary server.

The decision about whether to notify the handlers registered against a primary server is based on the
intersection of the selector used by the subscription or fetch with the selector used to configure the
fan-out link. It is possible for a missing topic notification to be sent to the primary server, but not to
local handlers because the selector matches other (non-replicated) topics hosted by the secondary.

In particularly complex configurations, multiple primary servers might receive the notification or there
can be multiple tiers of fan-out connections.

Where multiple handlers are notified, the subscription or fetch operation is delayed until the all
handlers respond, and the operation is abandoned if any response is cancel.

Considerations when using missing topic notifications with fan-out

Missing topic notifications are only propagated if both the primary and secondary server are Diffusion
version 5.9.1 or later.

Diffusion | 102

The intersection of the selector used by the subscription or fetch request with a selector used for a fan-
out link is calculated based only on the path-prefix of each selector. Complex selectors that use regular
expressions can produce false positive results or false negative results. We recommend that you do not
use regular expressions in the selectors used to configure fan-out links.

Ensure that the principal that the secondary server uses to make the fan-out connection to the primary
server has the SELECT_TOPIC permission for the path prefix of the selector that triggered the missing
topic notification.

A current session must exist between the secondary server and the primary server to forward
notifications. If there is no session or the session fails while the missing topic notification is in-flight,
the secondary server logs a warning message and discards the notification. The subscription or fetch
operation is completed as if the primary handler had responded proceed.

The robustness of the session between the servers can be improved by configuring reconnection.
Fan-out connections can have a large number of messages in flight. It might be necessary to tune the
reconnection time-out and increase queue depth and recovery buffer sizes.

Related concepts
Handling subscriptions to missing topics on page 315
A client can use the TopicControl feature of the Unified API to handle subscription or fetch requests for
topics that do not exist.

High availability
Consider how to replicate session and topic information between Diffusion servers to increase
availability and reliability.

Diffusion uses a datagrid to share session and topic information between Diffusion servers and provide
high availability for clients connecting to load-balanced servers.

Figure 11: Information sharing using a datagrid

Diffusion uses Hazelcast™ as its datagrid. Hazelcast is a third-party product that is included in the
Diffusion server installation and runs within the Diffusion server process.

The datagrid is responsible for the formation of clusters and the exchange of replicated data. These
clusters operate on a peer-to-peer basis and by default there is no hierarchy of servers within the
cluster.

Servers reflect session and topic information into the datagrid. If a server becomes unavailable,
another server can access the session and topic information that is stored in the datagrid and take
over the responsibilities of the first server.

Diffusion | 103

Considerations

Consider the following factors when using replication with Hazelcast:

• By default Hazelcast uses multicast to discover other nodes to replicate data to. This is not secure
for production use. In production, configure your Hazelcast nodes to replicate data only with
explicitly defined nodes. For more information, see Configuring your datagrid provider on page
601.

Session replication
You can use session replication to ensure that if a client connection fails over from one server to
another the state of the client session is maintained.

When a connection from a client through the load balancer to a Diffusion server fails, the load balancer
routes the client connection to another Diffusion server. This server has access to the session and
client information that is replicated in the datagrid.

Clients that connect to a specific Diffusion server and not through a load balancer cannot use session
replication.

Figure 12: Session replication

1. A client connects to a Diffusion server through a load balancer.

The load balancer is configured to route based on the client's session ID and requests from the
client go to the same server until that server becomes unavailable.

2. Information about the client session is reflected into the datagrid.

The following information is replicated:

• session ID
• session principal
• session properties
• list of topic selections

The following information is not replicated and is created anew on the server a client fails over to:

• session start time
• statistics
• client queue

3. A client loses connection to the Diffusion server if the server becomes unavailable.
4. The client can reconnect and the load balancer routes the connection to another Diffusion server.

Diffusion | 104

5. This Diffusion server has access to all of the client information shared into the datagrid by the first
Diffusion server.

6. The server uses the list of topic selections to recover the set of subscribed topics and subscribes the
client to these topics.

7. Subscribing the client to topics provides full value messages for all topics that contain the current
topic state.

The client can reconnect to its session only if it reconnects within the reconnect time specified in the
Connectors.xml configuration file. If the client does not reconnect within that time, the client
session information is removed from the datagrid.

Considerations

Consider the following factors when using session replication:

• Replication of session information into the datagrid is not automatic. It must be configured at the
server.

• Messages in transit are not preserved. Use acks to ascertain whether or not messages have been
received.

• When a Classic API client session reconnects it must be authenticated again. Ensure that all
Diffusion servers in your solution have access to the same authentication methods.

• When a Unified API client session reconnects it does not need to authenticate again. The client uses
a session token to reacquire its session. Ensure that this token is secure by using a secure transport
to connect, for example, WSS.

• The failover appears to the client as a disconnection and subsequent reconnection. To take
advantage of high server availability, clients must implement a reconnect process.

• The Diffusion server that a client reconnection attempt is forwarded to depends on your load
balancer configuration. Sticky load balancing can be turned on to take advantage of reconnection
or turned off to rely on session replication and failover.

Differences between session reconnection and session failover

When a client loses a load-balanced connection to Diffusion, one of the following things can occur
when the client attempts to reconnect through the load balancer:

Session reconnection
The load balancer forwards the client connection to the Diffusion server it was
previously connected to, if that server is still available. For more information, see
Reconnect to the Diffusion server on page 250.

Session failover
The load balancer forwards the client connection to a different Diffusion server
that shares information about the client's session, if session replication is enabled
between the servers.

Prefer session reconnection to session failover wherever possible by ensuring that the load balancer is
configured to route all connections from a specific client to the same server if that server is available.

Session reconnection is more efficient as less data must be sent to the client and has less risk of data
loss, as sent messages can be recovered, in-flight requests are not lost, and handlers do not need to be
registered again.

For more information, see Routing strategies at your load balancer on page 632.

To a client the process of disconnection and subsequent reconnection has the following differences for
session reconnection or session failover.

Diffusion | 105

Session reconnection Session failover

The client connects to the same Diffusion server
it was previously connected to.

The client connects to a Diffusion server different
to the one it was previously connected to.

The client sends its last session token to the server.

The server authenticates the client connection or validates its session token.

The server uses the session token to
resynchronize the streams of messages between
the server and client by resending any messages
that were lost in transmission from a buffer of
sent messages.

If lost messages cannot be recovered because
they are no longer present in a buffer, the server
aborts the reconnection.

The server uses the session token to retrieve
the session state and topic selections from the
datagrid.

The server sends any messages that have been
queued since the session disconnected.

The server uses the state to recover the session,
uses the topic selections to match the subscribed
topics, and sends the session the current topic
value for each subscribed topic.

Any in-flight requests made by the client session
to the previous server are cancelled and the
client session is notified by a callback. All
handlers, including authentication handlers
and update sources, that the client session had
registered with the previous server are closed
and receive a callback to notify them of the
closure.

Related concepts
Client reconnection on page 792
You can configure the client reconnection feature by configuring the connectors at the Diffusion server
to keep the client session in a disconnected state for a period before closing the session.

Related tasks
Configuring the Diffusion server to use replication on page 600
You can configure replication by editing the etc/Replication.xml files of your Diffusion servers.

Related reference
Topic replication on page 106
You can use topic replication to ensure that the structure of the topic tree, topic definitions, and topic
data are synchronized between servers.

Failover of active update sources on page 107
You can use failover of active update sources to ensure that when a server that is the active update
source for a section of the topic tree becomes unavailable, an update source on another server is
assigned to be the active update source for that section of the topic tree. Failover of active update
sources is enabled for any sections of the topic tree that have topic replication enabled.

Configuring your datagrid provider on page 601
You can configure how the built-in Hazelcast datagrid replicates data within your solution
architecture.

Replication.xml on page 603

Diffusion | 106

This file specifies the schema for the replication properties.

Topic replication
You can use topic replication to ensure that the structure of the topic tree, topic definitions, and topic
data are synchronized between servers.

Figure 13: Topic replication

1. Servers with topic replication enabled for a section of the topic tree share information about
that section of the topic tree through the datagrid. The topic information and topic data are
synchronized on all the servers.

2. A new topic is created on one server in the replicated section of the topic tree.
3. The new topic is replicated on the other servers with identical topic information. When its topic

data is updated on the first server, that data is replicated on the other servers.

Considerations

Consider the following factors when using topic replication:

• Replicated topic must be updated by the exclusive update mechanism. Any updating client must
register as an update source for the topic.

• Only publishing topics can be replicated.
• Replication is supported only for the following types of topic:

• JSON

Diffusion | 107

• Binary
• Single value
• Record
• Custom

The custom class for that topic must be available on the classpath of all Diffusion servers
replicating that topic.

• Protocol buffer

The compiled .proto file that defines the format of the data on a protocol buffer topic must be
available on the classpath of all Diffusion servers replicating that topic.

• Stateless
• Replication is not supported for paged topics.
• Any topic that is part of a replicated branch of the topic tree and is not one of the supported types

of topic is not replicated. Instead that topic path remains unbound.
• Only topic-wide messages are replicated. Messages sent to a single client or to all clients except

one are not replicated.
• Replication of topic information into the datagrid is not automatic. It must be configured at the

server. This gives a performance advantage, as you can choose which parts of your topic tree to
replicate.

• Replication of topic data can impact performance.
• Do not use topic replication on sections of the topic tree that are owned and updated by

publishers. Publishers can make updates to topics that are not replicated or that supersede
replicated data. If you use topic replication with topics updated by publishers, this can cause the
data on the replicated topics to become unsynchronized.

• Avoid registering requests for topic removal on client session close against replicated topics. When
a replicated topic is removed from a server as a result of a client session closing, it is removed from
all other servers that replicate that topic. For more information, see .

Related tasks
Configuring the Diffusion server to use replication on page 600
You can configure replication by editing the etc/Replication.xml files of your Diffusion servers.

Related reference
Session replication on page 103
You can use session replication to ensure that if a client connection fails over from one server to
another the state of the client session is maintained.

Failover of active update sources on page 107
You can use failover of active update sources to ensure that when a server that is the active update
source for a section of the topic tree becomes unavailable, an update source on another server is
assigned to be the active update source for that section of the topic tree. Failover of active update
sources is enabled for any sections of the topic tree that have topic replication enabled.

Configuring your datagrid provider on page 601
You can configure how the built-in Hazelcast datagrid replicates data within your solution
architecture.

Replication.xml on page 603
This file specifies the schema for the replication properties.

Failover of active update sources
You can use failover of active update sources to ensure that when a server that is the active update
source for a section of the topic tree becomes unavailable, an update source on another server is

Diffusion | 108

assigned to be the active update source for that section of the topic tree. Failover of active update
sources is enabled for any sections of the topic tree that have topic replication enabled.

A client must register as an update source to update a replicated topic. Replicated topics cannot be
updated non-exclusively. For more information about update sources, see Updating topics on page
327.

1. A client (CLIENT 1) connects to a Diffusion server (SERVER 1) and registers an update source for a
section of the topic tree that has topic replication enabled. This update source is the active update
source.

2. Another client (CLIENT 2) connects to another Diffusion server (SERVER 2) and registers an update
source for the same section of the topic tree. This update source is a standby update source.

3. The topics on SERVER 2 continue to receive their updates from CLIENT 1 through the datagrid.
4. If SERVER 1 or CLIENT 1becomes unavailable, the update source registered by CLIENT 2 becomes

active. SERVER 2 sends CLIENT 2 a callback to notify it that it is the active update source.

On SERVER 2, the topics in that section of the topic tree receive their updates from CLIENT 2.
SERVER 2 reflects this topic data into the datagrid.

Considerations

Consider the following factors when using failover of active update sources:

• If the topic paths that the updating client uses to register an update source do not match the topic
paths configured in the Replication.xml configuration file of the server, unexpected behavior
can occur.

• The mechanism that provides failover of active update sources assumes that all servers have the
same configuration and that all control clients implement the same behavior as part of a scalable
and highly available deployment. If this is not the case, unexpected behavior can occur.

• Do not use topic replication and failover of active update sources on sections of the topic tree that
are owned and updated by publishers. Topic updates sent by publishers are not replicated.

Related concepts
Updating topics on page 327
A client can use the TopicUpdateControl feature to update topics.

Related tasks
Configuring the Diffusion server to use replication on page 600
You can configure replication by editing the etc/Replication.xml files of your Diffusion servers.

Related reference
Session replication on page 103
You can use session replication to ensure that if a client connection fails over from one server to
another the state of the client session is maintained.

Topic replication on page 106
You can use topic replication to ensure that the structure of the topic tree, topic definitions, and topic
data are synchronized between servers.

Configuring your datagrid provider on page 601
You can configure how the built-in Hazelcast datagrid replicates data within your solution
architecture.

Replication.xml on page 603

Diffusion | 109

This file specifies the schema for the replication properties.

Clients
Consider how you use clients in your solution.

Clients are key to a Diffusion solution. Your solution must include clients as an endpoint to distribute
data to. However, clients can also be used for control purposes.

When using clients in your solution, consider the following:

• What types of client you require
• What you use your clients for

Client types
Diffusion provides APIs for many languages and platforms. Some of these APIs have different levels of
capability.

A client's type is a combination of the API it uses and the protocol it uses to connect to the Diffusion
server.

APIs

JavaScript Unified API
Use this API to develop browser or Node.js clients that can have control capabilities.

Apple Unified API
Use this API to develop mobile clients in Objective-C that do not have control
capabilities.

Android Unified API
Use this API to develop mobile clients in Java that can have control capabilities.

Java Unified API
Use this API to develop Java clients that can have control capabilities.

.NET Unified API
Use this API to develop clients in C# that can have control capabilities.

C Unified API
Use this API to develop C clients that can have control capabilities.

Publisher clients
Publisher clients are publishers deployed on a Diffusion server that connect to
another Diffusion server as a client. You can use the Java Publisher API to develop a
publisher.

DEPRECATED: Android Classic API
Use this API to develop mobile clients in Java that do not have control capabilities.

DEPRECATED: Silverlight Classic API
Use this API to develop browser clients that do not have control capabilities.

DEPRECATED: Flash Classic API
Use this API to develop browser clients in ActionScript® that do not have control
capabilities.

DEPRECATED: JavaScript Classic API

Diffusion | 110

You can use this API to develop browser clients that do not have control capabilities.
However, we recommend that you use the Unified API instead.

DEPRECATED: Java Classic API
You can use this API to develop Java clients that do not have control capabilities.
However, we recommend that you use the Unified API instead.

DEPRECATED: .NET Classic API
You can use this API to develop C# clients that do not have control capabilities.
However, we recommend that you use the Unified API instead.

DEPRECATED: iOS Classic API
Use this API to develop mobile clients in Objective-C that do not have control
capabilities. However, we recommend that you use the Unified API instead.

DEPRECATED: C Classic API
You can use this API to develop C clients that do not have control capabilities.
However, we recommend that you use the Unified API instead.

Protocols

The following protocols, and their secure versions, are available:

WebSocket
The WebSocket implementation provides a browser-based full duplex connection,
built on top of WebSocket framing. This complies with the WebSocket standards and
is usable with any load balancer or proxy with support for WebSocket.

HTTP Polling
HTTP polling uses HTTP to make a long poll request. Each request remains open
until a message is available. More than one message will be returned if available. A
separate TCP connection is used to send messages from the client to the server.

DEPRECATED: HTTP Chunked Streaming
HTTP Chunked Streaming provides a streaming connection for messages from the
server by using HTTP chunked encoding. A separate TCP connection is used to send
messages from the client to the server. This provides two simplex connections, one
based on request/response (upstream) and the other streaming data (downstream).
This relies on HTTP/1.1 so ensure that network intermediaries such as load balancers
are HTTP/1.1 aware.

DEPRECATED: DPT

The DPT protocol (Diffusion protocol over TCP) creates a TCP connection and uses
it to send and receive messages in a full duplex way. Load balancers treat these
connections as TCP connections.

DEPRECATED: HTTP Full Duplex
HTTP Full Duplex acts like HTTP in the initial connection handshake and acts like DPT
for the exchange of messages. HTTP Full Duplex wraps the Diffusion protocol with
HTTP request and response headers. Unlike true HTTP, it operates in a full duplex
manner. For example, the client can send a response that does not correspond to a
request.

This is acceptable to a number of network intermediaries (load balancers and
firewalls), and can be a pragmatic way to communicate over a single bi-directional,
end-to-end connection via intermediaries that do not accept the WebSocket.

However, we recommend that you use WebSocket instead.

Diffusion | 111

Table 17: Supported protocols by client

Client WebSocketHTTP
Polling

DEPRECATED:
DPT

DEPRECATED:
HTTP Full
Duplex

JavaScript
Unified API

Apple Unified
API

Android
Unified API

Java Unified
API

.NET Unified
API

C Unified API

Publisher
client

Using clients
Most clients connect to the Diffusion server only to subscribe to topics and receive message data on
those topics. Some clients can also perform control actions such as creating and updating topics or
handling events.

Subscribe to topics and receive data

Supported in: JavaScript Unified API, Java Unified API, .NET Unified API, Apple Unified API, Android
Unified API, C Unified API, JavaScript Classic API (deprecated), Java Classic API (deprecated), .NET
Classic API (deprecated), C Classic API (deprecated), iOS Classic API (deprecated), Android Classic API
(deprecated), Flash Classic API (deprecated), Silverlight Classic API (deprecated)

The majority of clients that connect to the Diffusion server, do so to subscribe to topics and receive
updates that are published to those topics. These are the clients used by your customers to interact
with the data your organization provides.

Control Diffusion, other clients, or the data

Supported in: JavaScript Unified API, Apple Unified API, Java Unified API, .NET Unified API, Android
Unified API, C Unified API

You can also develop clients that control aspects of the Diffusion server, other clients, or the
data distributed by Diffusion. These are the clients that are used by users or systems inside your
organization.

4 Supported by Flash/Silverlight
5 Supported natively and by Flash
6 Recommended

Diffusion | 112

Using clients for control
Clients can perform control actions that affect the Diffusion server, other clients, or the data
distributed by Diffusion.

Supported in: JavaScript Unified API,Apple Unified API, Java Unified API, .NET Unified API, Android
Unified API, C Unified API

Note: Support for these control features can differ slightly between APIs. For more
information, see the manual section for the specific API.

When designing your Diffusion solution, decide whether you want to use clients to perform the
following actions:

Create and delete topics

Clients can create any type of topic on the Diffusion server. These topics can be created explicitly or
dynamically in response to a subscription request from another client.

These topics have the lifespan of the Diffusion server unless the client specifies that the topic be
removed when the client session closes.

Clients can also delete topics from the Diffusion server.

You can also use publishers to create and delete topics.

For more information, see .

Publish updates to topics

Clients can publish updates to topics that are pushed out to clients subscribed to that topic. These
updates can be made exclusively, so that only one client can update a given topic, or non-exclusively,
allowing any client to update a given topic.

You can also use publishers to publish updates to topics.

For more information, see Updating topics on page 327.

Subscribe other clients to topics

Clients can subscribe other client sessions to topics and also unsubscribe other client session from
topics.

For more information, see Managing subscriptions on page 351.

Diffusion | 113

Authenticate other clients

Clients can provide authentication decisions about whether to allow or deny other client sessions
connecting to the Diffusion server. These clients can also assign roles to the connecting client sessions
that define the permissions the connecting client has.

You can also use the system authentication handler or an authentication handler located on the
Diffusion server to authenticate other clients.

For more information, see User-written authentication handlers on page 140.

Modify the security information stored on the Diffusion server

Clients can modify the information stored in the security store on the Diffusion server. The security
store can be used to specify which permissions are assigned to roles and which roles are assigned to
anonymous sessions, and named-principal sessions.

You can also use publishers to modify security information stored on the Diffusion server.

For more information, see Updating the security store on page 414.

Modify the authentication information stored on the Diffusion server

Clients can modify the information stored in the system authentication store on the Diffusion server.
The system authentication store can be used to specify which principals a client session can use to
connect and what roles are assigned to an authenticated client session.

You can also use publishers to modify authentication information stored on the Diffusion server.

For more information, see Updating the system authentication store on page 404.

Manage the flow of data to clients

Updates are pushed to subscribing clients through client queues. Clients can receive notifications
when client queues reach a certain threshold. These clients can manage the client queues by turning
on throttling or conflation for the queue.

For more information, see Managing clients on page 425.

Diffusion | 114

To handle messages sent to topic paths by clients and send messages to specific clients

Clients can send messages through topic paths to specific clients. Clients can also register to handle
messages that are sent to a topic path. Messages sent using topic paths do not update the topic.

You can also use publishers to handle messages on topic paths and send messages to clients.

For more information, see Messaging to clients on page 372.

User-written components
Consider which components you must develop to create your solution.

Publishers
Consider whether to develop publishers to distribute data in your solution.

Publishers are written in Java and deployed on the Diffusion server.

You can deploy one or more publishers on a Diffusion server. A publisher can provide the behavior
of one or more topics but a topic can belong to only one publisher. The publisher infrastructure is
provided by Diffusion and the behavior is provided by the user by writing a publisher.

Why use publishers?

Publishers enable you to manage your topics and updates, and customize their behavior. Unlike
clients, publishers are located on the Diffusion server so can communicate more swiftly with the server
and do not become disconnected from the server.

Publishers provide the following capabilities:

• Create and delete topics
• Publish updates to topics
• Define topic load data
• Provide topic state to fetch requests
• Send and receive messages to topic paths
• Handle requests for topics that do not exist
• Validate client connections
• Receive notifications of client events
• Subscribe clients to topics

Considerations when using a publisher

Publishers can only be written in Java.

Diffusion | 115

Other user-written components
Diffusion provides many opportunities to create user-written components that define custom
behavior. Consider whether to develop any of these components as part of your solution.

Server-related components

All of these components must be created as Java classes and put on the classpath of the Diffusion
server.

Authentication handlers
These components handle authentication of clients that connect to the Diffusion
server or change the principal that they use to connect to the Diffusion server. If the
client connection is allowed, the authentication handler assigns roles to the client
session.

You can have zero, one, or many authentication handlers configured on your
Diffusion server.

For more information, see Developing a local authentication handler on page 495
and Developing a composite authentication handler on page 497.

Note: Local authentication handlers, on the Diffusion server, can be
written only in Java. However, control authentication handlers that
are part of a client whose API supports Authentication Control can be
written in other languages.

Hooks
Startup and shutdown hooks are called by the Diffusion server. The startup hook
is instantiated and called as the Diffusion server starts and before publishers are
loaded. The shutdown hook is called as the Diffusion server stops.

For example, you can use a shutdown hook to persist some aspect of the state of the
Diffusion server to disk.

HTTP service handlers
These components handle HTTP requests as part of an HTTP service in the Diffusion
server's built-in web server. Provide a user-written HTTP service handler to enable
the Diffusion web server to handle any kind of HTTP request.

Thread pool handlers
These handlers define custom behavior in the Diffusion server related to the inbound
thread pool.

You can provide a rejection handler that customizes the behavior when a task cannot
be run by the thread pool. By default, if a task cannot be run by the inbound thread
pool — for example, if the thread pool is overloaded — the calling thread blocks until
there is space on the queue.

You can provide a notification handler that receives notifications when events occur
on the inbound thread pool.

DEPRECATED: Authorization handlers
Authorization handlers are deprecated and have been replaced by role-based
authorization. For more information, see Role-based authorization on page 127.

An authorization handler controls authorization and permissions for clients and
users. You can have zero or one authorization handler configured on your Diffusion
server.

Authorization handlers can be written only in Java.

Diffusion | 116

Topic- and data-related components

All of these components must be created as Java classes and put on the classpath of the Diffusion
server.

Message matchers
Message matchers are used to customize conflation behavior. These classes that
define how the Diffusion server locates messages on a client's message queue that
are to be conflated.

By default, messages for conflation are matched if they are on the same topic.

For more information, see Conflation on page 92.

Message mergers
Message mergers are used to customize conflation behavior. These classes that
define how the Diffusion server conflates matching messages.

By default, the older of the matching messages is removed.

For more information, see Conflation on page 92.

Comparators and collators
These components define the behavior of an ordered paged topic. Comparators
implement java.util.Comparator and can customize the ordering of lines in a
paged string or paged record topic. Collators implement java.text.RulesBased
Collator and can define the ordering of lines in a paged record topic.

For more information, see .

Custom field handlers
These components handle the data in custom fields of your record topics. A custom
field handler can define the default value of a custom field, parse incoming data into
the format required by the custom field, and compare data in custom fields of the
same type for equality.

For more information, see Metadata on page 74.

Custom topic data handlers
These components handle the behavior of a custom topic. When you create a
custom topic, you provide a custom topic handler that defines how the topic data is
maintained, compared, and sent to subscribing clients.

For more information, see DEPRECATED: Custom topics on page 79.

Routing topic handlers
These components handle the behavior of a routing topic. When you create a routing
topic, you provide a routing topic handler that, when a subscription to the routing
topic is made, maps the routing topic to another topic on the Diffusion server on a
client-by-client basis.

For more information, see Routing topics on page 77.

Service handlers
These components handle the behavior of a service topic. When you create a service
topic, you provide a service handler that receives requests from clients on the topic
and provides responses through the topic.

For more information, see DEPRECATED: Service topics on page 82.

Diffusion | 117

Third party components
Diffusion interacts with a number of third-party components. Consider how you use these components
as part of your solution.

Load balancers
We recommend that you use load balancers in your Diffusion solution.

Why use load balancers?

Balancing client traffic across multiple Diffusion servers
Distribute incoming requests from clients fairly over the Diffusion servers in your
solution and ensure that all traffic for a specific client is routed to the same Diffusion
server.

Compositing URL spaces
If your Diffusion servers are located at a different URL to the Diffusion browser clients
hosted by your web servers, you can use a load balancer to composite the URL
spaces. This enables Diffusion solutions to interoperate with browser security.

SSL offloading
Diffusion clients can connect to your solution using TLS or SSL. The TLS/SSL can
terminate at your load balancer or at your Diffusion server. Terminating the TLS at
the load balancer reduces CPU cost on your Diffusion servers.

Considerations when using load balancers

Do not use connection pooling for connections between the load balancer and the Diffusion server.
If multiple client connections are multiplexed through a single server-side connection, this can cause
client connections to be prematurely closed.

In Diffusion, a client is associated with a single TCP/HTTP connection for the lifetime of that
connection. If a Diffusion server closes a client, the connection is also closed. Diffusion makes no
distinction between a single client connection and a multiplexed connection, so when a client sharing

designguide/solution/thirdpartycomponents/crossdomain.png

Diffusion | 118

a multiplexed connection closes, the connection between the load balancer and Diffusion is closed,
and subsequently all of the client-side connections multiplexed through that server-side connection
are closed.

Multiple users masquerading behind a proxy or access point can have the same IP address, and all
requests from clients with that IP address are routed to the same Diffusion instance. Load balancing
still occurs, but some hosts might be unfairly loaded.

Web servers
Consider how to use web servers as part of your Diffusion solution.

If you are using Diffusion in conjunction with a web client or web application, this web client or
application must be hosted on a web server.

While the Diffusion server includes a web server, this internal web server is intended for the following
uses:

• Hosting the Diffusion landing page, demos, and monitoring console
• Providing an endpoint for the HTTP-based transports used by Diffusion clients
• Optionally, hosting a static page you can use the check the status of the Diffusion server

For more information, see Diffusion web server on page 638.

Do not use the Diffusion web server as the host for your production website. Instead use a third-party
web server.

There are two ways you can use Diffusion with a third-party web server:

• As separate, complementary components in your solution.
• With the Diffusion server deployed inside a web application server.

Use a separate web server with the Diffusion server

Figure 14: Using a web server with Diffusion

Why use a separate web server with Diffusion?

You can use a third-party web server to host your Diffusion browser clients.

A third-party web server provides the following advantages over the lightweight internal Diffusion web
server:

• Greater ability to scale

Diffusion | 119

• More comprehensive security
• Server-side code and dynamic web pages

If your organization already uses a third-party web server, Diffusion augments this component instead
of replacing it.

Using a separate web server with the Diffusion server provides the following advantages over
deploying the Diffusion server inside a web application server:

• The load balancer set up is simpler
• You can scale the number of Diffusion servers and the number of web servers in your solution

independently and more flexibly
• The web server and the Diffusion server do not share a JVM process, which can cause performance

advantages
• The web server and the Diffusion server are independent components, which makes them unlikely

to be affected by any problems that occur in the other component

For more information, see Hosting Diffusion web clients in a third-party web server on page 640.

Considerations when using a separate web server with the Diffusion server

If your web server hosts a client that makes requests to a Diffusion server in a different URL space, you
can use a load balancer to composite the URL spaces and interoperate with browser security or you
can set up cross-domain policy files that allow requests to the different URL space.

When the Diffusion server is separate from the web server, the web server has no access to the
Diffusion Publisher API.

Deploy the Diffusion server inside a web application server

Figure 15: Deploying Diffusion inside a web application server

Why deploy Diffusion inside a web application server?

You can also host your Diffusion server inside a third-party web application server that has the
capability to host Java servlets.

This provides the advantage of only setting up a single server and having a single application to
manage when hosting your web application.

The web application server has access to the Diffusion Publisher API of the Diffusion server is hosts.
This enables your web application to use server-side logic to include Diffusion information in your web
pages.

Diffusion | 120

For more information, see Running the Diffusion server inside of a third-party web application server
on page 641.

Considerations when deploying the Diffusion server inside a web server

When running inside a web application server, the Diffusion server still requires its own internal web
server to communicate with clients over HTTP-based transports.

Your web application and your Diffusion server, while hosted by the same server, can have different
port numbers. This can result in cross-origin security concerns for some browsers. You can use a load
balancer to composite the ports or you can set up cross-domain policy files that allow requests to the
different ports.

The load balancer configuration can be more complex when deploying the Diffusion server inside
a web application server. If you have multiple web application server and Diffusion server pairs,
configure your load balancer to ensure that requests from a client always go to a pair and not to the
web application server from one pair and the Diffusion server from another pair.

When running the Diffusion server inside of a web application server, the Diffusion server and the web
application server share a JVM process. This can lead to large GC pauses. Ensure that you test this
configuration and tune the JVM

Related concepts
Web servers on page 637
Diffusion incorporates its own basic web server for a limited set of uses. The Diffusion server also
interacts with third-party web servers that host Diffusion web clients. The Diffusion server is also
capable of being run as a Java servlet inside a web application server.

Diffusion web server on page 638
Diffusion incorporates its own web server. This web server is required to enable a number of Diffusion
capabilities, but we recommend that you do not use it to host your production web applications.

Configuring the Diffusion web server on page 605
Use the WebServer.xml and Aliases.xml configuration files to configure the behavior of the
Diffusion web server.

Configuring Diffusion web server security on page 606
When configuring your Diffusion web server, consider the security of your solution.

Running the Diffusion server inside of a third-party web application server on page 641
Diffusion can run as a Java servlet inside any Java application server.

Hosting Diffusion web clients in a third-party web server on page 640
Host Diffusion web clients — clients written using the JavaScript, Flash, or Silverlight APIs — on a third-
party web server to enable your customers to access them.

Related reference
WebServer.xml on page 606
This file specifies the schema for the web server properties.

Push notification networks
Consider whether your solution will interact with push notification networks.

Push notification networks can relay data to a client, even when that client is not running.

Diffusion | 121

Diffusion Push Notification Bridge

The Push Notification Bridge is a Diffusion client that subscribes to topics on behalf of other Diffusion
clients and uses a push notification network to relay topic updates to the device where the client
application is located.

The Push Notification Bridge supports the following push notification networks:

• APNS
• GCM

For more information about how the Push Notification Bridge works, see Push Notification Bridge on
page 649.

Why use the Push Notification Bridge

Diffusion clients on Android or iOS devices might not be running all the time to conserve battery or to
enable other processes to run. However, the user might still want to receive realtime updates while the
Diffusion client is not running.

By using push notification networks, Diffusion can deliver data to destinations on these devices at any
time.

Considerations when using the Push Notification Bridge

• The Push Notification Bridge supports only single value topics.
• Push notification networks identify an app on a device (a push notification destination), not an

individual user or session.
• If a client requests push notification for a topic and also subscribes to that topic, when the client

is connected to Diffusion it receives topic updates once through the Diffusion server and once
through the push notification network. The client must handle removing the duplicate messages
from the information presented to the user.

• Push notification networks currently limit the size of notifications to 2 KB or less.
• By default, the bridge does not persist the notification subscription requests sent by the clients. If

the bridge stops and restarts, this information is lost and notifications are no longer sent.

To ensure that the notification subscriptions are persisted by the bridge, implement a persistence
solution. For more information, see Push Notification Bridge persistence plugin on page 499.

Related concepts
Push Notification Bridge persistence plugin on page 499
The Push Notification Bridge stores subscription information in memory. To persist this information
past the end of the bridge process, implement a persistence plugin.

Example: Send a request message to the Push Notification Bridge on page 368
The following examples use the Unified API to send a request message on a topic path to communicate
with the Push Notification Bridge. The request message is in JSON and can be used to subscribe or
unsubscribe from receiving push notifications when specific topics are updated.

Push Notification Bridge on page 649

Diffusion | 122

The Push Notification Bridge is a Diffusion client that subscribes to topics on behalf of other Diffusion
clients and uses a push notification network to relay topic updates to the device where the client
application is located.

JMS
Consider whether to incorporate JMS providers into your solution.

If a third-party JMS provider is part of your solution, you can map JMS queues and topics to Diffusion
topics by using the Diffusion JMS adapter.

We support integration with JMS providers that conform to version 1.1 or later of the JMS
specification.

The following JMS products have been tested and are certified by Push Technology for use with the
JMS adapter:

• Apache ActiveMQ v5.11
• IBM MQ v8

Why use a third-party JMS provider

If you are already using a JMS provider to move data in your internal system, you can integrate it with
Diffusion to distribute that data to clients and users outside of your organization.

Diffusion JMS adapter

The JMS adapter for Diffusion, enables Diffusion clients to transparently send data to and receive data
from destinations (topics and queues) on a JMS server. It is highly configurable and can support the
following scenarios:

Pub-sub
Messages on a JMS destination can be published to a Diffusion topic. For more
information, see Publishing using the JMS adapter on page 670.

Messaging
Messages can be sent between JMS destinations and Diffusion clients.

• A message on a JMS destination can be relayed to a Diffusion client through a
topic path.

• A Diffusion client can send a message on a topic path that is relayed to a JMS
destination.

For more information, see Sending messages using the JMS adapter on page 671.

Request-response
The JMS provider can integrate with services that interact using an asynchronous
request-response pattern. Diffusion exposes these JMS services through its
messaging capabilities. For more information, see Using JMS request-response
services with the JMS adapter on page 674.

Data that flows between JMS and Diffusion must be transformed. JMS messages contain headers,
properties, and a payload. Diffusion messages contain just content. For more information about
how data is transformed between JMS and Diffusion, see Transforming JMS messages into Diffusion
messages or updates on page 667.

Running the JMS adapter in the Diffusion server or as a standalone application

The JMS adapter is provided in the following forms:

Diffusion | 123

Within the Diffusion server
The JMS adapter can be configured to run as part of the Diffusion server process. A
JMS adapter running within the Diffusion server cannot become disconnected from
the Diffusion server.

As a standalone client
The JMS adapter is a Java application that can be run on any system and acts
as a client to the Diffusion server. Topics created by the JMS adapter running as
a standalone client are not deleted from the Diffusion server if the JMS adapter
becomes disconnected. You can use this capability to design a highly available
solution.

For more information, see JMS adapter on page 666.

Considerations when using the JMS adapter

Note: If you currently use the legacy JMS adapter version 5.1, you must reimplement to use
this JMS adapter. No migration path for configuration is available.

Topics defined and created by the JMS adapter when it runs within the Diffusion server are removed
when the JMS adapter is stopped.

Topics defined and created by the JMS adapter when it runs as a standalone client are not deleted
from the Diffusion server when the JMS adapter client session is closed.

The JMS adapter supports interaction with Diffusion topics that are either stateful (single value) or
stateless topics.

Only textual content and JMS TextMessages are supported. Binary content is not currently supported.

You cannot currently publish data to a Diffusion topic and have it sent to a JMS destination.

Data must be transformed between JMS messages and Diffusion content.

If multiple Diffusion servers subscribe to the same JMS queue in a request-response scenario, there is
the risk of one server consuming messages intended for another server. Use JMS selectors to ensure
that the JMS adapter only receives those messages intended for it.

The creation of temporary queues and topics by the JMS adapter is not currently supported.

Durable subscriptions are not supported.

JMS transactions are not supported.

The only acknowledgment mode that is supported is AUTO_ACKNOWLEDGE.

Session properties are not currently supported. The exception is the $Principal property.

Related concepts
Transforming JMS messages into Diffusion messages or updates on page 667
JMS messages are more complex than Diffusion content. A transformation is required between the two
formats.

Sending messages using the JMS adapter on page 671
The JMS adapter can send messages from a Diffusion client to a JMS destination and messages from a
JMS destination to a specific Diffusion client.

Publishing using the JMS adapter on page 670
The JMS adapter can publish data from a JMS destination onto topics in the Diffusion topic tree.

Using JMS request-response services with the JMS adapter on page 674

Diffusion | 124

You can use the messaging capabilities of the JMS adapter to interact with a JMS service through
request-response.

Configuring the JMS adapter on page 675
Use the JMSAdapter.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

Related reference
JMSAdapter.xml on page 684
This file specifies the schema for the configuration required by the JMS adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

Example solutions
This section includes some example solutions that you can refer to when designing your own solution.

Example: Simple solution
This solution uses a firewall to restrict incoming traffic and a load balancer to balance the traffic
between multiple Diffusion servers.

Figure 16: A simple solution

• Client applications can connect to Diffusion from the internet through a firewall.
• The firewall protects the DMZ from unwanted traffic. It allows connections on port 80 and redirects

these connections to port 8080.
• The load balancer balances the Diffusion connections between all the Diffusion servers in the DMZ.

You can also use the load balancer to filter the URL space and to perform SSL offloading.
• The Diffusion servers receive connections from external clients on port 8080. This port is protected

by an authentication handler that performs strict authentication on the incoming connections.
Authentication handlers can be local to the server or part of a control client.

• The Diffusion servers receive connections from internal clients on another port, for example 9090.
The authentication controls on this port are less strict because these connections come from
within your network. Internal connections can come from any of the following components:

• Browsers accessing the Diffusion console

designguide/solution/examples/solution_design1.png
designguide/solution/examples/solution_design1.png

Diffusion | 125

• Other Diffusion servers that are not located in the DMZ.
• Internal clients, such as control clients.
• The Introspector

Example: A solution using clients
Clients with different uses connect to the Diffusion server in this example solution.

Figure 17: Clients for different purposes

This example solution uses three kinds of client, each for a different purpose:

Clients subscribing to topics

These clients are used by your customers to receive the data you distribute. You can
use any of the provided APIs to create these, depending on how your customers want
to access your data. For example,

• Use the Apple API to create an iPhone app.
• Use the JavaScript API to create a browser client.

These clients subscribe to the topics that are of interest to your customer, receive
updates published on these topics, and display the information to your customers.

Clients creating and updating topics
These clients are used by your organization to distribute your data. You must use an
API that provides control features to create these clients. For example, the JavaScript
API or the .NET API.

These clients create the topics required to support your data structure and to publish
data from your data sources to topics on the Diffusion server.

Clients authenticating other clients
These clients are used by your organization to authenticate connections from other
clients. You must use an API that provides control features to create these clients. For
example, the Java API.

These clients are called by the Diffusion server to provide an authentication decision
when another client connects to the Diffusion server anonymously or with a
principal. In addition to deciding whether the other client is allowed to connect, the
authenticating client can assign roles to the client session.

Diffusion | 126

The authenticating client can use information stored elsewhere in your system, for
example in an LDAP server, to make the authentication decision and assign roles.

Example: Scalable and resilient solution
This solution uses replication to share information between primary servers and make them highly
available. The solution also uses fan-out to spread the data from the primary servers behind the
firewall to secondary servers in the DMZ.

Figure 18: Architecture using replication and fan-out

1. Three clients register handlers with each of the Diffusion servers behind the firewall. These clients
can be located on the same system as the server or on remote systems. Each Diffusion server load
balances requests between clients that have registered to handle requests of that type. If one of the
clients becomes unavailable, the requests can be directed to another client. You can connect more
client sessions to deal with higher volumes of requests.

2. The Diffusion servers inside the firewall replicate information into a datagrid. If a Diffusion server
that was handling a client session or topic becomes unavailable, the responsibility for that client
session or topic can be passed to another Diffusion server that has access to all the information for
that session or topic through the datagrid.

3. The Diffusion servers outside of the firewall, in the DMZ, are configured to use automated fan-out
to connect to the Diffusion servers inside the firewall. Specified topics on the primary server are
fanned out to the secondary servers.

4. You can use a load balancer to spread requests from subscribing clients across many secondary
Diffusion servers. If a server becomes unavailable, clients can be directed to another server.

Security

Diffusion secures your data by requiring client sessions to authenticate and using role-based
authorization to define the actions that a client can perform.

Concepts

Principal
The principal is a user or system user that has an identity that can be authenticated.

Diffusion | 127

When a principal is authenticated is becomes associated with a session. The default
principal that is associated with a session is ANONYMOUS.

Session
A session is a set of communications between the Diffusion server and a client.

Permission
A permission represents the right to perform an action on the Diffusion server or on
data.

Role
A role is a named set of permissions and other roles. Principals and sessions can both
be assigned roles.

Role hierarchy
Roles are hierarchical. A role can include other roles and, by doing so, have the
permissions assigned to the included roles. A role cannot include itself, either directly
or indirectly – through a number of included roles.

Role-based authorization
Diffusion restricts the ability to perform actions to authorized principals. Roles are used to map
permissions to principals.

Associating permissions with roles

The association between roles and permissions is defined in the security store.

Diffusion | 128

A fixed set of permissions is defined by the Diffusion server. These permissions are used to control
access to actions and data on the Diffusion server.

Roles are used to associate permissions to principals. Permissions are assigned to roles, and roles are
assigned to principals.

A role can be assigned zero, one, or many permissions. The same permission can be assigned
to multiple roles. Roles can also include other roles to form a role hierarchy, and so inherit their
permissions. The permissions assigned to a role and the role hierarchy are defined in the security
store.

You can update the security store by editing the store file, installation_directory/etc/
Security.store, and restarting the Diffusion server.

You can update the security store from a client using the SecurityControl feature.

Associating roles with principals

The association between roles and principals is defined in the system authentication store or by user-
written authentication handlers.

Diffusion | 129

The association between principals and roles is defined in the following ways:

• In a user-defined store that your user-written authentication handlers refer to. For example, an
LDAP server.

• A user-written authentication handler can also hard code the relationship between principals and
roles, if that is appropriate.

• In the system authentication store of the Diffusion server

The system authentication store is designed to hold information about Diffusion administration
users and system clients. It can manage hundreds or perhaps thousands of principals, but does
not provide the administration tools necessary to support millions of principals. We recommend
that you delegate such "internet scale" use cases to a third-party identity provider using a custom
authentication handler. For example, by using the OAuth or OpenID protocol.

You can update the system authentication store in the following ways:

• From a client using the SystemAuthenticationControl feature.
• By editing the store file, installation_directory/etc/

SystemAuthentication.store, and restarting the Diffusion server.

Assigning roles to client sessions

Roles are assigned to a new client session after client authentication.

Diffusion | 130

The roles assigned to a client session determine the actions that client session can perform.

A client session is assigned roles in the following ways:

• If the client session connects to the Diffusion server anonymously, the client session is assigned the
default assigned roles for the ANONYMOUS principal.

Anonymous authentication can be enabled or disabled in the system authentication store. If
enabled, roles can also be specified.

• When a client session authenticates with a principal, the client session can be assigned the
following roles:

• The default assigned roles for a named principal.
• The set of roles assigned to a principal by the authentication handler that accepts the client

session's authentication request. This authentication handler can be one of the following types:

• The system authentication handler, in which case the roles that are assigned are those
associated with that principal in the system authentication store.

• A user-written authentication handler, in which case the roles that are assigned are those
defined by the handler or a user-defined store.

For example: A client session authenticates with the Diffusion server using the principal Armstrong.
The first authentication handler that is called is a user-written authentication handler. This
authentication handler abstains from the authentication decision, so does not assign roles to the
client session. The next authentication handler that is called is the system authentication handler.
The system authentication handler does not abstain from the authentication decision. It uses the
information in the system authentication store to decide to allow the authentication request. In the
system authentication store, the principal Armstrong is associated with the roles ALPHA, BETA, and
EPSILON. These roles are assigned to the client session.

Diffusion | 131

After the authentication request has been allowed, no further authentication handlers are called to
make a decision or assign roles. However, the Diffusion server also assigns the default assigned roles
for a named principal to the client session. The default assigned roles defined in the security store are
GAMMA and RHO.

After authenticating with the principal Armstrong, the client session has the following roles assigned to
it:

• ALPHA
• BETA
• EPSILON
• GAMMA
• RHO

Authorizing actions

When a client requests to perform an action or access data that requires a permission, the Diffusion
server checks whether the client session is assigned a role that includes the required permission.

The client requests to perform an action. If the action requires that the client session have a
permission, the Diffusion server checks what roles the client session is assigned and checks in the
security store whether any of these roles have the required permission.

For example: A client requests to subscribe to the topic A/B/C. To subscribe to a topic, a client session
must have the select_topic permission for that topic. The client session has the ALPHA and BETA roles.
In the security store, the ALPHA role does not include the select_topic permission, but the BETA role
does include the select_topic permission for the A/B/C topic. Because the client session is assigned the
BETA role, it has the required permission and can subscribe to the topic.

Related concepts
Authentication on page 137
You can implement and register handlers to authenticate clients when the clients try to perform
operations that require authentication.

DEPRECATED: Authorization handlers on page 144
An authorization handler can control authorization and permissions for clients and users.

Securing the console on page 147
Configuration is required to enable additional security around connections from the Diffusion console.

Related reference
Configuring user security on page 578

Diffusion | 132

You can use the Security.store and SystemAuthentication.store files in the etc
directory of your Diffusion server to configure the security roles and how they are assigned.

Permissions
The actions a client session can take in Diffusion are controlled by a set of permissions. These
permissions are assigned to roles.

Permissions can have one of the following scopes:

Topic
Permissions at topic scope apply to actions on a topic.

Topic-scoped permissions are defined against topic branches. The permissions that
apply to a topic are the set of permissions defined at the most specific branch of the
topic tree.

Global
Permissions at global scope apply to actions on the Diffusion server.

Topic permissions

The topic-scoped permissions are listed in the following table:

Table 18: List of topic-scoped permissions

Name Description

select_topic Use a topic selector that selects the topic path.
A session must have this permission for the path
prefix of any topic selector used to subscribe or
fetch.

read_topic Grant read access to the topics.

If a session does not have this permission for a
topic, that topic does not match subscriptions
and is excluded from fetch requests. Also the
topics details cannot be retrieved.

update_topic Update topics at or below a topic branch.

modify_topic Create or modify topics at or below a topic
branch.

send_to_message_handler Send a topic message to the server for a topic at
or below a topic branch.

send_to_session Send a message to a client session for a topic at
or below a topic branch.

Understanding topic-scoped permissions

Topic-scoped permissions are assigned to roles for specific topic paths. The permission assignment
applies to all descendant topics, unless there is a more specific assignment.

To evaluate whether a client session has access to a permission for a topic, the Diffusion server starts
at that topic and searches up the tree to find the nearest permission assignment. The first assignment
is the only one considered, even if the client has roles involved in assignments further up the topic
tree.

Diffusion | 133

Default topic-scope assignments can also be defined. These are used if no path assignment matches.

The following example shows permissions set on branches of the topic tree.

Figure 19: Topic scope example

In this example, client sessions with the role ALPHA have the following permissions on each topic in
the topic tree:

A
A permission set is defined for the topic path A.

These permissions give client sessions with the ALPHA role read_topic, update_topic,
and modify_topic permissions on the topic A.

A/B
No permission set is defined for the topic path A/B. In this case, the permissions at the
most specific scope are those defined for the topic path A

These permissions give client sessions with the ALPHA role read_topic, update_topic,
and modify_topic permissions on the topic B.

A/C
A permission set is defined for the topic path A/C. These permissions do not include
any permissions for the ALPHA role.

Client sessions with the ALPHA role have no permissions on the topic C. Permissions
are defined for the ALPHA role at a less specific scope. However, these permissions
are not referred to or inherited if any permissions are defined at a more specific
scope. Only the most specific set of permissions is used. In this case, those
permissions are only for the BETA role and not the ALPHA role.

A/C/D
A permission set is defined for the topic path A/C/D.

These permissions give client sessions with the ALPHA role read_topic and
update_topic permissions on the topic D.

The role ALPHA has only these permissions even though at A/C the role has no
permissions defined and at A the role has additional permissions. Only the most
specific set of permissions is used.

Diffusion | 134

The BETA role also has permissions defined at this scope. These permissions do not
affect the permissions that the ALPHA role has at this scope.

Understanding the select_topic and read_topic permissions

The default configuration grants the select_topic and read_topic permissions to all sessions then
protects the topic tree below the Diffusion topic using the OPERATOR role. You can alter this
configuration to protect sensitive topics.

A session that does not have the select_topic permission for a particular topic path cannot subscribe
directly to topics at that path. However, the session can be independently subscribed to that topic
by a control session that has modify_session permission in addition to the select_topic permission
for that topic path. The subscribed session requires the read_topic permission for that topic for the
subscription to the topic to occur. The control session cannot subscribe a session to a topic if that
session does not have the read_topic permission for the topic. When this occurs, the topic is filtered
out of the subscription.

Use the select_topic permission with some care because topic selectors can use wild card expressions.
For example, with the default configuration, the OPERATOR role is required to use topic selector
expressions such as Diffusion or ?Diffusion//", but the CLIENT role is sufficient to use the topic selector
expression ?// which selects all of the topics in the topic tree.

In the default configuration, this does not cause a problem as sessions that do not have the OPERATOR
role also do not have the read_topic permission for topics below "Diffusion". Any matching topics are
filtered from subscription and fetch results for those sessions.

Managing all subscriptions from a separate control session

You can prevent client sessions from subscribing themselves to topics and control all subscriptions
from a separate control client session that uses SubscriptionControl feature to subscribe clients to
topics.

To restrict subscription capability to control sessions, configure the following permissions:

Control session:

• Grant the modify_session permission
• Grant the select_topic permission

This can be either be granted for the default topic scope or more selectively to restrict the topic
selectors the control session can use.

Other sessions:

• Grant read_topic to the appropriate topics.
• Deny the select_topic permission by default.

Do not assign the session a role that has the select_topic permission for the default topic scope.
This prevents the session from subscribing to all topics using a wildcard selector.

• Optionally, grant the select_topic permission to specific branches of the topic tree to which the
session can subscribe freely.

Global permissions

The global permissions are listed in the following table:

Table 19: List of global permissions

Name Description

view_session List or listen to client sessions.

Diffusion | 135

Name Description

modify_session Alter a client session. This covers a range of
actions including the following:

• subscribe a session to a topic
• throttle a session
• enable conflation for a session
• close a session

register_handler Register any handler with the Diffusion server.

authenticate Register an authentication handler.

The register_handler permission is also required
to perform this action.

view_server Read administrative information about the
Diffusion server.

For example, through JMX.

control_server • Shut down the Diffusion server.
• Start and stop publishers.

These actions can be taken only from the console
or JMX. Client sessions cannot shut down the
Diffusion server or start and stop publishers.

view_security View the security policy.

modify_security Change the security policy.

Related reference
Pre-defined roles on page 135
Diffusion has a pre-defined set of roles with associated permissions.

Pre-defined users on page 143
Diffusion has a pre-defined set of users with associated password and roles.

Pre-defined roles
Diffusion has a pre-defined set of roles with associated permissions.

Clients can edit this set of roles. For more information, see Updating the security store on page 414.

CLIENT TOPIC_
CONTROL

CLIENT_
CONTROL

AUTHENTICATION
_HANDLER

OPERATOR ADMINISTRATOR
and JMX_
ADMINISTRATOR

select topic

Default
scope

select topic

Diffusion | 136

CLIENT TOPIC_
CONTROL

CLIENT_
CONTROL

AUTHENTICATION
_HANDLER

OPERATOR ADMINISTRATOR
and JMX_
ADMINISTRATOR

"Diffusion"
topic

read topic

Default
scope

read topic

"Diffusion"
topic

modify topic

Default
scope

modify topic

"Diffusion"
topic

update topic

Default
scope

update topic

"Diffusion"
topic

send to
message
handler

Default
scope

send to
message
handler

"Diffusion"
topic

send to
session

Default
scope

view session

Diffusion | 137

CLIENT TOPIC_
CONTROL

CLIENT_
CONTROL

AUTHENTICATION
_HANDLER

OPERATOR ADMINISTRATOR
and JMX_
ADMINISTRATOR

modify
session

register
handler

authenticate

view
security

modify
security

view server

control
server

Related reference
Permissions on page 132
The actions a client session can take in Diffusion are controlled by a set of permissions. These
permissions are assigned to roles.

Pre-defined users on page 143
Diffusion has a pre-defined set of users with associated password and roles.

Authentication
You can implement and register handlers to authenticate clients when the clients try to perform
operations that require authentication.

The handlers you can implement and register are the following:

• Any number of local authentication handlers
• Any number of control authentication handlers
• At most one authorization handler

Note: Using authorization handlers for authentication is deprecated.

The server calls the authentication handlers (local and control) in the order that they are defined in the
Server.xml file. Then, if required, the server calls the authorization handler.

If no handlers are defined, the server allows the client operation by default.

Diffusion | 138

Authentication process

Figure 20: Authentication process for clients

1. A client tries to perform an operation that requires authentication. For more information, see Client
operations that require authentication on page 139.

2. The server calls the authentication handlers one after another in the order that they are listed
in the Server.xml file. It passes the following parameters to each authentication handler's
authenticate() method:

Principal
A string that contains the name of the principal or identity that is connecting to the
server or performing the action. This can have a value of Session.ANONYMOUS.

Credentials
The Credentials object contains an array of bytes that holds a piece of
information that authenticates the principal. This can be empty or contain a
password, a cryptographic key, an image, or any other piece of information. The
authentication handler is responsible for interpreting the bytes.

SessionDetails

This contains information about the client. The available details depend on what
information the server holds about the client session. Some session information
might not be available on initial connection.

Diffusion | 139

This information can be used in the authentication decision. For example, an
authentication handler can allow connection only from clients that connect from a
specific country.

When it registers with the server, a control authentication handler can specify what
details it requires, so only these details are sent by the server (if available). This
reduces the amount of data sent across the control client connection.

Callback
A callback that the authentication handler can use to respond to the authentication
request by using the callback's allow(), deny(), or abstain() method.

If the authentication handler is a local authentication handler, the authentication logic is done
on the server. If the authentication handler is a control authentication handler, the parameters
are passed to a control client and the control client handles the authentication logic and returns a
response.

3. Each authentication handler can return a response of ALLOW, DENY, or ABSTAIN.

• If the authentication handler returns DENY, the client operation is rejected.
• If the authentication handler returns ALLOW, the decision is passed to the authorization

handlers. The authentication handler can also provide a list of roles to assign to the client
session.

• If the authentication handler returns ABSTAIN, the decision is passed to the next
authentication handler listed in the Server.xml configuration file.

4. If all authentication handlers respond with an ABSTAIN decision, the response defaults to DENY.
5. If an authorization handler is configured in the Server.xml file, the server calls it. It passes the

following parameter to the authorization handler's onConnect() method:

Client
The Client object has an associated Credentials object. This Credentials
object is part of the Classic API and is different to the Credentials object used
by the authentication handlers. The Classic API Credentials object contains two
strings: username and password. The username string is equivalent to the Principal
string used by the Unified API.

6. The authorization handler can return a response of ALLOW or DENY.

• If the authorization handler returns DENY, the client operation is rejected.
• If the authorization handler returns ALLOW, the client operation is allowed.

Client operations that require authentication

The following client operations require authentication with the server:

Table 20: Client operations that require authentication

Client operation API version Behavior if operation
is allowed

Behavior if operation
is denied

Connect to server Unified API The client connection
to the server is
accepted.

The client connection
to the server is rejected
and is dropped.

Connect to server Classic API The client connection
to the server is
accepted.

The client connection
to the server is rejected
and is dropped.

Diffusion | 140

Client operation API version Behavior if operation
is allowed

Behavior if operation
is denied

Change the principal
associated with a client
session

Unified API The principal is
changed.

The principal is not
changed, but the client
session is not dropped.

Change the principal
associated with a client
session

Classic API The principal is
changed. In the Classic
API, the principal is the
username string inside
the Credentials
object.

The principal is not
changed, but the client
session is not dropped.

Related concepts
Role-based authorization on page 127
Diffusion restricts the ability to perform actions to authorized principals. Roles are used to map
permissions to principals.

DEPRECATED: Authorization handlers on page 144
An authorization handler can control authorization and permissions for clients and users.

Securing the console on page 147
Configuration is required to enable additional security around connections from the Diffusion console.

User-written authentication handlers
You can implement authentication handlers that authenticate clients that connect to the Diffusion
server or perform an action that requires authentication.

The authentication handlers can be implemented either remotely, in a client, or locally, on the
server. The authentication handlers can be individual authentication handlers, that perform a single
authentication check, or composite authentication handlers, that delegate to one or more individual
authentication handlers.

Local authentication handlers

A local authentication handler is an implementation of the AuthenticationHandler interface.
Local authentication handlers can be implemented only in Java. The class file that contains a local
authentication handler must be located on the classpath of the Diffusion server.

For more information, see Authentication API.

Control authentication handlers

A control authentication handler can be implemented in any language where the Diffusion Unified API
includes the AuthenticationControl feature. A control authentication handler can be registered by any
client that has the authenticate and register_handler permissions.

For more information, see .

Composite authentication handlers

A composite authentication handler delegates the authentication decision to an ordered list of one or
more individual authentication handlers and returns a combined decision.

Diffusion | 141

Figure 21: A composite authentication handler

• If an individual handler allows the client action, the composite handler responds with an ALLOW
decision.

• If an individual handler denies the client action, the composite handler responds with a DENY
decision.

• If an individual authentication handler abstains, the composite handler calls the next individual
handler.

• If all individual handlers abstain, the composite handler responds with an ABSTAIN decision.

A composite authentication handler can be either local or control. A local composite authentication
handler can delegate the authentication decision to one or more authentication handlers. A composite
control authentication handler can delegate the authentication decision to one or more control
authentication handlers.

The use of composite authentication handlers is optional. There are two reasons to consider using
them:

• Composite authentication handlers enable you to combine authentication handlers together,
which reduces the possibility of misconfiguration.

• Composite control authentication handlers improve efficiency by reducing the number of
messages sent between the Diffusion server and clients.

The following table matrix shows the four types of authentication handler.

Table 21: Types of authentication handler

Individual Composite

Local Implement the
AuthenticationHandler interface.
For more information, see Developing
a local authentication handler on page
495.

Extend the
CompositeAuthenticationHandler
class. For more information, see
Developing a composite authentication
handler on page 497

Control Implement the
ControlAuthenticationHandler
interface. For more information, see
Developing a control authentication
handler on page 398.

Extend the
CompositeControlAuthenticationHandler
class. For more information, see
Developing a composite control
authentication handler on page 401

Related concepts
Configuring authentication handlers on page 550

Diffusion | 142

Authentication handlers and the order that the Diffusion server calls them in are configured in the
Server.xml configuration file.

Related tasks
Developing a local authentication handler on page 495
Implement the AuthenticationHandler interface to create a local authentication handler.

Developing a composite authentication handler on page 497
Extend the CompositeAuthenticationHandler class to combine the decisions from multiple
authentication handlers.

Developing a control authentication handler on page 398
Implement the ControlAuthenticationHandler interface to create a control authentication
handler.

Developing a composite control authentication handler on page 401
Extend the CompositeControlAuthenticationHandler class to combine the decisions from
multiple control authentication handlers.

Developing a local authentication handler on page 495
Implement the AuthenticationHandler interface to create a local authentication handler.

Developing a composite authentication handler on page 497
Extend the CompositeAuthenticationHandler class to combine the decisions from multiple
authentication handlers.

Related reference
Authentication API
Server.xml on page 552
This file specifies the schema for the server properties, as well as multiplexers, security, conflation,
client queues, and thread pools.

System authentication handler
Diffusion provides an authentication handler that uses principal, credential, and roles information
stored in the Diffusion server to make its authentication decision.

System authentication store

The principal, credentials, and role information located in the system authentication store is used by
the system authentication handler to authenticate users.

The system authentication store is designed to hold information about Diffusion administration users
and system clients. It can manage hundreds or perhaps thousands of principals, but does not provide
the administration tools necessary to support millions of principals. We recommend that you delegate
such "internet scale" use cases to a third-party identity provider using a custom authentication
handler. For example, by using the OAuth or OpenID protocol.

By default the following information is set in the system authentication store file,
SystemAuthentication.store located in the etc directory:

allow anonymous connections ["CLIENT"]

add principal "client" "password" ["CLIENT"]
add principal "control" "password" ["CLIENT_CONTROL" "TOPIC_CONTROL"
 "AUTHENTICATION_HANDLER"]
add principal "admin" "password" ["ADMINISTRATOR"]
add principal "operator" "password" ["OPERATOR"]

Diffusion | 143

You can edit the usernames and passwords in this file by hand and restart the Diffusion server to
reload the file. However, any password you enter in plaintext is hashed by the Diffusion server when it
starts and the plaintext value in this file is replaced with the hashed value.

The default hash scheme used is PBKDF-SHA256-1000. You can specify a different hash scheme in the
Server.xml configuration file. For more information, see Server.xml on page 552.

Behavior of the system authentication handler

The system authentication handler behaves in the following way:

• If anonymous connections are allowed in the system authentication store and a client session
connects anonymously, the system authentication handler returns an ALLOW decision and the list
of roles an anonymous client session is assigned.

• If anonymous connections are not allowed in the system authentication store and a client session
connects anonymously, the system authentication handler returns a DENY decision.

• If a client session connects with a principal listed in the system authentication store and the correct
credentials, the system authentication handler returns an ALLOW decision and the list of roles that
client session is assigned.

• If a client session connects with a principal listed in the system authentication store and incorrect
credentials, the system authentication handler returns a DENY decision.

• If a client session connects with a principal that is not listed in the system authentication store, the
system authentication handler returns an ABSTAIN decision.

Related concepts
Configuring authentication handlers on page 550
Authentication handlers and the order that the Diffusion server calls them in are configured in the
Server.xml configuration file.

Updating the system authentication store on page 404
A client can use the SystemAuthenticationControl feature to update the system authentication store.
The information in the system authentication store is used by the system authentication handler to
authenticate users and assign roles to them.

Pre-defined users
Diffusion has a pre-defined set of users with associated password and roles.

You can use the SystemAuthenticationControl feature to edit this set of users.

Note: This set of users and passwords are well known and not secure. Change the passwords
or remove the users before putting Diffusion into production.

The users defined in the system authentication store are only authenticated if the system
authentication handler is configured. For more information, see Configuring authentication handlers
on page 550.

User Password Associated roles

client password CLIENT

control password CLIENT_CONTROL,
TOPIC_CONTROL,
AUTHENTICATION_HANDLER

admin password ADMINISTRATOR

operator password OPERATOR

Diffusion | 144

User Password Associated roles

Anonymous connections CLIENT

Related reference
Pre-defined roles on page 135
Diffusion has a pre-defined set of roles with associated permissions.

Permissions on page 132
The actions a client session can take in Diffusion are controlled by a set of permissions. These
permissions are assigned to roles.

DEPRECATED: Authorization handlers
An authorization handler can control authorization and permissions for clients and users.

Role-based authorization

Attention: The new role-based security model has superseded authorization handlers. Role-
based security enables you to more simply manage permissions and users. We recommend
you use role-based authorization instead of authorization handlers. For more information, see
Role-based authorization on page 127.

An authorization handler is a user-written Java class that must implement the
AuthorisationHandler interface in the Classic API.

Such a handler can be used to restrict access of clients according to any criteria that is appropriate.
One capability within Diffusion is for a client to be able to specify Credentials when they connect that
can be checked by the authorization handler.

The handler can either be specified in etc/Server.xml in which case it is loaded
when the server starts or can be set programmatically within a publisher using the
Publishers.setAuthorisationHandler method.

There can only be one handler and it is system wide across all publishers, although you can have
authorization at the publisher level.

If an authorization handler is not specified, credentials sent by a client are assumed to be valid. A
publisher has access to the credentials to perform finer-grained authorization, if required.

The authorization handler interface has the following methods:

Table 22: Authorization handler methods

DEPRECATED: canConnect(Client) This method is called to establish whether the
client can connect and is called before any client
validation policy is called.

canSubscribe(Client, Topic) This method is called when a client subscribes
to a topic. If topic information is sent with the
connection, this method is called after the
canConnect method.

Note: This is called for every topic
being subscribed to, even if subscribed
as a result of a topic selector being
specified. However (by default), if a topic

Diffusion | 145

is rejected by this method, it is not called
again for any children (or descendants)
of the topic.

canSubscribe(Client,
TopicSelector)

This method is called when a client attempts to
subscribe to a topic selector pattern (as opposed
to a simple topic name). If topic information is
sent with the connection, this method is called
after the canConnect method.

canFetch(Client, Topic) This method is called when a client sends a fetch
request to obtain the current state of a topic.

Note: This is called for every topic being
fetched, even if fetched as a result of a
topic selector being specified. However
(by default), if a topic is rejected by this
method, it is not be called again for any
children (or descendants) of the topic.

canFetch(Client, TopicSelector) This method is called when a client attempts to
fetch topics using a topic selector pattern (as
opposed to a simple topic name).

canWrite(Client, Topic) This method is called when a client sends a
message on a given topic, if false is returned the
message is ignored, and the publisher will not
be notified of the message. When implementing
this method, be aware that performance can be
impacted if many clients send messages or if a
few clients send large messages.

DEPRECATED:
credentialsSupplied(Client,
Credentials)

This method is called when a client submits
credentials after connection. It can be used to
validate the credentials and must return true
if the credentials are OK. If this returns false, a
Credentials Rejected message are sent back to
the client.

Authentication

Note: The use of authorization handlers for authentication is deprecated. We recommend
that you re-implement your authentication logic using authentication handlers. For more
information, see User-written authentication handlers on page 140.

When a client connects to Diffusion it has the option of supplying user credentials. These credentials
are basically tokens called username and password. These tokens can be used for any purpose. When
canConnect is called, you can get the credentials from the Client object.

An example of this is:

 public boolean canConnect(Client client) {
 Credentials creds = client.getCredentials();

 // No creds supplied, so reject the connection
 if (creds == null) {
 return false;
 }

Diffusion | 146

 String username = creds.getUsername().toLowerCase();

If the credentials are null, none were supplied, which is different from empty credentials. If you set the
username as an empty string (that is, an anonymous user) the password is not stored and you cannot
retrieve it with getCredentials.

Clients can connect without credentials and submit them later or replace the credentials at any time
whilst connected. The authorization handler is notified when new credentials are submitted and can
choose to set the new credentials on the client.

The Credentials class has username and password attributes, but also allows for an attachment.
It is here that a user normally sets any security object required. Returning true will allow the user to
connect, returning false will result in the client connection being refused.

Subscription authorization

Subscription authorization is the allowing of a client to subscribe to a topic. In this case the
canSubscribe is called. Returning true here allows the publisher to have any topic loaders and
subscription methods called. Returning false will not notify the client that the subscription was invalid.

public boolean canSubscribe(Client client, Topic topic) {

 // Everyone has access to the top level topic
 if (topic.getName().equals(CHAT_TOPIC)) {
 return true;
 }

 User user = (User) client.getCredentials().attachment();

 return user.isAllowedRoom(topic.getNodeName());
}

Authorization handler

Authorization at the publisher level can also be achieved. This is required if there are many publishers
running within the same Diffusion Server and they have different security settings. The following code
example works if the publishers all implement AuthorisationHandler

public boolean canSubscribe(Client client, Topic topic) {

 AuthorisationHandler handler =

 (AuthorisationHandler)Publishers.getPublisherForTopic(topic);

 // Call the publisher in question
 return handler.canSubscribe(client, topic);
}

Permissions

The permissions process governs whether a client is able to send messages to a publisher, or in other
words, is the topic read only. This is handled by the canWrite method. Again a good pattern might
be to look at the credentials attachment object to see if this is permissible.

public boolean canWrite(Client client, Topic topic) {
 User user = (User) client.getClientCredentials().attachment();
 return user.canWriteMessages(topic);
}

Diffusion | 147

Related concepts
Role-based authorization on page 127
Diffusion restricts the ability to perform actions to authorized principals. Roles are used to map
permissions to principals.

Authentication on page 137
You can implement and register handlers to authenticate clients when the clients try to perform
operations that require authentication.

Securing the console on page 147
Configuration is required to enable additional security around connections from the Diffusion console.

Securing the console
Configuration is required to enable additional security around connections from the Diffusion console.

Allow the console to connect only on a specific connector

We strongly recommend that you only allow the console to connect to Diffusion through a single
connector. The port this connector listens on can be blocked from connections from outside of your
organization by your load balancer.

You can configure this in the following way:

1. In your etc/Connectors.xml configuration file, wherever the line <web-
server>default<web-server> appears in a connector that receives external connections,
replace it with a web server definition that contains only a client-service definition. For
example:

 <web-server name="external">
 <!-- This section enables HTTP-type clients for this Web
 Server -->
 <client-service name="client" debug="true">
 <!-- This parameter is used to re-order out-of-order
 messages received
 over separate HTTP connections opened by client
 browsers. It is rarely
 necessary to set this to more than a few tens of
 seconds.
 If you attempt to set this value to more than one
 hour, a warning is logged
 and a timeout of one hour is used. -->
 <message-sequence-timeout>4s</message-sequence-timeout>
 <!-- This is used to control access from client web
 socket to diffusion.
 This is a REGEX pattern that will match the origin
 of the request (.*) matches
 anything so all requests are allowed -->
 <websocket-origin>.*</websocket-origin>
 <!-- This is used to control cross-origin resource
 sharing client connection to Diffusion
 This is a REGEX pattern that will match the origin
 of the request (.*) matches anything -->
 <cors-origin>.*</cors-origin>
 <!-- Enable compression for HTTP responses (Client and
 File). If the response
 is bigger than threshold -->
 <compression-threshold>256</compression-threshold>
 </client-service>

Diffusion | 148

 </web-server>

2. Create a new connector in your etc/Connectors.xml configuration file that defines a specific
port that you use for internal connections to the console.

In this connector, set the value of the web-server element to default.
3. In your load balancer, prevent outside traffic from having access to the port specified in the new

connector.
4. If required, apply additional connection restrictions.

• You can use a connection validation policy. For more information, see
ConnectionValidationPolicy.xml on page 613.

• You can set these restrictions in your load balancer.

Disable console features in the configuration (as required)

The default configuration for the console allows users to stop and restart publishers as well as stop the
Diffusion server itself.

This feature is configured using the properties console.control.server and
console.control.publishers on the Diffusion publisher in the etc/Publishers.xml
configuration file.

Related concepts
Role-based authorization on page 127
Diffusion restricts the ability to perform actions to authorized principals. Roles are used to map
permissions to principals.

Authentication on page 137
You can implement and register handlers to authenticate clients when the clients try to perform
operations that require authentication.

DEPRECATED: Authorization handlers on page 144
An authorization handler can control authorization and permissions for clients and users.

Diffusion | 149

Part
IV

Developer Guide

This guide describes how to develop clients, publishers, and server-side components that interact with the
Diffusion server.

Note: We recommend that you use develop clients for most use cases. Our client APIs provide
access to the majority of Diffusion capabilities. Publishers and server-side components provide a few
advanced features that are not available on clients.

In this section:

• Developing a client
• Developing a publisher
• Developing other components
• Using Maven to build Java Diffusion applications
• Testing

Diffusion | 150

Developing a client

Diffusion provides APIs for a number of platforms. Use these APIs to develop your Diffusion clients.

Unified API

The Unified API is a consistent and modular API that provides an asynchronous and session-oriented
approach to developing your clients.

The Unified API is the future direction of the API. All new features will be developed in the Unified API.

The Unified API is available for the following platforms:

Java Unified API
Use this API to develop Java clients that can have control capabilities.

.NET Unified API
Use this API to develop clients in C# that can have control capabilities.

JavaScript Unified API
Use this API to develop browser or Node.js clients that can have control capabilities.

Android Unified API
Use this API to develop mobile clients in Java that can have control capabilities.

Apple Unified API
Use this API to develop mobile clients in Objective-C or Swift that have some control
capabilities.

C Unified API
Use this API to develop C clients that can have control capabilities.

DEPRECATED: Classic API

The Classic API was provided with previous versions of Diffusion. It will continue to be available for
backwards compatibility and to provide support for the Flex and Silverlight platforms.

However, we recommend that you use the Unified API where it is available for your required platform.

For more information about the Classic API, see .

Best practice for developing clients
Follow these best practises to develop resilient and well performing clients.

Use an asynchronous programming model

All calls in the Unified API are asynchronous. Ensure that you code your client using asynchronous
models to gain the advantages this provides.

Asynchronous calls remove the possibility of your client becoming blocked on a call. The Unified API
also provides context-specific callbacks, enabling you to pass contextual information with a callback,
and a wide range of event notifications.

Write good callbacks

The Unified API invokes callbacks using a thread from Diffusion thread pool. Callbacks for a particular
session are called in order, one at a time. Consider the following when writing callbacks:

Diffusion | 151

• Do not sleep or call blocking operations in a callback. If you do so, other pending callbacks for the
session are delayed. If you must call a blocking operation, schedule it in a separate application
thread.

• You can use the full Diffusion API to make other requests to the Diffusion server. If you want to
make many requests based on a single callback notification, be aware that Diffusion client flow
control is managed differently in callback threads. Less throttling is applied and it is easier to
overflow the Diffusion server by issuing many thousands of requests. If you have a lot of requests to
make, it is better to schedule the work in an application thread.

Use a modular design

The Diffusion Unified API provides interfaces on a feature-by-feature basis. There is a clear delineation
between features. At runtime, the client starts only those services that it uses.

You can take advantage of the modular design of the Unified API by designing multiple smaller and
more modular control clients. Smaller modules are easier to design, maintain and keep running.
Develop separate clients for different control responsibilities. For example, have a client or set of
clients responsible for authentication and a different client or set of clients responsible for creating
topics.

Also consider separating the responsibility for different parts of the topic tree between clients. For
example, have a client or set of clients responsible for updating the Tennis branch of the topic tree and
a different client or set of clients responsible for updating the Rugby branch of the topic tree.

Make your client resilient and defensive

If the Diffusion server restarts, all topic information — tree structure and topic state — is removed, all
subscription information is removed, and all clients are disconnected. Security and authentication
information is persisted.

If your client disconnects and cannot reconnect to the same session, all of its subscriptions and any
handlers it has registered are lost.

Ensure that you program your clients to handle and respond to these possibilities.

Feature support in the Diffusion Unified API
Review this information when designing your clients to determine which APIs provide the functionality
you require.

Features are sets of capabilities provided by the Diffusion Unified API. Some features are not
supported or not fully supported in some APIs.

The Diffusion libraries also provide capabilities that are not exposed through their APIs. Some of these
capabilities can be configured.

Table 23: Capabilities provided by the Diffusion client libraries

Capability JavaScript Apple Android Java .NET C

Connecting

Connect to
the Diffusion
server

Cascade
connection
through

Diffusion | 152

Capability JavaScript Apple Android Java .NET C
multiple
transports

Connect
asynchronously

Connect
synchronously

Connect
using a
URL-style
string as a
parameter

Connect
using
individual
parameters

Connect
securely

Configure
SSL context
or behavior

Connect
through an
HTTP proxy

Connect
through
a load
balancer

Pass a
request path
to a load
balancer

Reconnecting

Reconnect
to the
Diffusion
server

Failover to
a replicated
session on
a different
Diffusion
server

Configure a
reconnection
timeout

Diffusion | 153

Capability JavaScript Apple Android Java .NET C

Define a
custom
reconnection
strategy

Resynchronize
message
streams on
reconnect

Abort
reconnect if
resynchronization
fails

Maintain
a recovery
buffer of
messages to
resend on
reconnect

Configure
the recovery
buffer

Detect
disconnections
by
monitoring
activity

Detect
disconnections
by using TCP
state

Ping the
Diffusion
server

Change the
principal
used by the
connected
client
session

Receiving data from topics

Subscribe to
a topic or set
of topics

Receive
data as a
value stream
(JSON,

Diffusion | 154

Capability JavaScript Apple Android Java .NET C
binary, and
single value
topics)

Receive data
as content
(all topic
types)

Fetch the
state of a
topic

Managing topics

Create a
JSON or
binary topic

Create a
topic (not
including
JSON or
binary
topics)

Create a
topic from
an initial
value

Create a
topic with
metadata

Listen for
topic events
(including
topic has
subscribers
and topic
has zero
subscribers)

Delete a
topic

Delete a
branch of
the topic
tree

Mark a
branch of
the topic
tree for
deletion
when this

Diffusion | 155

Capability JavaScript Apple Android Java .NET C
client
session is
closed

Updating topics

Update a
JSON or
binary topic

Update a
topic (not
including
JSON and
binary
topics)

Perform
exclusive
updates

Perform
non-
exclusive
updates

Managing subscriptions

Subscribe or
unsubscribe
another
client to a
topic

Subscribe or
unsubscribe
another
client to a
topic based
on session
properties

Handling
subscriptions
to routing
topics

Handling
subscriptions
to missing
topics

Messaging

Send a
message to
a path

Diffusion | 156

Capability JavaScript Apple Android Java .NET C

Send a
message
directly to a
client

Send a
message
directly to a
client based
on session
properties

Receive
direct
messages

Handle
messages
sent to a
topic path

Managing security

Authenticate
client
sessions and
assign roles
to client
sessions

Configure
how the
Diffusion
server
authenticates
client
sessions and
assign roles
to client
sessions

Configure
the roles
assigned to
anonymous
sessions
and named
sessions

Configure
the
permissions
associated
with roles
assigned
to client
sessions

Diffusion | 157

Capability JavaScript Apple Android Java .NET C

Managing other clients

Receive
notifications
about client
session
events
including
session
properties

Get the
properties
of a specific
client
session

Receive
notifications
about client
queue
events

Conflate
and throttle
clients

Close a
client
session

Push notifications (The Push Notification Bridge must be enabled)

Receive
push
notifications

Request
that push
notifications
be sent from
a topic to a
client

Publish an
update to
a topic that
sends push
notifications

Other capabilities

Flow control

Diffusion | 158

Getting started
Get started developing Diffusion clients by downloading one of our SDKs, discovering its capabilities,
and starting to stream realtime data through the Diffusion server.

JavaScript
The JavaScript Unified API is provided in the file diffusion.js and can be accessed through the
web or through NPM.

Use with Node.js:

Install with NPM:

npm install diffusion

Include in your Node.js application:

var diffusion = require('diffusion');

Get the minified JavaScript:

Download the latest JavaScript file from the following URL:

http://download.pushtechnology.com/clients/5.9.4/js/diffusion.js

You can also download the JavaScript file as a tarball that can be installed locally by using NPM:

http://download.pushtechnology.com/clients/5.9.4/js/diffusion-
js-5.9.4.tgz

The JavaScript file is also located in your Diffusion server installation:

diffusion_directory/clients/js

Use TypeScript definitions with the JavaScript client library:

If you got the JavaScript client library using NPM, the TypeScript definitions are included.

You can also download a TypeScript definition file from the following URL:

http://download.pushtechnology.com/clients/5.9.4/js/
diffusion-5.9.4.d.ts

The TypeScript file is also located in your Diffusion server installation:

diffusion_directory/clients/js

Include the TypeScript definition file in your IDE project to use the TypeScript definitions when
developing a JavaScript client for Diffusion.

Capabilities

To see the full list of capabilities supported by the JavaScript API, see Feature support in the Diffusion
Unified API on page 46.

http://download.pushtechnology.com/clients/5.9.4/js/diffusion.js
http://download.pushtechnology.com/clients/5.9.4/js/diffusion-js-5.9.4.tgz
http://download.pushtechnology.com/clients/5.9.4/js/diffusion-js-5.9.4.tgz
http://download.pushtechnology.com/clients/5.9.4/js/diffusion-5.9.4.d.ts
http://download.pushtechnology.com/clients/5.9.4/js/diffusion-5.9.4.d.ts

Diffusion | 159

Support

Table 24: Supported platforms and transport protocols for the client libraries

Platform Minimum supported versions Supported transport protocols

JavaScript es6

(TypeScript 1.8)

WebSocket

HTTP (Polling XHR)

Resources

• Examples for the JavaScript API.
• JavaScript Classic API documentation

Using

Promises
The Diffusion JavaScript Unified API uses the Promises/A+ specification.

Views

The JavaScript Unified API provides a view capability.

Use views to subscribe to multiple topics by using a topic selector and receive all the
data from all topics in the selector set as a single structure when any of the topics
are updated. If the topic selector matches a topic which is subsequently added or
removed, the view is updated.

The following example shows views being used to present data from multiple topics
as a single structure:

diffusion.connect({
 host : 'localhost',
 port : 8080,
 secure : false,
 principal : 'control',
 credentials : 'password'
}).then(function(session) {

 // Assuming a topic tree:
 //
 // scores
 // |-- football
 // | |-- semi1
 // | |-- semi2
 // | |-- final
 // |
 // |-- tennis
 // |-- semi1
 // |-- semi2
 // |-- final

 // Use a regular expression to create a view of the
 topics tracking the
 // scores during the finals for each sport.
 var view = session.view('?scores/.*/final');

 // Alternatively, we can use a topic set. Note that
 the topics do not need

http://kangax.github.io/compat-table/es5/
https://github.com/pushtechnology/diffusion-examples/tree/master/js
http://docs.pushtechnology.com/docs/5.9.4/js-classic/index.html
https://promisesaplus.com/

Diffusion | 160

 // to be under a common root, they may be anywhere
 within the topic tree.
 var view2 = session.view('#>scores/football/final////
>scores/tennis/final');

 // If any of the topics in the view change, display
 which topic changed
 // and its new value.
 view.on({
 update : function(value) {
 // Get and print the entire view structure.
 console.log('Update: ', JSON.stringify(value,
 undefined, 4));

 // Get individual topics. Returns a Buffer,
 which is automatically
 // converted to a String during
 concatenation, below.
 //
 // Note that the structure may not exist if
 the value has not been
 // updated.
 console.log('Football score: ' +
 value.scores.football.final);
 console.log('Tennis score : ' +
 value.scores.tennis.final);

 // or ...
 // console.log('Football score: ' +
 value['scores']['football']['final']);
 }
 });

 // The structure can also be accessed outside the
 update event.
 console.log('Football score: ' +
 view.get().scores.football.final);
});

Regular expressions

The JavaScript client uses a different regular expression engine to the Diffusion
server. Some regular expressions in topic selectors are evaluated on the client and
others on the Diffusion server. It is possible that topic selectors that include complex
or advanced regular expressions can behave differently on the client and on the
Diffusion server.

For more information, see Regular expressions on page 66.

Start subscribing with JavaScript
Create a JavaScript browser client within minutes that connects to the Diffusion server. This example
creates a web page that automatically updates and displays the value of a topic.

Before you begin

To complete this example, you need a Diffusion server and a web server where you can host your client
application. Get the diffusion.js file from the clients/js directory of your Diffusion

Diffusion | 161

You also require either a named user that has a role with the select_topic and read_topic permissions
or that anonymous client connections are assigned a role with the select_topic and read_topic
permissions. For example, the “CLIENT” role. For more information about roles and permissions, see
Role-based authorization on page 127.

About this task
This example steps through the lines of code required to subscribe to a topic. The full code example is
provided after the steps.

Procedure

1. Create a template HTML page which displays the information.
For example, create the following index.html file.

<html>
 <head>
 <title>JavaScript example</title>
 </head>
 <body>
 The value of foo/counter is:
 Unknown
 </body>
</html>

If you open the page in a web browser, it looks like the following screenshot:

2. Include the Diffusion JavaScript library in the <head> section of your index.html file.

<head>
 <title>JavaScript example</title>
 <script type="text/javascript" src="path_to_library/
diffusion.js"></script>
</head>

3. Create a connection from the page to the Diffusion server. Add a script element to the body
element.

 <body>
 The value of foo/counter is:
 Unknown
 <script type="text/javascript">
 diffusion.connect({

Diffusion | 162

 // Edit these lines to include the host and port of your
 Diffusion server
 host : 'hostname',
 port : 'port',
 // To connect anonymously you can leave out the following
 parameters
 principal : 'user',
 credentials : 'password'
 }).then(function(session) {
 alert('Connected: ' + session.isConnected());
 }
);
 </script>
 </body>

Where hostname is the name of the system hosting your Diffusion server, user is the name of a user
with the permissions required to subscribe to a topic, and password is the user's password.
If you open the page in a web browser it looks like the following screenshot:

4. Subscribe to a topic and receive data from it.
Add the following function before the diffusion.connect() call:

function subscribeToTopic(session) {
 session.subscribe('foo/counter')
 .on('update', function(data) {
 document.getElementById('update').innerHTML = data;
 }
);
}

The subscribe() method of the session object takes the name of the topic to subscribe to
and emits an update event. The attached function takes the data from the topic and updates the
update element of the web page with the topic data.

5. Change the function that is called on connection to the subscribeToTopic function you just
created.

.then(subscribeToTopic);

If you open the page in a web browser it looks like the following screenshot:

Diffusion | 163

Results

The web page is updated every time the value of the foo/counter topic is updated. You can update
the value of the foo/counter topic by creating a publishing client to update the topic. To create
and publish to the foo/counter topic, you require a user with the modify_topic and update_topic
permissions. For more information, see Start publishing with JavaScript on page 164.

Example

The completed index.html file contains the following code:

<html>
 <head>
 <title>JavaScript example</title>

 <script type="text/javascript" src="path_to_library/
diffusion.js"></script>
 </head>
 <body>
 <div>
 The value of foo/counter is:
 Unknown
 </div>

 <script type="text/javascript">
 function subscribeToTopic(session) {
 session.subscribe('foo/counter')
 .on('update', function(data) {
 document.getElementById('update').innerHTML =
 data;
 }
);
 }
 diffusion.connect({

 // Edit these lines to include the host and port of your
 Diffusion server
 host : 'hostname',
 port : 'port',
 // To connect anonymously you can leave out the
 following parameters
 principal : 'user',
 credentials : 'password'

Diffusion | 164

 }).then(subscribeToTopic);
 </script>
 </body>
</html>

Start publishing with JavaScript
Create a Node.js client that publishes data through topics on the Diffusion server.

Before you begin

To complete this example, you need a Diffusion server and a development system with Node.js and
npm installed on it.

You also require either a named user that has a role with the modify_topic and update_topic
permissions. For example, the “ADMINISTRATOR” role. For more information about roles and
permissions, see Role-based authorization on page 127.

About this task
This example steps through the lines of code required to subscribe to a topic. The full code example is
provided after the steps.

Procedure

1. Install the Diffusion JavaScript library on your development system.

npm install diffusion

2. Create the JavaScript file that will be your publisher.
For example, publisher.js
a) Require the Diffusion library.

var diffusion = require('diffusion');

b) Connect to the Diffusion server.

diffusion.connect({
 host : 'host-name',
 principal : 'control-user',
 credentials : 'password'
}).then(function(session) {
 console.log('Connected!');
});

Where host-name is the name of the system that hosts your Diffusion server, control-user is the
name of a user with the permissions required to create and update topics, and password is the
user's password.

c) Create a topic called foo/counter and set its initial value to 0.

session.topics.add('foo/counter', 0);

d) Every second update the value of the topic with the value of the counter.

 setInterval(function() {
 session.topics.update('foo/counter', ++count);
 }, 1000);

http://nodejs.org/
https://www.npmjs.com/

Diffusion | 165

3. Use Node.js to run your publishing client from the command line.

node publisher.js

Results

The publisher updates the value of the foo/counter topic every second. You can watch the topic value
being updated by subscribing to the topic.

• You can use the example subscribing client from Start subscribing with JavaScript on page 160 to
subscribe to foo/counter and output the value on a web page.

Example

The completed publisher.js file contains the following code:

var diffusion = require('diffusion');

diffusion.connect({
 host : 'hostname',
 principal : 'control-user',
 credentials : 'password'
}).then(function(session) {
 console.log('Connected!');

 var count = 0;

 // Create a topic with a default value of 0.
 session.topics.add('foo/counter', count);

 // Start updating the topic every second
 setInterval(function() {
 session.topics.update('foo/counter', ++count);
 }, 1000);
});

What to do next
Now that you have the outline of a publisher, you can use it to publish your own data instead of a
counter.

Apple
The Apple SDK is provided for iOS, OS X/macOS, and tvOS. It can be used with Xcode 7 and later.

Get the Apple SDK for iOS:

Download the SDK from the following URL:

http://download.pushtechnology.com/clients/5.9.4/apple/diffusion-
iphoneos-5.9.4.zip

The SDK file is also located in your Diffusion server installation:

diffusion_directory/clients/apple/diffusion-iphoneos-5.9.4.zip

http://download.pushtechnology.com/clients/5.9.4/apple/diffusion-iphoneos-5.9.4.zip
http://download.pushtechnology.com/clients/5.9.4/apple/diffusion-iphoneos-5.9.4.zip

Diffusion | 166

Get the Apple SDK for OS X/macOS:

Download the SDK from the following URL:

http://download.pushtechnology.com/clients/5.9.4/apple/diffusion-
macosx-5.9.4.zip

The SDK file is also located in your Diffusion server installation:

diffusion_directory/clients/apple/diffusion-macosx-5.9.4.zip

Get the Apple SDK for tvOS:

Download the SDK from the following URL:

http://download.pushtechnology.com/clients/5.9.4/apple/diffusion-
appletvos-5.9.4.zip

The SDK file is also located in your Diffusion server installation:

diffusion_directory/clients/apple/diffusion-appletvos-5.9.4.zip

Capabilities

To see the full list of capabilities supported by the Apple API, see Feature support in the Diffusion
Unified API on page 46.

Support

Table 25: Supported platforms and transport protocols for the client libraries

Platform Minimum supported versions Supported transport protocols

Apple for iOS Development
environment

Xcode 7
(iOS 9.0
SDK)

Runtime support

Deployment
target: iOS
7.0 or later

Device
architectures:
armv7,
armv7s,
arm64

Simulator
architectures:
i386,
x86_64

WebSocket

Apple for OS X/macOS Development
environment

WebSocket

http://download.pushtechnology.com/clients/5.9.4/apple/diffusion-macosx-5.9.4.zip
http://download.pushtechnology.com/clients/5.9.4/apple/diffusion-macosx-5.9.4.zip
http://download.pushtechnology.com/clients/5.9.4/apple/diffusion-appletvos-5.9.4.zip
http://download.pushtechnology.com/clients/5.9.4/apple/diffusion-appletvos-5.9.4.zip

Diffusion | 167

Platform Minimum supported versions Supported transport protocols
Xcode
7 (OS X
10.11 SDK)

Runtime support

Deployment
target: OS
X 10.9 or
later

Device
architectures:
x86_64

Apple for tvOS Development
environment

Xcode 7
(tvOS 9.0
SDK)

Runtime support

Deployment
target:
tvOS 9.0 or
later

Device
architectures:
arm64

Simulator
architectures:
x86_64

WebSocket

Resources

• Objective-C examples for the Apple API.
• Apple Unified API documentation

Using

Applications in background state

Apple applications can be sent to the background. When this happens your
application is notified by the applicationDidEnterBackground callback.
Applications go into background state before being suspended.

Applications can be sent to the background or suspended at any time. We
recommend that your Diffusion app saves its state – in particular, any topic
subscriptions – as this state changes.

When your Diffusion app is sent to the background, we recommend the client
closes its session with the Diffusion server. When the Diffusion app returns to the
foreground, it can open a new client session with the Diffusion server and use the
saved state to restore topic subscriptions.

https://github.com/pushtechnology/diffusion-examples/tree/master/apple
http://docs.pushtechnology.com/docs/5.9.4/apple/index.html

Diffusion | 168

For more information, see the Apple App Life Cycle documentation and Strategies for
Handling App State Transitions.

Consider using push notifications to deliver data to your users when your client
application is in background state.

Regular expressions

The Apple client uses a different regular expression engine to the Diffusion server.
Some regular expressions in topic selectors are evaluated on the client and others
on the Diffusion server. It is possible that topic selectors that include complex
or advanced regular expressions can behave differently on the client and on the
Diffusion server.

For more information, see Regular expressions on page 66.

Start subscribing with iOS
Create an Objective-C iOS client within minutes that connects to the Diffusion server. This example
creates a client that prints the value of a topic to the console when the topic is updated.

Before you begin

To complete this example, you need Apple's Xcode installed on your development system and a
Diffusion server.

You also require either a named user that has a role with the select_topic and read_topic permissions
or that anonymous client connections are assigned a role with the select_topic and read_topic
permissions. For example, the “CLIENT” role. For more information about roles and permissions, see
Role-based authorization on page 127.

About this task
This example steps through the lines of code required to subscribe to a topic and was created using
Xcode version 7.1 and the Diffusion dynamically linked framework targeted at iOS 8.

Skip to the full example.

Procedure

1. Get the Diffusion Apple SDK for iOS.
The diffusion-iphoneos-version.zip file is located in the clients directory of your
Diffusion installation.
This example uses the iOS framework provided in diffusion-iphoneos-version.zip.
Frameworks are also available for OS X/macOS-targeted development in diffusion-
macosx-version.zip and tvOS-targeted development in diffusion-
tvos-version.zip.

2. Extract the contents of the diffusion-iphoneos-version.zip file to your preferred
location for third-party SDKs for use within Xcode.
For example, ~/Documents/code/SDKs/diffusion-iphoneos-version.

3. Create a new project in Xcode.
a) From the File menu, select New > Project...

The Choose a template for your new project wizard opens.
b) Select iOS > Application on the left.
c) Select Single View Application on the right and click Next.

Xcode prompts you to Choose options for your new project.
d) Configure your project appropriately for your requirements.

Select Objective-C as the Language.

https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/TheAppLifeCycle/TheAppLifeCycle.html#//apple_ref/doc/uid/TP40007072-CH2-SW1
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/StrategiesforHandlingAppStateTransitions/StrategiesforHandlingAppStateTransitions.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/StrategiesforHandlingAppStateTransitions/StrategiesforHandlingAppStateTransitions.html

Diffusion | 169

For example, use the following values:

• Product Name: TestClient
• Language: Objective-C
• Devices: Universal

For this example, it is not necessary to select Use Core Data, Include Unit Tests, or Include UI
Tests.

e) Click the Next button.
Xcode prompts you to select a destination directory for your new project.

f) Select a target directory.
For example: ~/Documents/code/

g) Click the Create button.
Xcode creates a new project that contains the required files.

4. Import the Diffusion framework, Diffusion.framework, into Xcode.
a) From the View menu, select Navigators > Show Project Navigator
b) Select the root node of the project in the Project Navigator in the left sidebar.

The project editor opens in the main panel.
c) In the project editor, click on the project name at the top left and select Targets > TestClient.

The target editor opens in the main panel.
d) In the target editor, select the General tab.
e) Expand the Embedded Binaries section and click the + icon (Add Items).

The Choose items to add wizard opens.
f) Click the Add Other... button.
g) Navigate to the location of the expanded Diffusion.framework SDK for iOS8 and click

Open.
Xcode prompts you to choose options for adding these files.

h) Select the options you require for adding the files and click Finish

Unless you require different options, use the following values:

• Do not select Copy items if needed.
• Select Create groups.

5. Make the framework visible to your code.
Despite the framework now appearing under both Embedded Binaries and Linked Frameworks
and Libraries, it is still necessary to tell Xcode where the header files for the framework can be
found.
a) Select the Build Settings tab in the target editor.

You can also do this at project level if you prefer and depending on your requirements.
b) Click on All to display All Build Settings.
c) Expand the Search Paths section.
d) Expand the Framework Search Paths section and click the + icon next to Release.

Add the absolute path to the iOS8 directory that contains Diffusion.framework.

Note: Ensure that you use the path to the directory, not to the
Diffusion.framework file. Linking to the file causes a silent failure.

6. Import the Diffusion module into the ViewController.h file.

@import Diffusion;

7. In the ViewController.m file, create a connection to the Diffusion server.
a) Define a long-lived session property.

Diffusion | 170

Add the session instance to the class extension to maintain a strong reference to the session
instance:

@interface ViewController ()
@property PTDiffusionSession* session;
@end

The strong reference ensures that once the session instance has been opened, it remains open.
b) Open a session connection to the Diffusion server.

This example opens the session when the view controller loads.

- (void)viewDidLoad {
 [super viewDidLoad];

 NSLog(@"Connecting...");

 // Connect anonymously.
 // Replace 'hostname' with that of your server.
 [PTDiffusionSession openWithURL:[NSURL
 URLWithString:@"ws://hostname"]
 completionHandler:^(PTDiffusionSession
 *session, NSError *error)
 {
 if (!session) {
 NSLog(@"Failed to open session: %@", error);
 return;
 }

 // At this point we now have a connected session.
 NSLog(@"Connected.");

 // Maintain strong reference to session instance.
 self.session = session;
 }];
}

Replace hostname with the host name of your Diffusion server.
8. Subscribe to a topic.

a) In the ViewController.h file, conform to the topic stream delegate protocol.

In this example, the single view controller class handles topic stream update messages.

@interface ViewController : UIViewController
 <PTDiffusionTopicStreamDelegate>

b) In the ViewController.h file, create a UILabel control.

Add a label to your user interface and bind it to an outlet in the view controller:

@property(nonatomic) IBOutlet UILabel *counterLabel;

This label is used to display the value of the topic as it updates.
c) In the ViewController.m file, implement the topic stream update method.

This is a required method in the topic stream delegate protocol.

-(void)diffusionStream:(PTDiffusionStream *)stream
 didUpdateTopicPath:(NSString *)topicPath
 content:(PTDiffusionContent *)content
 context:(PTDiffusionUpdateContext *)context {

Diffusion | 171

 // Interpret the received content's data as a string.
 NSString *counterString = [[NSString alloc]
 initWithData:content.data

 encoding:NSUTF8StringEncoding];

 // Diffusion sends messages to delegates on the main
 dispatch queue so it's
 // safe to update the user interface here.
 self.counterLabel.text = counterString;
}

d) In the ViewController.h file, within the session's completionHandler callback,
register with the Topics feature as the fallback topic stream handler.

[session.topics addFallbackTopicStreamWithDelegate:self];

e) Next, request that the Diffusion server subscribe your session to the foo/counter topic.

 [session.topics subscribeWithTopicSelectorExpression:@"foo/
counter"

 completionHandler:^(NSError *error)
 {
 if (error) {
 NSLog(@"Subscribe request failed. Error: %@",
 error);
 } else {
 NSLog(@"Subscribe request succeeded.");
 }
 }];

9. Build and Run.

Results

The client app updates the label every time the value of the foo/counter topic is updated. You can
update the value of the foo/counter topic by creating a publishing client to update the topic. To create
and publish to the foo/counter topic, you require a user with the modify_topic and update_topic
permissions. For more information, see Start publishing with OS X/macOS on page 173.

Full example

The completed view controller implementation for the subscribing client contains the following
code.

ViewController.h:

@import UIKit;

@interface ViewController : UIViewController
 <PTDiffusionTopicStreamDelegate>
@property(nonatomic) IBOutlet UILabel *counterLabel;
@end

ViewController.m:

#import "ViewController.h"

@interface ViewController ()
@property PTDiffusionSession* session;
@end

Diffusion | 172

@implementation ViewController

- (void)viewDidLoad {
 [super viewDidLoad];

 NSLog(@"Connecting...");

 // Connect anonymously.
 // Replace 'hostname' with that of your server.
 [PTDiffusionSession openWithURL:[NSURL
 URLWithString:@"ws://hostname"]
 completionHandler:^(PTDiffusionSession *session,
 NSError *error)
 {
 if (!session) {
 NSLog(@"Failed to open session: %@", error);
 return;
 }

 // At this point we now have a connected session.
 NSLog(@"Connected.");

 // Maintain strong reference to session instance.
 self.session = session;

 // Register self as the fallback handler for topic
 updates.
 [session.topics addFallbackTopicStreamWithDelegate:self];

 NSLog(@"Subscribing...");
 [session.topics
 subscribeWithTopicSelectorExpression:@"foo/counter"

 completionHandler:^(NSError *error)
 {
 if (error) {
 NSLog(@"Subscribe request failed. Error: %@",
 error);
 } else {
 NSLog(@"Subscribe request succeeded.");
 }
 }];
 }];
}

-(void)diffusionStream:(PTDiffusionStream *)stream
 didUpdateTopicPath:(NSString *)topicPath
 content:(PTDiffusionContent *)content
 context:(PTDiffusionUpdateContext *)context {
 // Interpret the received content's data as a string.
 NSString *counterString = [[NSString alloc]
 initWithData:content.data

 encoding:NSUTF8StringEncoding];

 // Diffusion sends messages to delegates on the main dispatch
 queue so it's
 // safe to update the user interface here.
 self.counterLabel.text = counterString;
}

Diffusion | 173

@end

Start publishing with OS X/macOS
Create an OS X/macOS client that publishes data through topics on the Diffusion server.

Before you begin

To complete this example, you need Apple's Xcode installed on your development system and a
Diffusion server.

You also require a named user that has a role with the modify_topic and update_topic permissions.
For example, the “TOPIC_CONTROL” role. For more information about roles and permissions, see
Role-based authorization on page 127.

About this task
This example steps through the lines of code required to create and publish to a topic and was created
using Xcode version 7.1 and the Diffusion dynamically linked framework targeted at OS X/macOS.

Skip to the full example.

Procedure

1. Get the Diffusion Apple SDK for OS X/macOS.
The diffusion-macosx-version.zip file is located in the clients directory of your
Diffusion installation.
This example uses the OS X/macOS framework provided in diffusion-
macosx-version.zip. Frameworks are also available for iOS-targeted development in
diffusion-iphoneos-version.zip and tvOS-targeted development in diffusion-
tvos-version.zip.

2. Extract the contents of the diffusion-macosx-version.zip file to your preferred location
for third-party SDKs for use within Xcode.
For example, ~/Documents/code/SDKs/diffusion-macosx-version.

3. Create a new project in Xcode.
a) From the File menu, select New > Project...

The Choose a template for your new project wizard opens.
b) Select OS X > Application on the left.
c) Select Command Line Tool on the right and click Next.

Xcode prompts you to Choose options for your new project.
d) Configure your project appropriately for your requirements.

Select Objective-C as the Language.

For example, use the following values:

• Product Name: CounterPublisher
• Language: Objective-C

e) Click the Next button.
Xcode prompts you to select a destination directory for your new project.

f) Select a target directory.
For example: ~/Documents/code/

g) Click the Create button.
Xcode creates a new project that contains the required files.

4. Link to the Diffusion framework.

Diffusion | 174

For more information, see the Xcode documentation http://help.apple.com/xcode/mac/8.1/#/
dev51a648b07.

5. Create a CounterPublisher.h file.
a) Bring up the context menu for the root node of the project in the Project Navigator in the left

sidebar.
Select New File

b) In the dialog that opens, select Header File
c) Name the header file CounterPublisher.h and click Create.

6. Import the Foundation module into the CounterPublisher.h file.

@import Foundation;

7. Define the CounterPublisher interface in the CounterPublisher.h file.

@interface CounterPublisher : NSObject

-(void)startWithURL:(NSURL *)url;

@end

8. Create a CounterPublisher.m file.
a) Bring up the context menu for the root node of the project in the Project Navigator in the left

sidebar.
Select New File

b) In the dialog that opens, select Objective-C File
c) Name the file CounterPublisher.m and click Create.

9. In the CounterPublisher.m file, import the required modules and set up properties and
variables.
a) Import Diffusion and CounterPublisher.h

#import "CounterPublisher.h"
@import Diffusion;

b) Define a long-lived session property.
Add the session instance to the class extension to maintain a strong reference to the session
instance:

@interface CounterPublisher ()
@property(nonatomic) PTDiffusionSession* session;
@end

The strong reference ensures that once the session instance has been opened, it remains open.
c) Declare an integer _counter to hold the value to publish to the topic.

@implementation CounterPublisher {
 NSUInteger _counter;
}

d) Define the topic path of the topic to create and publish to.

static NSString *const _TopicPath = @"foo/counter";

10.In the CounterPublisher.m file, create a method that starts the session with the Diffusion
server.

http://help.apple.com/xcode/mac/8.1/#/dev51a648b07
http://help.apple.com/xcode/mac/8.1/#/dev51a648b07

Diffusion | 175

a) Call the method startWithURL and give it a signature that matches that defined in
CounterPublisher.h

-(void)startWithURL:(NSURL *)url {

}

b) Inside the method, define the security principal and credentials that the client uses to connect.

PTDiffusionCredentials *credentials =
 [[PTDiffusionCredentials alloc]
 initWithPassword:@"password"];
PTDiffusionSessionConfiguration *sessionConfiguration =
 [[PTDiffusionSessionConfiguration alloc]
 initWithPrincipal:@"principal"

 credentials:credentials];

Replace principal and password with the username and password to connect to the Diffusion
server with. This user must have sufficient permissions to create and update the topic, for
example, by being assigned the “TOPIC_CONTROL” role.

c) Open a session on the Diffusion server.

 [PTDiffusionSession openWithURL:url
 configuration:sessionConfiguration
 completionHandler:^(PTDiffusionSession
 *session, NSError *error)
 {
 if (!session) {
 NSLog(@"Failed to open session: %@", error);
 return;
 }

 // At this point we now have a connected session.
 NSLog(@"Connected.");

 // Maintain strong reference to session instance.
 self.session = session;

 // Next step

 }];

11.Create a topic.
After connecting a session and creating a strong reference to it, use session.topicControl to
create a topic:

// Send request to add topic for publishing to.
 [session.topicControl addWithTopicPath:_TopicPath

 type:PTDiffusionTopicType_SingleValue
 value:nil
 completionHandler:^(NSError *error)
 {
 if (error) {
 NSLog(@"Failed to add topic: %@", error);
 return;
 }

 // Next step

Diffusion | 176

 }];

12.Update the topic.
a) After successfully creating the topic, call the updateCounter method:

[self updateCounter];

b) At the top-level of the CounterPublisher.m file, define the updateCounter method:

-(void)updateCounter {
 // Get the updater to be used for non-exclusive topic
 updates.
 PTDiffusionTopicUpdater *updater =
 self.session.topicUpdateControl.updater;

 // Format string content for the update.
 NSString *string = [NSString stringWithFormat:@"%lu",
 (unsigned long)_counter++];
 NSData *data = [string
 dataUsingEncoding:NSUTF8StringEncoding];
 PTDiffusionContent *content = [[PTDiffusionContent alloc]
 initWithData:data];

 // Send request to update topic.
 NSLog(@"Updating: %@", string);
 [updater updateWithTopicPath:_TopicPath
 value:content
 completionHandler:^(NSError *error)
 {
 if (error) {
 NSLog(@"Failed to update topic: %@", error);
 }
 }];

 // Schedule another update in one second's time.
 __weak CounterPublisher *const weakSelf = self;
 dispatch_after(dispatch_time(DISPATCH_TIME_NOW,(int64_t)(1.0
 * NSEC_PER_SEC)),
 dispatch_get_main_queue(), ^
 {
 [weakSelf updateCounter];
 });
}

This method recursively calls itself via a weak reference to self.
13.In the main.m, add the code needed to run your publishing client from the command line:

a) Import the Foundation module and the CounterPublisher.h file.

@import Foundation;
#import "CounterPublisher.h"

b) In a main method, create a CounterPublisher and call its startWithURL method:

int main(int argc, const char * argv[]) {
 @autoreleasepool {
 CounterPublisher *const publisher = [CounterPublisher
 new];
 NSURL *const url = [NSURL
 URLWithString:@"wss://hostname"];
 [publisher startWithURL:url];

Diffusion | 177

 // Run in an infinite Loop.
 [[NSRunLoop currentRunLoop] run];
 }
 return 0;
}

Replace hostname with the host name of your Diffusion server.
14.Build and Run.

Results

The client publishes a value to the foo/counter topic every second. You can subscribe to the foo/
counter topic by creating a client to subscribe to the topic. For more information, see Start subscribing
with iOS on page 168.

Full example

The completed implementation of the publishing client files contain the following code:

main.m:

@import Foundation;
#import "CounterPublisher.h"

/**
 Wrapper around the counter publisher example class demonstrating
 how it can
 be launched as a command line tool.
 */
int main(int argc, const char * argv[]) {
 @autoreleasepool {
 CounterPublisher *const publisher = [CounterPublisher
 new];
 NSURL *const url = [NSURL
 URLWithString:@"wss://hostname"];
 [publisher startWithURL:url];

 // Run, Infinite Loop.
 [[NSRunLoop currentRunLoop] run];
 }
 return 0;
}

CounterPublisher.h:

@import Foundation;

@interface CounterPublisher : NSObject

-(void)startWithURL:(NSURL *)url;

@end

CounterPublisher.m:

@import Diffusion;

@interface CounterPublisher ()
@property(nonatomic) PTDiffusionSession* session;

Diffusion | 178

@end

@implementation CounterPublisher {
 NSUInteger _counter;
}

@synthesize session = _session;

static NSString *const _TopicPath = @"foo/counter";

-(void)startWithURL:(NSURL *)url {
 NSLog(@"Connecting...");

 // Connect with control client credentials.
 PTDiffusionCredentials *credentials =
 [[PTDiffusionCredentials alloc]
 initWithPassword:@"password"];
 PTDiffusionSessionConfiguration *sessionConfiguration =
 [[PTDiffusionSessionConfiguration alloc]
 initWithPrincipal:@"principal"

 credentials:credentials];

 [PTDiffusionSession openWithURL:url
 configuration:sessionConfiguration
 completionHandler:^(PTDiffusionSession *session,
 NSError *error)
 {
 if (!session) {
 NSLog(@"Failed to open session: %@", error);
 return;
 }

 // At this point we now have a connected session.
 NSLog(@"Connected.");

 // Maintain strong reference to session instance.
 self.session = session;

 // Send request to add topic for publishing to.
 [session.topicControl addWithTopicPath:_TopicPath

 type:PTDiffusionTopicType_SingleValue
 value:nil
 completionHandler:^(NSError *error)
 {
 if (error) {
 NSLog(@"Failed to add topic: %@", error);
 return;
 }

 // At this point we now have a topic.
 [self updateCounter];
 }];
 }];
}

-(void)updateCounter {
 // Get the updater to be used for non-exclusive topic updates.
 PTDiffusionTopicUpdater *updater =
 self.session.topicUpdateControl.updater;

 // Format string content for the update.

Diffusion | 179

 NSString *string = [NSString stringWithFormat:@"%lu",
 (unsigned long)_counter++];
 NSData *data = [string
 dataUsingEncoding:NSUTF8StringEncoding];
 PTDiffusionContent *content = [[PTDiffusionContent alloc]
 initWithData:data];

 // Send request to update topic.
 NSLog(@"Updating: %@", string);
 [updater updateWithTopicPath:_TopicPath
 value:content
 completionHandler:^(NSError *error)
 {
 if (error) {
 NSLog(@"Failed to update topic: %@", error);
 }
 }];

 // Schedule another update in one second's time.
 __weak CounterPublisher *const weakSelf = self;
 dispatch_after(dispatch_time(DISPATCH_TIME_NOW,(int64_t)(1.0 *
 NSEC_PER_SEC)),
 dispatch_get_main_queue(), ^
 {
 [weakSelf updateCounter];
 });
}

@end

Android
The Android API is bundled in a JAR file and is supported on Android KitKat and later.

Get the Android SDK as a JAR:

Download the JAR from the following URL:

http://download.pushtechnology.com/clients/5.9.4/android/diffusion-
android-5.9.4.jar

The JAR file is also located in your Diffusion server installation:

diffusion_directory/clients/android/diffusion-android-5.9.4.jar

Capabilities

To see the full list of capabilities supported by the Android API, see Feature support in the Diffusion
Unified API on page 46.

Support

Table 26: Supported platforms and transport protocols for the client libraries

Platform Minimum supported versions Supported transport protocols

Android API 19 / v4.4 / KitKat WebSocket

http://download.pushtechnology.com/clients/5.9.4/android/diffusion-android-5.9.4.jar
http://download.pushtechnology.com/clients/5.9.4/android/diffusion-android-5.9.4.jar

Diffusion | 180

Platform Minimum supported versions Supported transport protocols
Note: Push Technology
provides only best-
effort support for
Jelly Bean (API 16-18,
v4.1-4.3).

HTTP (polling)

DEPRECATED: DPT

DEPRECATED: HTTP (Full
duplex)

Resources

• Java examples for the Android API.
• Android Unified API documentation

Using

Considerations and capabilities that are specific to the Android Unified API

Diffusion connections
Ensure that you use the asynchronous open() method with a callback. Using the
synchronous open() method might open a connection on the same thread as the UI
and cause a runtime exception. However, the synchronous open() method can be
used in any thread that is not the UI thread.

Applications in background state

Android applications can be sent to the background and their activity stopped. When
this happens your application is notified by the onStop() callback of the Android
Activity class. An application's activity can be stopped when the user switches to
another application, starts a new activity from within the application, or receives a
phone call.

When your application's activity is stopped, we recommend that it saves its state
locally – in particular, any topic subscriptions it has made – and closes its client
session with the Diffusion server. When the Diffusion app returns to the foreground,
open a new client session with the Diffusion server and use the saved state to restore
topic subscriptions.

For more information, see the Android Activity Lifecycle documentation and Stopping
and Restarting an Activity.

Consider using push notifications to deliver data to your users when your client
application is in background state. For more information, see Push notification
networks on page 120.

Writing good callbacks
The Android client library invokes callbacks using a thread from Diffusion thread
pool. Callbacks for a particular session are called in order, one at a time. Consider the
following when writing callbacks:

• Do not sleep or call blocking operations in a callback. If you do so, other pending
callbacks for the session are delayed. If you must call a blocking operation,
schedule it in a separate application thread.

• You can use the full Diffusion API to make other requests to the server. If you
want to make many requests based on a single callback notification, be aware
that Diffusion client flow control is managed differently in callback threads.
Less throttling is applied and it is easier to overflow the servers by issuing many
thousands of requests. If you have a lot of requests to make, it is better to
schedule the work in an application thread.

https://github.com/pushtechnology/diffusion-examples/tree/master/java
http://docs.pushtechnology.com/docs/5.9.4/android/index.html
https://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle
https://developer.android.com/training/basics/activity-lifecycle/stopping.html
https://developer.android.com/training/basics/activity-lifecycle/stopping.html

Diffusion | 181

Regular expressions
The Android client uses the same regular expression engine to the Diffusion server.
Some regular expressions in topic selectors are evaluated on the client and others
on the Diffusion server. There is no difference in how these regular expressions are
evaluated in the Android client.

Start subscribing with Android
Create an Android client application within minutes that connects to the Diffusion server. This example
creates a client that prints the value of a topic to the console when the topic is updated.

Before you begin

To complete this example, you need Android Studio installed on your development system and a
Diffusion server.

You also require that anonymous client connections are assigned a role with the select_topic and
read_topic permissions. For example, the “CLIENT” role. For more information about roles and
permissions, see Role-based authorization on page 127.

About this task
This example steps through the lines of code required to subscribe to a topic. The full code example is
provided after the steps.

Procedure

1. Set up a project in Android Studio that uses the Diffusion Unified API.
a) Create a new project using API Level 21 or later.
b) Copy the diffusion-android-x.x.x.jar into the libs folder of your project.
c) Open the Dependency window in the project's module settings and add diffusion-

android-x.x.x.jar as a file dependency.
2. In your project's AndroidManifest.xml file set the INTERNET permission.

<uses-permission android:name="android.permission.INTERNET"/>

This permission is required to use the Diffusion API.
3. Open your project's MainActivity.java file.

This file is where you develop the code to interact with the Diffusion server.

The empty MainActivity.java file contains the following boilerplate code:

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if
 it is present.

Diffusion | 182

 getMenuInflater().inflate(R.menu.menu_main, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 // Handle action bar item clicks here. The action bar will
 // automatically handle clicks on the Home/Up button, so
 long
 // as you specify a parent activity in AndroidManifest.xml.
 int id = item.getItemId();

 //noinspection SimplifiableIfStatement
 if (id == R.id.action_settings) {
 return true;
 }

 return super.onOptionsItemSelected(item);
 }
}

4. Import the following packages and classes:

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.Menu;
import android.view.MenuItem;

import com.pushtechnology.diffusion.client.Diffusion;
import com.pushtechnology.diffusion.client.callbacks.ErrorReason;
import com.pushtechnology.diffusion.client.content.Content;
import com.pushtechnology.diffusion.client.features.Topics;
import
 com.pushtechnology.diffusion.client.features.Topics.TopicStream;
import com.pushtechnology.diffusion.client.session.Session;
import com.pushtechnology.diffusion.client.session.SessionFactory;
import com.pushtechnology.diffusion.client.types.UpdateContext;

public class MainActivity extends AppCompatActivity {

}

5. Create a TopicStreamLogcat static inner class that extends TopicStream.Default.

Inside the inner class, override the onTopicUpdate to print any topic updates received by your
Android client to the log console.

 private static class TopicStreamLogcat extends
 TopicStream.Default {
 @Override
 public void onTopicUpdate(String topic, Content content,
 UpdateContext context) {

 Log.i("Topic Stream", topic + ": " +
 content.asString());
 }
 }

6. Create a SessionHandler inner class that implements SessionFactory.OpenCallback.

Diffusion | 183

This inner class will contain the code that interacts with the Diffusion server.

 private class SessionHandler implements
 SessionFactory.OpenCallback {
 private Session session = null;

 @Override
 public void onOpened(Session session) {

 }

 @Override
 public void onError(ErrorReason errorReason) {

 }

 public void close() {
 if (session != null) {
 session.close();
 }
 }
 }

7. In the onOpened method, create the code required to subscribe to the foo/counter topic.
a) Get the Topics feature.

 // Get the Topics feature to subscribe to topics
 final Topics topics = session.feature(Topics.class);

b) Add an instance of TopicStreamLogcat as the topic stream for the foo/counter topic.

 // Add a new topic stream for 'foo/counter'
 topics.addTopicStream(">foo/counter", new
 TopicStreamLogcat());

c) Subscribe to the foo/counter topic.

 // Subscribe to the topic 'foo/counter'
 topics.subscribe("foo/counter", new
 Topics.CompletionCallback.Default());

8. In the MainActivity class, declare an instance of session handler.

private SessionHandler sessionHandler = null;

9. Override the onCreate method of the MainActivity class to open the session with the
Diffusion server.

Note: Ensure that you use the asynchronous open() method with a callback. Using the
synchronous open() method might open a connection on the same thread as the UI and
cause a runtime exception. However, the synchronous open() method can be used in any
thread that is not the UI thread.

 if (sessionHandler == null) {
 sessionHandler = new SessionHandler();

 // Connect anonymously
 // Replace 'host' with your hostname
 Diffusion.sessions().open("ws://host:port",
 sessionHandler);
 }

Diffusion | 184

You can connect securely, using :

 Diffusion.sessions().open("wss://host:port", sessionHandler);

Or you can connect with a principal and credentials if that principal is assigned a role with the
select_topic and read_topic permissions:

Diffusion.sessions().principal("principal").password("password").open("wss://host:port",
 sessionHandler);

Replace the host, port, principal, and password values with your own information.
10.Override the onDestroy method of the MainActivity class to close the session with the

Diffusion server.

 if (sessionHandler != null) {
 sessionHandler.close();
 sessionHandler = null;
 }
 super.onDestroy();

11.Compile and run your client.

Results

The client outputs the value to the log console every time the value of the foo/counter topic is
updated. You can update the value of the foo/counter topic by creating a publishing client to update
the topic. To create and publish to the foo/counter topic, you require a user with the modify_topic and
update_topic permissions. For more information, see Start publishing with Android on page 186.

Full example

The completed MainActivity class contains the following code:

package com.pushtechnology.demo.subscribe;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.Menu;
import android.view.MenuItem;

import com.pushtechnology.diffusion.client.Diffusion;
import com.pushtechnology.diffusion.client.callbacks.ErrorReason;
import com.pushtechnology.diffusion.client.content.Content;
import com.pushtechnology.diffusion.client.features.Topics;
import
 com.pushtechnology.diffusion.client.features.Topics.TopicStream;
import com.pushtechnology.diffusion.client.session.Session;
import com.pushtechnology.diffusion.client.session.SessionFactory;
import com.pushtechnology.diffusion.client.types.UpdateContext;

public class MainActivity extends AppCompatActivity {
 /**
 * A topic stream that prints updates to logcat.
 */
 private static class TopicStreamLogcat extends
 TopicStream.Default {
 @Override
 public void onTopicUpdate(String topic, Content content,

Diffusion | 185

 UpdateContext context) {

 Log.i("Topic Stream", topic + ": " +
 content.asString());
 }
 }

 /**
 * A session handler that maintains the diffusion session.
 */
 private class SessionHandler implements
 SessionFactory.OpenCallback {
 private Session session = null;

 @Override
 public void onOpened(Session session) {
 this.session = session;

 // Get the Topics feature to subscribe to topics
 final Topics topics = session.feature(Topics.class);

 // Add a new topic stream for 'foo/counter'
 topics.addTopicStream(">foo/counter", new
 TopicStreamLogcat());

 // Subscribe to the topic 'foo/counter'
 topics.subscribe("foo/counter",
 new Topics.CompletionCallback.Default());
 }

 @Override
 public void onError(ErrorReason errorReason) {
 Log.e("Diffusion", "Failed to open session because: "
 + errorReason.toString());
 session = null;
 }

 public void close() {
 if (session != null) {
 session.close();
 }
 }
 }

 private SessionHandler sessionHandler = null;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 if (sessionHandler == null) {
 sessionHandler = new SessionHandler();

 // Connect anonymously
 // Replace 'host' with your hostname
 Diffusion.sessions().open("ws://host:port",
 sessionHandler);
 }
 }

 @Override
 protected void onDestroy() {

Diffusion | 186

 if (sessionHandler != null) {
 sessionHandler.close();
 sessionHandler = null;
 }
 super.onDestroy();
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if
 it is present.
 getMenuInflater().inflate(R.menu.menu_main, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 // Handle action bar item clicks here. The action bar will
 // automatically handle clicks on the Home/Up button, so
 long
 // as you specify a parent activity in
 AndroidManifest.xml.
 int id = item.getItemId();

 //noinspection SimplifiableIfStatement
 if (id == R.id.action_settings) {
 return true;
 }

 return super.onOptionsItemSelected(item);
 }
}

Related information
http://developer.android.com/training/index.html

Start publishing with Android
Create an Android client that publishes data through topics on the Diffusion server.

Before you begin

To complete this example, you need Android Studio installed on your development system and a
Diffusion server.

You also require a named user that has a role with the modify_topic and update_topic permissions.
For example, the “ADMINISTRATOR” role. For more information about roles and permissions, see Role-
based authorization on page 127.

About this task
This example steps through the lines of code required to publish to a topic. The full code example is
provided after the steps.

Procedure

1. Set up a project in Android Studio that uses the Diffusion Unified API.
a) Create a new project using API Level 21 or later.
b) Copy the diffusion-android-x.x.x.jar into the libs folder of your project.

http://developer.android.com/training/index.html

Diffusion | 187

c) Open the Dependency window in the project's module settings and add diffusion-
android-x.x.x.jar as a file dependency.

2. In your project's AndroidManifest.xml file set the INTERNET permission.

<uses-permission android:name="android.permission.INTERNET"/>

This permission is required to use the Diffusion API.
3. Open your project's MainActivity.java file.

This file is where you develop the code to interact with the Diffusion server.

The empty MainActivity.java file contains the following boilerplate code:

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if
 it is present.
 getMenuInflater().inflate(R.menu.menu_main, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 // Handle action bar item clicks here. The action bar will
 // automatically handle clicks on the Home/Up button, so
 long
 // as you specify a parent activity in AndroidManifest.xml.
 int id = item.getItemId();

 //noinspection SimplifiableIfStatement
 if (id == R.id.action_settings) {
 return true;
 }

 return super.onOptionsItemSelected(item);
 }
}

4. Import the following packages and classes:

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.Menu;
import android.view.MenuItem;

import com.pushtechnology.diffusion.client.Diffusion;
import com.pushtechnology.diffusion.client.callbacks.ErrorReason;
import com.pushtechnology.diffusion.client.features.Topics;

Diffusion | 188

import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl.AddCallback;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicUpdateControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicUpdateControl.Updater.UpdateCallback;
import com.pushtechnology.diffusion.client.session.Session;
import com.pushtechnology.diffusion.client.session.SessionFactory;
import
 com.pushtechnology.diffusion.client.topics.details.TopicType;

import java.util.concurrent.CountDownLatch;

public class MainActivity extends AppCompatActivity {

}

The com.pushtechnology.diffusion.client packages contain the classes to use to
interact with the Diffusion server. The java.util.concurrent.CountDownLatch class
is used to simplify this example by making it more synchronous. However, the Diffusion API is
designed to be most powerful when used asynchronously.

5. Create a SessionHandler inner class that implements SessionFactory.OpenCallback.
This inner class will contain the code that interacts with the Diffusion server.

 private class SessionHandler implements
 SessionFactory.OpenCallback {
 private Session session = null;

 @Override
 public void onOpened(Session session) {

 }

 @Override
 public void onError(ErrorReason errorReason) {

 }

 public void close() {
 if (session != null) {
 session.close();
 }
 }
 }

6. In the onOpened method, create the code required to create the foo/counter topic and update it
with an incrementing value.
a) Get the TopicControl and TopicUpdateControl features.

 // Get the TopicControl and TopicUpdateControl feature
 final TopicControl topicControl =
 session.feature(TopicControl.class);

 final TopicUpdateControl updateControl = session
 .feature(TopicUpdateControl.class);

Diffusion | 189

b) Use the TopicControl feature to create the foo/counter topic.

 final CountDownLatch waitForStart = new CountDownLatch(1);

 // Create a single value topic 'foo/counter'
 topicControl.addTopic("foo/counter",
 TopicType.SINGLE_VALUE,
 new AddCallback.Default() {
 @Override
 public void onTopicAdded(String
 topicPath) {
 waitForStart.countDown();
 }
 });

 // Wait for the onTopicAdded() callback.
 try {
 waitForStart.await();
 } catch (InterruptedException e) {
 Log.e("Diffusion",
 e.getStackTrace().toString());
 }

This example uses a CountDownLatch to wait until the topic is successfully added. This
approach is used to simplify the example and is not recommended for production clients.

c) Loop once a second updating the foo/counter topic with an incrementing count from 0 to 1000.
Use the updateControl.updater().update() method to update a topic without
locking that topic.

 // Update the topic
 for (int i = 0; i < 1000; ++i) {

 // Use the non-exclusive updater to update the
 topic without locking
 // it
 updateControl.updater().update("foo/counter",
 Integer.toString(i),
 new UpdateCallback.Default());

 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 Log.e("Diffusion",
 e.getStackTrace().toString());
 }
 }

7. In the MainActivity class, declare an instance of session handler.

private SessionHandler sessionHandler = null;

8. Override the onCreate method of the MainActivity class to open the session with the
Diffusion server.

Note: Ensure that you use the asynchronous open() method with a callback. Using the
synchronous open() method might open a connection on the same thread as the UI and
cause a runtime exception. However, the synchronous open() method can be used in any
thread that is not the UI thread.

 if (sessionHandler == null) {
 sessionHandler = new SessionHandler();

Diffusion | 190

 // Connect using a principal with 'modify_topic' and
 'update_topic'
 // permissions
 Diffusion.sessions().principal("principal")
 .password("password")
 .open("ws://host:port",
 sessionHandler);
 }

Or you can connect securely, using :

Diffusion.sessions().principal("principal").password("password").open("wss://host:port",
 sessionHandler);

Replace the host, port, principal, and password values with your own information.
9. Override the onDestroy method of the MainActivity class to close the session with the

Diffusion server.

 if (sessionHandler != null) {
 sessionHandler.close();
 sessionHandler = null;
 }
 super.onDestroy();

10.Compile and run your client.

Results

The client publishes a value to the foo/counter topic every second. You can subscribe to the foo/
counter topic by creating a client to subscribe to the topic. For more information, see Start subscribing
with Android on page 181.

Full example

The completed MainActivity class contains the following code:

package com.pushtechnology.demo.update;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.Menu;
import android.view.MenuItem;

import com.pushtechnology.diffusion.client.Diffusion;
import com.pushtechnology.diffusion.client.callbacks.ErrorReason;
import com.pushtechnology.diffusion.client.features.Topics;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl.AddCallback;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicUpdateControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicUpdateControl.Updater.UpdateCallback;
import com.pushtechnology.diffusion.client.session.Session;
import com.pushtechnology.diffusion.client.session.SessionFactory;
import
 com.pushtechnology.diffusion.client.topics.details.TopicType;

Diffusion | 191

import java.util.concurrent.CountDownLatch;

public class MainActivity extends AppCompatActivity {

 /**
 * A session handler that maintains the diffusion session.
 */
 private class SessionHandler implements
 SessionFactory.OpenCallback {
 private Session session = null;

 @Override
 public void onOpened(Session session) {
 this.session = session;

 // Get the TopicControl and TopicUpdateControl feature
 final TopicControl topicControl =
 session.feature(TopicControl.class);

 final TopicUpdateControl updateControl = session
 .feature(TopicUpdateControl.class);

 final CountDownLatch waitForStart = new
 CountDownLatch(1);

 // Create a single value topic 'foo/counter'
 topicControl.addTopic("foo/counter",
 TopicType.SINGLE_VALUE,
 new AddCallback.Default() {
 @Override
 public void onTopicAdded(String topicPath)
 {
 waitForStart.countDown();
 }
 });

 // Wait for the onTopicAdded() callback.
 try {
 waitForStart.await();
 } catch (InterruptedException e) {
 Log.e("Diffusion", e.getStackTrace().toString());
 }

 // Update the topic
 for (int i = 0; i < 1000; ++i) {

 // Use the non-exclusive updater to update the
 topic without locking
 // it
 updateControl.updater().update("foo/counter",
 Integer.toString(i),
 new UpdateCallback.Default());

 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 Log.e("Diffusion",
 e.getStackTrace().toString());
 }
 }
 }

 @Override

Diffusion | 192

 public void onError(ErrorReason errorReason) {
 Log.e("Diffusion", "Failed to open session because: "
 + errorReason.toString());
 session = null;
 }

 public void close() {
 if (session != null) {
 session.close();
 }
 }
 }

 private SessionHandler sessionHandler = null;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 if (sessionHandler == null) {
 sessionHandler = new SessionHandler();

 // Connect using a principal with 'modify_topic' and
 'update_topic'
 // permissions
 Diffusion.sessions().principal("principal")
 .password("password")
 .open("ws://host:port",
 sessionHandler);
 }
 }

 @Override
 protected void onDestroy() {
 if (sessionHandler != null) {
 sessionHandler.close();
 sessionHandler = null;
 }
 super.onDestroy();
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if
 it is present.
 getMenuInflater().inflate(R.menu.menu_main, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 // Handle action bar item clicks here. The action bar will
 // automatically handle clicks on the Home/Up button, so
 long
 // as you specify a parent activity in
 AndroidManifest.xml.
 int id = item.getItemId();

 //noinspection SimplifiableIfStatement
 if (id == R.id.action_settings) {
 return true;
 }

Diffusion | 193

 return super.onOptionsItemSelected(item);
 }
}

Related information
http://developer.android.com/training/index.html

Java
The Java Unified API is provided as a JAR file for Java 7 and later.

Get the Java client libraries using Maven™:

Add the Push Technology public repository to your pom.xml file:

<dependency>
 <groupId>com.pushtechnology.diffusion</groupId>
 <artifactId>diffusion-client</artifactId>
 <version>version</version>
</dependency>

Declare the following dependency in your pom.xml file:

<dependency>
 <groupId>com.pushtechnology.diffusion</groupId>
 <artifactId>diffusion-api</artifactId>
 <version>version</version>
</dependency>

Get the Java client libraries using Gradle:

Add the Push Technology public repository to your build.gradle file:

repositories { maven { url "http://download.pushtechnology.com/
maven/" } }

Declare the following dependency in your build.gradle file:

compile 'com.pushtechnology.diffusion:diffusion-client:5.9.0'

Get the Java client libraries:

Download the JAR file from the following URL:

http://download.pushtechnology.com/clients/5.9.4/java/diffusion-
client.jar

The ZIP file is also located in your Diffusion server installation:

diffusion_directory/clients/java/diffusion-client-5.9.4.jar

Capabilities

To see the full list of capabilities supported by the Java API, see Feature support in the Diffusion
Unified API on page 46.

http://developer.android.com/training/index.html
http://download.pushtechnology.com/clients/5.9.4/java/diffusion-client.jar
http://download.pushtechnology.com/clients/5.9.4/java/diffusion-client.jar

Diffusion | 194

Support

Table 27: Supported platforms and transport protocols for the client libraries

Platform Minimum supported versions Supported transport protocols

Java 8 (recommended), 7 (supported)

Note: We recommend
that you run your
clients on the JDK
rather than the JRE.

WebSocket

HTTP (Polling)

DEPRECATED: DPT

DEPRECATED: HTTP (Full
duplex)

Resources

• Examples for the Java API.
• Java Unified API documentation

Using

Certificates

Diffusion Java clients use certificates to validate the security of their connection to
the Diffusion server. The client validates the certificate sent by the Diffusion server
against the set of certificates trusted by the .

If the certificate sent by the Diffusion server cannot be
validated against any certificates in the set trusted by the ,
you receive an exception that contains the following message:
sun.security.provider.certpath.SunCertPathBuilderException:
unable to find valid certification path to requested target.

Diffusion is authenticated using the certificates provided by your certificate authority
for the domain you host the Diffusion server on.

To ensure that the certificate is validated, set up a trust store for the client and add
the appropriate certificates to that trust store:

1. Obtain the appropriate intermediate certificate from the certificate authority.
2. Use keytool to create a trust store for your client that includes this certificate.

For more information, see https://docs.oracle.com/cd/E19509-01/820-3503/ggfka/
index.html

3. Use system properties to add the trust store to your client.

For example:

System.setProperty("javax.net.ssl.trustStore",
 "truststore_name");

Or at the command line:

-Djavax.net.ssl.keyStore=path_to_truststore

Writing good callbacks

https://github.com/pushtechnology/diffusion-examples/tree/master/java
http://docs.pushtechnology.com/docs/5.9.4/java/index.html
https://docs.oracle.com/cd/E19509-01/820-3503/ggfka/index.html
https://docs.oracle.com/cd/E19509-01/820-3503/ggfka/index.html

Diffusion | 195

The Java client library invokes callbacks using a thread from Diffusion thread pool.
Callbacks for a particular session are called in order, one at a time. Consider the
following when writing callbacks:

• Do not sleep or call blocking operations in a callback. If you do so, other pending
callbacks for the session are delayed. If you must call a blocking operation,
schedule it in a separate application thread.

• You can use the full Diffusion API to make other requests to the server. If you
want to make many requests based on a single callback notification, be aware
that Diffusion client flow control is managed differently in callback threads.
Less throttling is applied and it is easier to overflow the servers by issuing many
thousands of requests. If you have a lot of requests to make, it is better to
schedule the work in an application thread.

Regular expressions

The Java client uses the same regular expression engine to the Diffusion server. Some
regular expressions in topic selectors are evaluated on the client and others on the
Diffusion server. There is no difference in how these regular expressions are evaluated
in the Java client.

Start subscribing with Java
Create a Java client within minutes that connects to the Diffusion server. This example creates a client
that prints the value of a topic to the console when the topic is updated.

Before you begin

To complete this example, you need a Diffusion server.

You also require either a named user that has a role with the select_topic and read_topic permissions
or that anonymous client connections are assigned a role with the select_topic and read_topic
permissions. For example, the “CLIENT” role. For more information about roles and permissions, see
Role-based authorization on page 127.

About this task
This example steps through the lines of code required to subscribe to a topic. The full code example is
provided after the steps.

Procedure

1. Include the client jar file on the build classpath of your Java client. You can use one of the following
methods:

• You can use Maven to declare the dependency. First add the Push Technology public repository
to your pom.xml file:

<repositories>
 <repository>
 <id>push-repository</id>
 <url>https://download.pushtechnology.com/maven/</url>
 </repository>
</repositories>

Next declare the following dependency in your pom.xml file:

<dependency>
 <groupId>com.pushtechnology.diffusion</groupId>
 <artifactId>diffusion-client</artifactId>
 <version>version</version>

Diffusion | 196

</dependency>

Where version is the Diffusion version, for example 5.9.4.
• If you are not using Maven, you can include the diffusion-client-version.jar file that

is located in the clients/java directory of your Diffusion server installation.

A diffusion-api-version.jar is also provided. This file contains only the development
interfaces without any client library capabilities and can be used for developing and compiling
your Java clients. However, to run your Diffusion Java client you must use the diffusion-
client-version.jar file.

2. Create a client class that imports the following packages and classes:

import com.pushtechnology.diffusion.client.Diffusion;
import com.pushtechnology.diffusion.client.content.Content;
import com.pushtechnology.diffusion.client.features.Topics;
import
 com.pushtechnology.diffusion.client.features.Topics.ValueStream;
import com.pushtechnology.diffusion.client.session.Session;
import
 com.pushtechnology.diffusion.client.topics.details.TopicSpecification;

public class SubscribingClient {

}

3. Create a main method for the client.

public class SubscribingClient {
 public static void main(String ... arguments) throws Exception
 {

 }
}

4. In the main method, connect to the Diffusion server.

 // Connect anonymously
 // Replace 'host' with your hostname
 final Session session =
 Diffusion.sessions().open("ws://host:port");

Or you can connect securely, using :

 final Session session =
 Diffusion.sessions().open("ws://host:port");

Or you can connect with a principal and credentials if that principal is assigned a role with the
read_topic permission:

final Session session = Diffusion.sessions().principal("principal")
 .password("password").open("ws://host:port");

Replace the host, port, principal, and password values with your own information.
5. Next, in the main method, get the Topics feature.

 // Get the Topics feature to subscribe to topics
 final Topics topics = session.feature(Topics.class);

Diffusion | 197

The Topics feature enables a client to subscribe to a topic or fetch its state. For more information,
see .

6. Within the SubscribingClient class, create an inner class that extends
ValueStream.Default and overrides the onValue method.
This inner class defines the behavior that occurs when a topic that the client subscribes to is
updated. In this example, the value stream prints the topic name and the value of the update to the
console.

 private static class ValueStreamPrintLn extends
 ValueStream.Default<Content> {
 @Override
 public void onValue(
 String topicPath,
 TopicSpecification specification,
 Content oldValue,
 Content newValue) {
 System.out.println(topicPath + ": " +
 newValue.asString());
 }
 }

7. Back in the main method of the SubscribingClient class, use the addStream method to
associate an instance of the value stream that you created with the topic you want to subscribe to.

 // Add a new stream for 'foo/counter'
 topics.addStream(">foo/counter", Content.class, new
 ValueStreamPrintLn());

8. Next, use the subscribe method to subscribe to the topic foo/counter.

 // Subscribe to the topic 'foo/counter'
 topics.subscribe("foo/counter", new
 Topics.CompletionCallback.Default());

9. Use a Thread.sleep() to hold the client open for a minute while the updates are received and
output.

 // Wait for a minute while the stream prints updates
 Thread.sleep(60000);

10.Compile and run your client.
Ensure that the diffusion-client-version.jar file is included in your compiled client or
on its classpath.
We recommend that you run your client using the JDK rather than the JRE. The JDK includes
additional diagnostic capabilities that might be useful.

Results

The client outputs the value to the console every time the value of the foo/counter topic is updated.
You can update the value of the foo/counter topic by creating a publishing client to update the
topic. To create and publish to the foo/counter topic, you require a user with the modify_topic and
update_topic permissions. For more information, see Start publishing with Java on page 199.

Full example

The completed SubscribingClient class contains the following code:

import com.pushtechnology.diffusion.client.Diffusion;

Diffusion | 198

import com.pushtechnology.diffusion.client.content.Content;
import com.pushtechnology.diffusion.client.features.Topics;
import
 com.pushtechnology.diffusion.client.features.Topics.ValueStream;
import com.pushtechnology.diffusion.client.session.Session;
import
 com.pushtechnology.diffusion.client.topics.details.TopicSpecification;

/**
 * A client that subscribes to the topic 'foo/counter.
 *
 * @author Push Technology Limited
 * @since 5.5
 */
public class SubscribingClient {

 /**
 * Main.
 */
 public static void main(String... arguments) throws Exception
 {

 // Connect anonymously
 // Replace 'host' with your hostname
 final Session session =
 Diffusion.sessions().open("ws://host:port");

 // Get the Topics feature to subscribe to topics
 final Topics topics = session.feature(Topics.class);

 // Add a new stream for 'foo/counter'
 topics.addStream(">foo/counter", Content.class, new
 ValueStreamPrintLn());

 // Subscribe to the topic 'foo/counter'
 topics.subscribe("foo/counter", new
 Topics.CompletionCallback.Default());

 // Wait for a minute while the stream prints updates
 Thread.sleep(60000);
 }

 /**
 * A topic stream that prints updates to the console.
 */
 private static class ValueStreamPrintLn extends
 ValueStream.Default<Content> {
 @Override
 public void onValue(
 String topicPath,
 TopicSpecification specification,
 Content oldValue,
 Content newValue) {
 System.out.println(topicPath + ": " +
 newValue.asString());
 }
 }
}

Diffusion | 199

Start publishing with Java
Create a Java client that publishes data through topics on the Diffusion server.

Before you begin

To complete this example, you need a Diffusion server and a development system with Java installed
on it.

You also require a named user that has a role with the modify_topic and update_topic permissions.
For example, the “ADMINISTRATOR” role. For more information about roles and permissions, see Role-
based authorization on page 127.

About this task
This example steps through the lines of code required to publish a single value to a topic. The full code
example is provided after the steps.

Procedure

1. Include the client jar file on the build classpath of your Java client. You can use one of the following
methods:

• You can use Maven to declare the dependency. First add the Push Technology public repository
to your pom.xml file:

<repositories>
 <repository>
 <id>push-repository</id>
 <url>https://download.pushtechnology.com/maven/</url>
 </repository>
</repositories>

Next declare the following dependency in your pom.xml file:

<dependency>
 <groupId>com.pushtechnology.diffusion</groupId>
 <artifactId>diffusion-client</artifactId>
 <version>version</version>
</dependency>

Where version is the Diffusion version, for example 5.9.4.
• If you are not using Maven, you can include the diffusion-client.jar file that is located

in the clients/java directory of your Diffusion server installation.
2. Create a PublishingClient class that imports the following packages and classes:

import com.pushtechnology.diffusion.client.Diffusion;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl.AddCallback;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicUpdateControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicUpdateControl.Updater.UpdateCallback;
import com.pushtechnology.diffusion.client.session.Session;
import
 com.pushtechnology.diffusion.client.topics.details.TopicType;

import java.util.concurrent.CountDownLatch;

Diffusion | 200

public final class PublishingClient {

}

The com.pushtechnology.diffusion.client packages contain the classes to use to
interact with the Diffusion server. The java.util.concurrent.CountDownLatch class
is used to simplify this example by making it more synchronous. However, the Diffusion API is
designed to be most powerful when used asynchronously.

3. Create a main method.

public final class PublishingClient {

 public static void main(String... arguments) throws
 InterruptedException {

 }
}

4. Inside the main method, connect to the Diffusion server.

 // Connect using a principal with 'modify_topic' and
 'update_topic'
 // permissions
 final Session session =
 Diffusion.sessions().principal("principal")
 .password("password").open("ws://host:port");

Or you can connect securely to the Diffusion server using :

.open("wss://host:port");

Replace the host, port, principal, and password values with your own information.
You can choose to connect anonymously if anonymous sessions are assigned the modify_topic and
update_topic permissions. However, we do not recommend that anonymous sessions are given
write access to data on the Diffusion server.

5. Next, in the main method, get the TopicControl and TopicUpdateControl features.

// Get the TopicControl and TopicUpdateControl feature
 TopicControl topicControl =
 session.feature(TopicControl.class);

 TopicUpdateControl updateControl = session
 .feature(TopicUpdateControl.class);

The TopicControl feature enables a client to create and delete topics. For more information, see .
The TopicUpdateControl feature enables a client to publish updates to a topic. For more
information, see .

6. Next, in the main method, use the TopicControl feature to create the foo/counter topic.

 final CountDownLatch waitForStart = new CountDownLatch(1);

 // Create a single value topic 'foo/counter'
 topicControl.addTopic(
 "foo/counter",
 TopicType.SINGLE_VALUE,
 new AddCallback.Default() {
 @Override

Diffusion | 201

 public void onTopicAdded(String topicPath) {
 waitForStart.countDown();
 }
 });

 // Wait for the onTopicAdded() callback.
 waitForStart.await();

This example uses a CountDownLatch to wait until the topic is successfully added. This
approach is used to simplify the example and is not recommended for production clients.

7. Next, in the main method, loop once a second updating the foo/counter topic with an
incrementing count from 0 to 1000.
Use the updateControl.updater().update() method to update a topic without locking
that topic.

 // Update the topic
 final UpdateCallback updateCallback = new
 UpdateCallback.Default();
 for (int i = 0; i < 1000; ++i) {

 // Use the non-exclusive updater to update the topic
 without locking it
 updateControl.updater().update(
 "foo/counter",
 Integer.toString(i),
 updateCallback);

 Thread.sleep(1000);
 }

8. Compile and run your client.
We recommend that you run your client using the JDK rather than the JRE. The JDK includes
additional diagnostic capabilities that might be useful.

Results

The client publishes a value to the foo/counter topic every second. You can subscribe to the foo/
counter topic by creating a client to subscribe to the topic. For more information, see Start subscribing
with Java on page 195.

Full example

The completed PublishingClient class contains the following code:

import com.pushtechnology.diffusion.client.Diffusion;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl.AddCallback;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicUpdateControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicUpdateControl.Updater.UpdateCallback;
import com.pushtechnology.diffusion.client.session.Session;
import
 com.pushtechnology.diffusion.client.topics.details.TopicType;

import java.util.concurrent.CountDownLatch;

public final class PublishingClient {

Diffusion | 202

 public static void main(String... arguments) throws
 InterruptedException {

 // Connect using a principal with 'modify_topic' and
 'update_topic'
 // permissions
 Session session =
 Diffusion.sessions().principal("principal")
 .password("password").open("ws://host:port");
import com.pushtechnology.diffusion.client.Diffusion;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl.AddCallback;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicUpdateControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicUpdateControl.Updater.UpdateCallback;
import com.pushtechnology.diffusion.client.session.Session;
import
 com.pushtechnology.diffusion.client.topics.details.TopicType;

import java.util.concurrent.CountDownLatch;

/**
 * A client that publishes an incrementing count to the topic
 'foo/counter'.
 *
 * @author Push Technology Limited
 * @since 5.5
 */
public final class PublishingClient {

 /**
 * Main.
 */
 public static void main(String... arguments) throws
 InterruptedException {

 // Connect using a principal with 'modify_topic' and
 'update_topic'
 // permissions
 final Session session =
 Diffusion.sessions().principal("principal")
 .password("password").open("ws://host:port");

 // Get the TopicControl and TopicUpdateControl feature
 final TopicControl topicControl =
 session.feature(TopicControl.class);

 final TopicUpdateControl updateControl =
 session.feature(TopicUpdateControl.class);

 final CountDownLatch waitForStart = new CountDownLatch(1);

 // Create a single value topic 'foo/counter'
 topicControl.addTopic(
 "foo/counter",
 TopicType.SINGLE_VALUE,
 new AddCallback.Default() {
 @Override
 public void onTopicAdded(String topicPath) {

Diffusion | 203

 waitForStart.countDown();
 }
 });

 // Wait for the onTopicAdded() callback.
 waitForStart.await();

 // Update the topic
 final UpdateCallback updateCallback = new
 UpdateCallback.Default();
 for (int i = 0; i < 1000; ++i) {

 // Use the non-exclusive updater to update the topic
 without locking it
 updateControl.updater().update(
 "foo/counter",
 Integer.toString(i),
 updateCallback);

 Thread.sleep(1000);
 }
 }
}

.NET
The .NET Unified API is provided as a DLL file compatible with .NET Framework 4.5 and above.

Get the .NET SDK from NuGet:

Use the following command in the NuGet Package Manager Console:

PM> Install-Package PushTechnology.UnifiedClientInterface

Get the .NET SDK:

Download the DLL file from the following URL:

http://download.pushtechnology.com/clients/5.9.4/dotnet/
PushTechnology.ClientInterface.dll

The .NET SDK also requires NLog:

http://download.pushtechnology.com/clients/5.9.4/dotnet/NLog.dll

You can download these XML files to get IntelliSense documentation:

http://download.pushtechnology.com/clients/5.9.4/dotnet/
PushTechnology.ClientInterface.XML

http://download.pushtechnology.com/clients/5.9.4/dotnet/NLog.xml

These files are is also located in your Diffusion server installation:

diffusion_directory/clients/dotnet

http://download.pushtechnology.com/clients/5.9.4/dotnet/PushTechnology.ClientInterface.dll
http://download.pushtechnology.com/clients/5.9.4/dotnet/PushTechnology.ClientInterface.dll
http://download.pushtechnology.com/clients/5.9.4/dotnet/NLog.dll
http://download.pushtechnology.com/clients/5.9.4/dotnet/PushTechnology.ClientInterface.XML
http://download.pushtechnology.com/clients/5.9.4/dotnet/PushTechnology.ClientInterface.XML
http://download.pushtechnology.com/clients/5.9.4/dotnet/NLog.xml

Diffusion | 204

Capabilities

To see the full list of capabilities supported by the .NET API, see Feature support in the Diffusion
Unified API on page 46.

Support

Table 28: Supported platforms and transport protocols for the client libraries

Platform Minimum supported versions Supported transport protocols

.NET 4.5 WebSocket

DEPRECATED: DPT

DEPRECATED: HTTP (Full
duplex)

Resources

• Examples for the .NET API.
• .NET Unified API documentation

Using

Certificates

Diffusion .NET clients use certificates to validate the security of their connection to
the Diffusion server. The client validates the certificate sent by the Diffusion server
against the set of certificates trusted by the .NET Framework.

If the certificate sent by the Diffusion server cannot be validated against any
certificates in the set trusted by the .NET Framework, you must set up a trust store for
the client and add the appropriate certificates to that trust store.

Diffusion is authenticated using the certificates provided by your certificate authority
for the domain you host the Diffusion server on.

1. Obtain the appropriate intermediate certificate from the certificate authority.
2. Use the Microsoft Management Console to import the certificate into the

Trusted Root Certification Authorities folder. For more information, see https://
msdn.microsoft.com/en-us/library/aa738659(v=vs.110).aspx

Writing good callbacks

The .NET client library invokes callbacks using a thread from Diffusion thread pool.
Callbacks for a particular session are called in order, one at a time. Consider the
following when writing callbacks:

• Do not sleep or call blocking operations in a callback. If you do so, other pending
callbacks for the session are delayed. If you must call a blocking operation,
schedule it in a separate application thread.

• You can use the full Diffusion API to make other requests to the server. If you
want to make many requests based on a single callback notification, be aware
that Diffusion client flow control is managed differently in callback threads.
Less throttling is applied and it is easier to overflow the servers by issuing many
thousands of requests. If you have a lot of requests to make, it is better to
schedule the work in an application thread.

Regular expressions

https://github.com/pushtechnology/diffusion-examples/tree/master/dotnet
http://docs.pushtechnology.com/docs/5.9.4/dotnet/uci/html/index.html
https://msdn.microsoft.com/en-us/library/aa738659(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/aa738659(v=vs.110).aspx

Diffusion | 205

The .NET client uses a different regular expression engine to the Diffusion server.
Some regular expressions in topic selectors are evaluated on the client and others
on the Diffusion server. It is possible that topic selectors that include complex
or advanced regular expressions can behave differently on the client and on the
Diffusion server.

For more information, see Regular expressions on page 66.

Start subscribing with .NET
Create a .NET client within minutes that connects to the Diffusion server. This example creates a client
that prints the value of a topic to the console when the topic is updated.

Before you begin

To complete this example, you need a Diffusion server.

You also require either a named user that has a role with the select_topic and read_topic permissions
or that anonymous client connections are assigned a role with the select_topic and read_topic
permissions. For example, the “CLIENT” role. For more information about roles and permissions, see
Role-based authorization on page 127.

About this task
This example steps through the lines of code required to subscribe to a topic. The full code example is
provided after the steps.

Procedure

1. Create a .NET project that references the following DLL file located in the clients/dotnet
directory of your .NET installation:

PushTechnology.ClientInterface.dll

The assembly contains the interfaces classes and interfaces that you use when
creating a control client.

The .NET assembly is also available through NuGet.

Use the following command in the NuGet Package Manager Console:

PM> Install-Package PushTechnology.UnifiedClientInterface

2. In your project, create a C# file that uses the following packages:

using System;
using System.Threading;
using PushTechnology.ClientInterface.Client.Callbacks;
using PushTechnology.ClientInterface.Client.Content;
using PushTechnology.ClientInterface.Client.Factories;
using PushTechnology.ClientInterface.Client.Features;
using PushTechnology.ClientInterface.Client.Features.Topics;
using PushTechnology.ClientInterface.Client.Topics.Details;

namespace PushTechnology.ClientInterface.GettingStarted {
 public sealed class SubscribingClient {

 }
}

3. Create a Main method.

 public sealed class SubscribingClient

Diffusion | 206

 {
 static void Main(string[] args) {

 }
 }
}

4. In the Main method, connect to the Diffusion server.

 static void Main(string[] args) {
 // Connect anonymously
 // Replace 'host' with your hostname
 var session =
 Diffusion.Sessions.Open("ws://host:port");
 }

Or you can connect securely, using :

 Session session =
 Diffusion.sessions().Open("ws://host:port");

Or you can connect with a principal and credentials if that principal is assigned a role with the
read_topic permission:

Session session = Diffusion.Sessions().Principal("principal")
 .Password("password").Open("ws://host:port");

Replace the host, port, principal, and password values with your own information.
5. Next, in the Main method, get the Topics feature.

 // Get the Topics feature to subscribe to topics
 var topics = session.GetTopicsFeature();

The Topics feature enables a client to subscribe to a topic or fetch its state.
6. Within the subscribing client class, create an inner class that implements IValueStream and

overrides the OnTopicUpdate method.
This inner class defines the behavior that occurs when a topic that the client subscribes to is
updated. In this example, the topic stream prints the topic name and the content of the update to
the console.

 /**
 * A topic stream that prints updates to the console.
 */
 internal sealed class CounterTopicStream :
 IValueStream<IContent> {
 /// <summary>
 /// Notification of stream being closed normally.
 /// </summary>
 public void OnClose() {
 Console.WriteLine("The subscrption stream is now
 closed.");
 }
 /// <summary>
 /// Notification of a contextual error related to this
 callback.
 /// </summary>
 /// <remarks>

Diffusion | 207

 /// Situations in which <code>OnError</code> is called
 include the session being closed, a communication
 /// timeout, or a problem with the provided parameters. No
 further calls will be made to this callback.
 /// </remarks>
 /// <param name="errorReason"></param>
 public void OnError(ErrorReason errorReason) {
 Console.WriteLine("An error has occured : {0}",
 errorReason);
 }
 /// <summary>
 /// Notification of a successful subscription.
 /// </summary>
 /// <param name="topicPath"></param>
 /// <param name="specification"></param>
 public void OnSubscription(string topicPath,
 ITopicSpecification specification) {
 Console.WriteLine("Client subscribed to {0} ",
 topicPath);
 }
 /// <summary>
 /// Notification of a successful unsubscription.
 /// </summary>
 /// <param name="topicPath">topic</param>
 /// <param name="specification">the specification of the
 topic</param>
 /// <param name="reason">error reason</param>
 public void OnUnsubscription(string topicPath,
 ITopicSpecification specification, TopicUnsubscribeReason reason)
 {
 Console.WriteLine("Client unsubscribed from {0} :
 {1}", topicPath, reason);
 }

 /// <summary>
 /// Topic update received.
 /// </summary>
 /// <param name="topicPath">topic</param>
 /// <param name="specification">the specification of the
 topic</param>
 /// <param name="oldValue">value prior to update</param>
 /// <param name="newValue">value after update</param>
 public void OnValue(string topicPath, ITopicSpecification
 specification, IContent oldValue, IContent newValue) {
 Console.WriteLine("New value of {0} is {1}",
 topicPath, newValue.AsString());
 }
 }

7. Back in the Main method of the subscribing client class, use the AddStream method to associate
an instance of the topic stream that you created with the topic you want to subscribe to.

 // Add a topic stream for 'foo/counter' and request
 subscription
 topics.AddStream(">foo/counter", new
 CounterTopicStream());

8. Next, use the Subscribe method to subscribe to the topic.
In this example, the topic subscribed to is foo/counter.

 // Subscribe to the topic 'foo/counter'

Diffusion | 208

 topics.Subscribe("foo/counter", new
 TopicsCompletionCallbackDefault());

9. Use a Thread.sleep() to hold the client open for a minute while the updates are received and
output.

 // Wait for a minute while the stream prints updates
 Thread.Sleep(TimeSpan.FromMinutes(1));

 session.Close();

10.Compile and run your client.

Results

The client outputs the value to the console every time the value of the foo/counter topic is updated.
You can update the value of the foo/counter topic by creating a publishing client to update the
topic. To create and publish to the foo/counter topic, you require a user with the modify_topic and
update_topic permissions. For more information, see Start publishing with .NET on page 210.

Full example

The completed subscribing client class contains the following code:

using System;
using System.Threading;
using PushTechnology.ClientInterface.Client.Callbacks;
using PushTechnology.ClientInterface.Client.Content;
using PushTechnology.ClientInterface.Client.Factories;
using PushTechnology.ClientInterface.Client.Features;
using PushTechnology.ClientInterface.Client.Features.Topics;
using PushTechnology.ClientInterface.Client.Topics.Details;

namespace PushTechnology.ClientInterface.GettingStarted {
 /// <summary>
 /// A client that subscribes to the topic 'foo/counter'.
 /// </summary>
 public sealed class SubscribingClient {
 public static void Main(string[] args) {

 // Connect anonymously
 var session = Diffusion.Sessions.Open("url");

 // Get the Topics feature to subscribe to topics
 var topics = session.GetTopicsFeature();

 // Add a topic stream for 'foo/counter' and request
 subscription
 topics.AddStream(">foo/counter", new
 CounterTopicStream());

 topics.Subscribe(">foo/counter", new
 TopicsCompletionCallbackDefault());

 //Stay connected for 1 minute
 Thread.Sleep(TimeSpan.FromMinutes(1));

 session.Close();
 }
 }

 /// <summary>

Diffusion | 209

 /// A simple IValueStream implementation.
 /// </summary>
 internal sealed class CounterTopicStream :
 IValueStream<IContent> {
 /// <summary>
 /// Notification of stream being closed normally.
 /// </summary>
 public void OnClose() {
 Console.WriteLine("The subscrption stream is now
 closed.");
 }
 /// <summary>
 /// Notification of a contextual error related to this
 callback.
 /// </summary>
 /// <remarks>
 /// Situations in which <code>OnError</code> is called
 include the session being closed, a communication
 /// timeout, or a problem with the provided parameters. No
 further calls will be made to this callback.
 /// </remarks>
 /// <param name="errorReason"></param>
 public void OnError(ErrorReason errorReason) {
 Console.WriteLine("An error has occured : {0}",
 errorReason);
 }
 /// <summary>
 /// Notification of a succesfull subscription.
 /// </summary>
 /// <param name="topicPath"></param>
 /// <param name="specification"></param>
 public void OnSubscription(string topicPath,
 ITopicSpecification specification) {
 Console.WriteLine("Client subscribed to {0} ",
 topicPath);
 }
 /// <summary>
 /// Notification of a succesfull unsubscription.
 /// </summary>
 /// <param name="topicPath">topic</param>
 /// <param name="specification">the specification of the
 topic</param>
 /// <param name="reason">error reason</param>
 public void OnUnsubscription(string topicPath,
 ITopicSpecification specification, TopicUnsubscribeReason
 reason) {
 Console.WriteLine("Client unsubscribed from {0} :
 {1}", topicPath, reason);
 }

 /// <summary>
 /// Topic update received.
 /// </summary>
 /// <param name="topicPath">topic</param>
 /// <param name="specification">the specification of the
 topic</param>
 /// <param name="oldValue">value prior to update</param>
 /// <param name="newValue">value after update</param>
 public void OnValue(string topicPath, ITopicSpecification
 specification, IContent oldValue, IContent newValue) {
 Console.WriteLine("New value of {0} is {1}",
 topicPath, newValue.AsString());
 }

Diffusion | 210

 }
}

Start publishing with .NET
Create a .NET client that publishes data through topics on the Diffusion server.

Before you begin

To complete this example, you need a Diffusion server and a development system with the .NET
Framework installed on it.

You also require either a named user that has a role with the modify_topic and update_topic
permissions. For example, the “ADMINISTRATOR” role. For more information about roles and
permissions, see Role-based authorization on page 127.

About this task
This example steps through the lines of code required to subscribe to a topic. The full code example is
provided after the steps.

Procedure

1. Create a .NET project that references the following DLL file located in the clients/dotnet
directory of your .NET installation:

PushTechnology.ClientInterface.dll

The assembly contains the interfaces classes and interfaces that you use when
creating a control client.

Use the following command in the NuGet Package Manager Console:

PM> Install-Package PushTechnology.UnifiedClientInterface

2. In your project, create a C# file that uses the following packages:

using System.Threading;
using PushTechnology.ClientInterface.Client.Callbacks;
using PushTechnology.ClientInterface.Client.Factories;
using
 PushTechnology.ClientInterface.Client.Features.Control.Topics;
using PushTechnology.ClientInterface.Client.Topics;

namespace PushTechnology.ClientInterface.GettingStarted {
 public sealed class PublishingClient
 {

 }
}

3. Create a Main method.

 public sealed class PublishingClient
 {
 public static void Main(string[] args) {

 }
 }

Diffusion | 211

4. Inside the Main method, connect to the Diffusion server.

 static void Main(string[] args) {
 // Connect using a principal with 'modify_topic' and
 'update_topic'
 // permissions
 var session =
 Diffusion.Sessions.Principal("principal").Password("password").Open("ws://host:port");
 }

Or you can connect securely to the Diffusion server using :

.Open("wss://host:port");

Replace the host, port, principal, and password values with your own information.
You can choose to connect anonymously if anonymous sessions are assigned the modify_topic and
update_topic permissions. However, we do not recommend that anonymous sessions are given
write access to data on the Diffusion server.

5. Next, in the Main method, get the TopicControl and TopicUpdateControl features.

 // Get the TopicControl and TopicUpdateControl feature
 var topicControl = session.GetTopicControlFeature();
 var updateControl =
 session.GetTopicUpdateControlFeature();

The TopicControl feature enables a client to create and delete topics. For more information, see .
The TopicUpdateControl feature enables a client to publish updates to a topic. For more
information, see .

6. Next, in the Main method, use the TopicControl feature to create the foo/counter topic.

 // Create a single-value topic 'foo/counter'
 var topic = "foo/counter";
 var addCallback = new AddCallback();
 topicControl.AddTopic(topic, TopicType.SINGLE_VALUE,
 addCallback);

 // Wait for the OnTopicAdded callback, or a failure
 if (!addCallback.Wait(TimeSpan.FromSeconds(5))) {
 Console.WriteLine("Callback not received within
 timeout.");
 return;
 } else if (addCallback.Error != null) {
 Console.WriteLine("Error : {0}",
 addCallback.Error.ToString());
 return;
 }

The AddTopic() method requires a callback, which you must create.
7. Implement an instance of ITopicControlAddCallback as an internal sealed class.

 internal sealed class AddCallback : ITopicControlAddCallback {
 private readonly AutoResetEvent resetEvent = new
 AutoResetEvent(false);

 /// <summary>
 /// Any error from this AddCallback will be stored here.
 /// </summary>
 public Exception Error {
 get;

Diffusion | 212

 private set;
 }

 public AddCallback() {
 Error = null;
 }

 /// <summary>
 /// This is called to notify that a call context was closed
 prematurely, typically due to a timeout or the
 /// session being closed. No further calls will be made for
 the context.
 /// </summary>
 public void OnDiscard() {
 Error = new Exception("This context was closed
 prematurely.");
 resetEvent.Set();
 }

 /// <summary>
 /// This is called to notify that the topic has been added.
 /// </summary>
 /// <param name="topicPath">The full path of the topic that
 was added.</param>
 public void OnTopicAdded(string topicPath) {
 resetEvent.Set();
 }

 /// <summary>
 /// This is called to notify that an attempt to add a topic
 has failed.
 /// </summary>
 /// <param name="topicPath">The topic path as supplied to
 the add request.</param>
 /// <param name="reason">The reason for failure.</param>
 public void OnTopicAddFailed(string topicPath,
 TopicAddFailReason reason) {
 Error = new Exception(string.Format("Failed to add
 topic {0} : '{1}", topicPath, reason));
 resetEvent.Set();
 }

 public bool Wait(TimeSpan timeout) {
 return resetEvent.WaitOne(timeout);
 }
 }

8. Back in the Main method, loop once a second updating the foo/counter topic with an
incrementing count.
Use the updateControl.Updater.Update() method to update a topic without locking that
topic.

 var updateCallback = new UpdateCallback(topic);
 for (var i = 0; i < 1000; ++i) {
 updateControl.Updater.Update(topic, i.ToString(),
 updateCallback);

 Thread.Sleep(1000);
 }

The Update() method requires a callback, which you must create.

Diffusion | 213

9. Implement an instance of ITopicUpdaterUpdateCallback as an internal sealed class.

 internal sealed class UpdateCallback :
 ITopicUpdaterUpdateCallback {
 private readonly string topic;

 /// <summary>
 /// Constructor.
 /// </summary>
 /// <param name="topic">The topic path</param>
 public UpdateCallback(string topic) {
 this.topic = topic;
 }

 /// <summary>
 /// Notification of a contextual error related to this
 callback.
 /// </summary>
 /// <remarks>
 /// Situations in which <code>OnError</code> is called
 include the session being closed, a
 /// communication timeout, or a problem with the provided
 parameters. No further calls will be made to this
 /// callback.
 /// </remarks>
 /// <param name="errorReason">A value representing the
 error</param>
 public void OnError(ErrorReason errorReason) {
 Console.WriteLine("Topic {0} could not be updated :
 {1}", topic, errorReason);
 }

 /// <summary>
 /// Indicates a successful update.
 /// </summary>
 public void OnSuccess() {
 Console.WriteLine("Topic {0} updated successfully.",
 topic);
 }
 }

10.Finally, in the Main method, close the session between your client and the Diffusion server.

 // Close session
 session.Close();

11.Compile and run your client.

Results

The client publishes a value to the foo/counter topic every second. You can subscribe to the foo/
counter topic by creating a client to subscribe to the topic. For more information, see Start subscribing
with .NET on page 205.

Full example

The completed publishing client class contains the following code:

using System;
using System.Threading;
using PushTechnology.ClientInterface.Client.Callbacks;

Diffusion | 214

using PushTechnology.ClientInterface.Client.Factories;
using
 PushTechnology.ClientInterface.Client.Features.Control.Topics;
using PushTechnology.ClientInterface.Client.Topics;

namespace PushTechnology.ClientInterface.GettingStarted {
 /// <summary>
 /// A client that publishes an incrementing count to the topic
 "foo/counter".
 /// </summary>
 public sealed class PublishingClient {
 public static void Main(string[] args) {
 // Connect using a principal with 'modify_topic' and
 'update_topic' permissions
 var session =
 Diffusion.Sessions.Principal("principal").Password("password").Open("url");

 // Get the TopicControl and TopicUpdateControl
 features
 var topicControl = session.GetTopicControlFeature();

 var updateControl =
 session.GetTopicUpdateControlFeature();

 // Create a single-value topic 'foo/counter'
 var topic = "foo/counter";
 var addCallback = new AddCallback();
 topicControl.AddTopic(topic, TopicType.SINGLE_VALUE,
 addCallback);

 // Wait for the OnTopicAdded callback, or a failure
 if (!addCallback.Wait(TimeSpan.FromSeconds(5)))
 {
 Console.WriteLine("Callback not received within
 timeout.");
 return;
 } else if (addCallback.Error != null) {
 Console.WriteLine("Error : {0}",
 addCallback.Error.ToString());
 return;
 }

 var updateCallback = new UpdateCallback(topic);
 // Update the topic for 16 minutes
 for (var i = 0; i < 1000; ++i) {
 updateControl.Updater.Update(topic, i.ToString(),
 updateCallback);

 Thread.Sleep(1000);
 }

 // Close session
 session.Close();
 }
 }

 /// <summary>
 /// Basic implementation of the ITopicControlAddCallback.
 /// </summary>
 internal sealed class AddCallback : ITopicControlAddCallback {
 private readonly AutoResetEvent resetEvent = new
 AutoResetEvent(false);

Diffusion | 215

 /// <summary>
 /// Any error from this AddCallback will be stored here.
 /// </summary>
 public Exception Error {
 get;
 private set;
 }

 public AddCallback() {
 Error = null;
 }

 /// <summary>
 /// This is called to notify that a call context was
 closed prematurely, typically due to a timeout or the
 /// session being closed. No further calls will be made
 for the context.
 /// </summary>
 public void OnDiscard() {
 Error = new Exception("This context was closed
 prematurely.");
 resetEvent.Set();
 }

 /// <summary>
 /// This is called to notify that the topic has been
 added.
 /// </summary>
 /// <param name="topicPath">The full path of the topic
 that was added.</param>
 public void OnTopicAdded(string topicPath) {
 resetEvent.Set();
 }

 /// <summary>
 /// This is called to notify that an attempt to add a
 topic has failed.
 /// </summary>
 /// <param name="topicPath">The topic path as supplied to
 the add request.</param>
 /// <param name="reason">The reason for failure.</param>
 public void OnTopicAddFailed(string topicPath,
 TopicAddFailReason reason) {
 Error = new Exception(string.Format("Failed to add
 topic {0} : '{1}", topicPath, reason));
 resetEvent.Set();
 }

 public bool Wait(TimeSpan timeout) {
 return resetEvent.WaitOne(timeout);
 }
 }

 /// <summary>
 /// A simple ITopicUpdaterUpdateCallback implementation that
 prints confimation of the actions completed.
 /// </summary>
 internal sealed class UpdateCallback :
 ITopicUpdaterUpdateCallback {
 private readonly string topic;

 /// <summary>
 /// Constructor.

Diffusion | 216

 /// </summary>
 /// <param name="topic">The topic path</param>
 public UpdateCallback(string topic) {
 this.topic = topic;
 }

 /// <summary>
 /// Notification of a contextual error related to this
 callback.
 /// </summary>
 /// <remarks>
 /// Situations in which <code>OnError</code> is called
 include the session being closed, a
 /// communication timeout, or a problem with the provided
 parameters. No further calls will be made to this
 /// callback.
 /// </remarks>
 /// <param name="errorReason">A value representing the
 error</param>
 public void OnError(ErrorReason errorReason) {
 Console.WriteLine("Topic {0} could not be updated :
 {1}", topic, errorReason);
 }

 /// <summary>
 /// Indicates a successful update.
 /// </summary>
 public void OnSuccess() {
 Console.WriteLine("Topic {0} updated successfully.",
 topic);
 }
 }
}

C
The C client libraries are provided for Linux, Windows, and OS X/macOS.

Get the C client libraries for Linux:

Download the ZIP file from the following URL:

http://download.pushtechnology.com/clients/5.9.4/c/diffusion-
c-5.9.4.zip

The ZIP file is also located in your Diffusion server installation:

diffusion_directory/clients/c/diffusion-c-5.9.4.zip

Get the C client libraries for Windows:

Download the ZIP file from the following URL:

http://download.pushtechnology.com/clients/5.9.4/c/diffusion-c-
windows-5.9.4.zip

http://download.pushtechnology.com/clients/5.9.4/c/diffusion-c-5.9.4.zip
http://download.pushtechnology.com/clients/5.9.4/c/diffusion-c-5.9.4.zip
http://download.pushtechnology.com/clients/5.9.4/c/diffusion-c-windows-5.9.4.zip
http://download.pushtechnology.com/clients/5.9.4/c/diffusion-c-windows-5.9.4.zip

Diffusion | 217

The ZIP file is also located in your Diffusion server installation:

diffusion_directory/clients/c/diffusion-c-windows-5.9.4.zip

Get the C client libraries for OS X/macOS:

Download the ZIP file from the following URL:

http://download.pushtechnology.com/clients/5.9.4/c/diffusion-c-
osx-5.9.4.zip

The ZIP file is also located in your Diffusion server installation:

diffusion_directory/clients/c/diffusion-c-osx-5.9.4.zip

Capabilities

To see the full list of capabilities supported by the C API, see Feature support in the Diffusion Unified
API on page 46.

Support

Table 29: Supported platforms and transport protocols for the client libraries

Platform Minimum supported versions Supported transport protocols

C for Linux Red Hat and CentOS, version 7.2
and later

Ensure that you use a C99-
capable compiler.

WebSocket

DEPRECATED: DPT

C for Windows Visual C Compiler 2013 or later,
Windows 7 or later

WebSocket

DEPRECATED: DPT

C for OS X/macOS For building using GCC, use
Xcode 7.1 or later

WebSocket

DEPRECATED: DPT

If you require libraries compiled on a different platform, this can be provided as an additional
service by our Consulting Services team. Contact support@pushtechnology.com to discuss your
requirements.

Resources

• Examples for the C API.
• C Unified API documentation

Using

On Linux

The C libraries are provided compiled for 64-bit Linux in the file diffusion-
c-version.zip. A dynamic library, libdiffusion.so, and a static library,
libdiffusion.a, are available. These libraries are supported on Red Hat and
CentOS version 6.5 and later.

http://download.pushtechnology.com/clients/5.9.4/c/diffusion-c-osx-5.9.4.zip
http://download.pushtechnology.com/clients/5.9.4/c/diffusion-c-osx-5.9.4.zip
https://github.com/pushtechnology/diffusion-examples/tree/master/c
http://docs.pushtechnology.com/docs/5.9.4/c/index.html

Diffusion | 218

To use the C Unified API on Linux ensure that the following dependencies are
available on your development system:

• Perl Compatible Regular Expressions (PCRE) library, version 8.3 or later

For more information, see http://pcre.org
• OpenSSL library, version 1.0.2a or later

For more information, see https://www.openssl.org

You can download these dependencies through your operating system's package
manager.

The C client library statically links to APR version 1.5 with APR-util. Ensure that you
set APR_DECLARE_STATIC and APU_DECLARE_STATIC before you use any APR
includes. You can set these values in the following ways:

• By including diffusion.h before any APR includes. The diffusion.h file
sets these values.

• As command-line flags

For more information, see http://apr.apache.org

On Windows

The C library is provided as a static library compiled for 32-bit and 64-bit Windows in
the file diffusion-c-windows-version.zip. This static library, uci.lib, is
compiled with Visual C Compiler 2013 (version 120), which is shipped by default with
Microsoft Visual Studio 2013. You must use this version of Visual C Compiler or later
and use Windows 7 or later. Earlier versions are not supported.

Other Windows compilers, such as Clang and GCC, are not supported.

When compiling with Visual C Compiler 2013, define /D WIN32 in the compiler
settings.

To use the C Unified API on Windows ensure that the following dependencies are
available on your development system:

• Perl Compatible Regular Expressions (PCRE) library, version 8.3 or later

For more information, see http://pcre.org
• OpenSSL library, version 1.0.2a or later

For more information, see https://www.openssl.org

We provide these dependencies in the diffusion-c-windows-version.zip
file.

The C client library statically links to APR version 1.5 with APR-util. Ensure that you
set APR_DECLARE_STATIC and APU_DECLARE_STATIC before you use any APR
includes. You can set these values in the following ways:

• By including diffusion.h before any APR includes. The diffusion.h file
sets these values.

• As command-line flags

For more information, see http://apr.apache.org

On OS X/macOS

The C library is provided as a static library, libdiffusion.a, compiled for 64-bit
OS X/macOS in the file diffusion-c-osx-version.zip.

To use the C Unified API on OS X/macOS ensure that the following dependencies are
available on your development system:

http://pcre.org
https://www.openssl.org
http://apr.apache.org
http://pcre.org
https://www.openssl.org
http://apr.apache.org

Diffusion | 219

• Perl Compatible Regular Expressions (PCRE) library, version 8.3 or later

For more information, see http://pcre.org

You can download this dependencies using brew.

The C client library statically links to APR version 1.5 with APR-util. Ensure that you
set APR_DECLARE_STATIC and APU_DECLARE_STATIC before you use any APR
includes. You can set these values in the following ways:

• By including diffusion.h before any APR includes. The diffusion.h file
sets these values.

• As command-line flags

For more information, see http://apr.apache.org

For building using GCC, use Xcode 7.1 or later, which includes Apple LLVM.

Defining the structure of record topic data using XML

Data on record topics can be structured using metadata. Other Diffusion APIs provide
builder methods you can use to define the metadata structure. The C Unified API uses
XML to define the structure of a record topic's metadata.

The following schema describes the structure of that XML:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" xmlns:xs="http://
www.w3.org/2001/XMLSchema">

 <xs:element name="field" type="field"/>

 <xs:element name="message" type="message"/>

 <xs:element name="record" type="record"/>

 <xs:complexType name="record">
 <xs:complexContent>
 <xs:extension base="node">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="record"/>
 <xs:element ref="field"/>
 </xs:choice>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="node">
 <xs:sequence/>
 <xs:attribute name="name" type="xs:string"
 use="required"/>
 <xs:attribute name="multiplicity" type="xs:string"/>
 </xs:complexType>

 <xs:complexType name="field">
 <xs:complexContent>
 <xs:extension base="node">
 <xs:sequence/>
 <xs:attribute name="type" type="dataType"
 use="required"/>
 <xs:attribute name="default" type="xs:string"/>
 <xs:attribute name="scale" type="xs:integer"/>

http://pcre.org
http://apr.apache.org

Diffusion | 220

 <xs:attribute name="allowsEmpty"
 type="xs:boolean"/>
 <xs:attribute name="customFieldHandlerClassName"
 type="xs:string"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="message">
 <xs:complexContent>
 <xs:extension base="record">
 <xs:sequence/>
 <xs:attribute name="topicDataType"
 type="topicDataType"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:simpleType name="dataType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="integerString"/>
 <xs:enumeration value="string"/>
 <xs:enumeration value="customString"/>
 <xs:enumeration value="decimalString"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="topicDataType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="record"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

Threading model

The C Unified API is not thread-safe. Session and their derived artifacts must belong
to a single thread or only be acted upon by a single thread at any time.

Internally, the C client creates threads for managing the connection to the Diffusion
server. All callbacks into user-defined code are synchronous and it usually the case
that these must execute as quickly as possible. If this code runs for a non-trivial
amount of time, ensure that it hands off work to your own threads.

It is safe to send messages while processing callbacks, as outbound messages are
queued and are sent as soon as possible.

Ensure that callbacks do not alter the session as this can lead to undefined behavior.
This includes calling functions such as session_close() from the session state
change callback.

Always call session_close() and session_free() from the same thread that
created the session with session_create() or session_create_async().
This allows the threads to be joined and reaped correctly, and is a requirement of the
APR library which the C Unified API relies on.

Regular expressions

The C client uses a different regular expression engine to the Diffusion server. Some
regular expressions in topic selectors are evaluated on the client and others on the
Diffusion server. It is possible that topic selectors that include complex or advanced
regular expressions can behave differently on the client and on the Diffusion server.

Diffusion | 221

For more information, see Regular expressions on page 66.

Start subscribing with C
Create a C client within minutes that connects to the Diffusion server. This example creates a client
that prints the value of a topic to the console when the topic is updated.

Before you begin
The C client libraries rely on a number of dependencies. Depending on which platform you are using
the C client libraries for, these dependencies might be included in the client library. If they are not
included in the client library, ensure that the dependencies are available on your development system.

For more information about dependencies on each supported platform, see C on page 216.

The C client library statically links to APR version 1.5 with APR-util. Ensure that you set
APR_DECLARE_STATIC and APU_DECLARE_STATIC before you use any APR includes. You can set
these values in the following ways:

• By including diffusion.h before any APR includes. The diffusion.h file sets these values.
• As command-line flags

For more information, see http://apr.apache.org

To complete this example, you need a Diffusion server.

You also require either a named user that has a role with the select_topic and read_topic permissions
or that anonymous client connections are assigned a role with the select_topic and read_topic
permissions. For example, the “CLIENT” role. For more information about roles and permissions, see
Role-based authorization on page 127.

About this task
This example steps through the lines of code required to subscribe to a topic. The full code example is
provided after the steps.

Procedure

1. Get the Diffusion C client library for your platform and extract the ZIP file.
The C client library is available in the clients/c directory of the Diffusion installation.

2. Create a C file called getting-started.c.
a) Include the following libraries:

#include <stdio.h>
#include <unistd.h>

#include "diffusion.h"
#include "args.h"

b) Create a main method:

int
main(int argc, char **argv)
{

}

3. Create a connection to the Diffusion server.
Inside the main method add the following lines:

 /*
 * Create a session

http://apr.apache.org

Diffusion | 222

 */
 DIFFUSION_ERROR_T error = { 0 };
 SESSION_T *session = NULL;
 // Edit this line to include the host and port of your
 Diffusion server
 session = session_create("ws://hostname:port", "user",
 credentials_create_password("password"), NULL, NULL, &error);
 if(session == NULL) {
 fprintf(stderr, "TEST: Failed to create session
\n");
 fprintf(stderr, "ERR : %s\n", error.message);
 return EXIT_FAILURE;
 } else {
 fprintf(stdout, "Connected\n");
 }

Where hostname is the name of the system hosting your Diffusion server, hostname is the name
the Diffusion server accepts client connections on, user is the name of a user with the permissions
required to subscribe to a topic, and password is the user's password.
The client logs the string “Connected” to the console if the connection is a success.

4. Subscribe to the topic foo/counter.
a) Above the main method, create a callback for when subscription occurs.

static int
on_subscribe(SESSION_T *session, void *context_data)
{
 printf("Subscribed to topic\n");
 return HANDLER_SUCCESS;
}

This callback prints a message to the console when the client subscribes to the foo/counter
topic.

b) Above the main method, create a callback for when an update is received.

static int
on_topic_message(SESSION_T *session, const TOPIC_MESSAGE_T *msg)
{
 printf("%.*s\n", (int)msg->payload->len, msg->payload-
>data);
 return HANDLER_SUCCESS;
}

This callback prints the value of the topic to the console every time the foo/counter topic is
updated.

c) In the main method, call the subscribe method.

 subscribe(session, (SUBSCRIPTION_PARAMS_T)
 { .topic_selector = ">foo/counter", .on_topic_message =
 on_topic_message, .on_subscribe = on_subscribe });

5. Set the client to wait for 5 minutes before closing.

 /*
 * Receive messages for 5 minutes.
 */
 sleep(300);

 session_close(session, NULL);
 session_free(session);

Diffusion | 223

 return EXIT_SUCCESS;

6. Build your C client.
a) Create a Makefile in the same directory as your C file.

An example Makefile is provided after the steps.
b) Ensure that your Makefile links to the include and lib directory of the Diffusion C library.

DIFFUSION_C_CLIENT_INCDIR = ../path-to-client/include
DIFFUSION_C_CLIENT_LIBDIR = ../path-to-client/lib

c) Run the make command to build the example.
The getting-started binary is created in the target/bin directory.

7. Run your C client from the command line.

Results

The client prints a the value to the console every time the value of the foo/counter topic is updated.
You can update the value of the foo/counter topic by creating a publishing client to update the
topic. To create and publish to the foo/counter topic, you require a user with the modify_topic and
update_topic permissions. For more information, see Start publishing with C on page 225.

Example

The completed getting-started.c file contains the following code:

#include <stdio.h>
#include <unistd.h>

#include "diffusion.h"
#include "args.h"

/*
 * When a subscribed message is received, this callback is
 invoked.
 */
static int
on_topic_message(SESSION_T *session, const TOPIC_MESSAGE_T *msg)
{
 printf("%.*s\n", (int)msg->payload->len, msg->payload-
>data);
 return HANDLER_SUCCESS;
}

/*
 * This callback is fired when Diffusion responds to say that a
 topic
 * subscription request has been received and processed.
 */
static int
on_subscribe(SESSION_T *session, void *context_data)
{
 printf("Subscribed to topic\n");
 return HANDLER_SUCCESS;
}

int
main(int argc, char **argv)
{

Diffusion | 224

 /*
 * Create a session
 */
 DIFFUSION_ERROR_T error = { 0 };
 SESSION_T *session = NULL;

 // Edit this line to include the host and port of your
 Diffusion server
 session = session_create("ws://hostname:port", "user",
 credentials_create_password("password"), NULL, NULL, &error);
 if(session == NULL) {
 fprintf(stderr, "TEST: Failed to create session
\n");
 fprintf(stderr, "ERR : %s\n", error.message);
 return EXIT_FAILURE;
 } else {
 fprintf(stdout, "Connected\n");
 }

 subscribe(session, (SUBSCRIPTION_PARAMS_T)
 { .topic_selector = ">foo/counter", .on_topic_message =
 on_topic_message, .on_subscribe = on_subscribe });

 /*
 * Receive messages for 5 minutes.
 */
 sleep(300);

 session_close(session, NULL);
 session_free(session);

 return EXIT_SUCCESS;
}

The Makefile contains the following code:

The following two variables must be set.
#
Directory containing the C client include files.
DIFFUSION_C_CLIENT_INCDIR = ../path-to-client/include
#
Directory containing libdiffusion.a
DIFFUSION_C_CLIENT_LIBDIR = ../path-to-client/lib

ifndef DIFFUSION_C_CLIENT_INCDIR
$(error DIFFUSION_C_CLIENT_INCDIR is not set)
endif

ifndef DIFFUSION_C_CLIENT_LIBDIR
$(error DIFFUSION_C_CLIENT_LIBDIR is not set)
endif

CC = gcc

Extra definitions from parent directory, if they exist.
-include ../makefile.defs

CFLAGS += -g -Wall -Werror -std=c99 -D_POSIX_C_SOURCE=200112L -
D_XOPEN_SOURCE=700 -c -I$(DIFFUSION_C_CLIENT_INCDIR)
LDFLAGS += $(LIBS) $(DIFFUSION_C_CLIENT_LIBDIR)/libdiffusion.a -
lpthread -lpcre -lssl -lcrypto

Diffusion | 225

ARFLAGS +=
SOURCES = getting-started.c

TARGETDIR = target
OBJDIR = $(TARGETDIR)/objs
BINDIR = $(TARGETDIR)/bin
OBJECTS = $(SOURCES:.c=.o)
TARGETS = getting-started

all: prepare $(TARGETS)
.PHONY: all

prepare:
 mkdir -p $(OBJDIR) $(BINDIR)

$(OBJDIR)/%.o: %.c
 $(CC) $(CFLAGS) -o $@ $<

getting-started: $(OBJDIR)/getting-started.o
 $(CC) $< $(LDFLAGS) -o $(BINDIR)/$@

clean:
 rm -rf $(TARGETS) $(OBJECTS) $(TARGETDIR) core a.out

Start publishing with C
Create a C client that publishes data through topics on the Diffusion server.

Before you begin
The C client libraries rely on a number of dependencies. Depending on which platform you are using
the C client libraries for, these dependencies might be included in the client library. If they are not
included in the client library, ensure that the dependencies are available on your development system.

For more information about dependencies on each supported platform, see C on page 216.

The C client library statically links to APR version 1.5 with APR-util. Ensure that you set
APR_DECLARE_STATIC and APU_DECLARE_STATIC before you use any APR includes. You can set
these values in the following ways:

• By including diffusion.h before any APR includes. The diffusion.h file sets these values.
• As command-line flags

For more information, see http://apr.apache.org

To complete this example, you need a Diffusion server and a development system with the .NET
Framework installed on it.

You also require either a named user that has a role with the modify_topic and update_topic
permissions. For example, the “ADMINISTRATOR” role. For more information about roles and
permissions, see Role-based authorization on page 127.

About this task
This example steps through the lines of code required to create and update a topic. The full code
example is provided after the steps.

Procedure

1. Get the Diffusion C client library for your platform and extract the ZIP file.
The C client library is available in the clients/c directory of the Diffusion installation.

2. Create a C file called getting-started-publisher.c.

http://apr.apache.org

Diffusion | 226

a) Include the following libraries:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include <apr.h>
#include <apr_thread_mutex.h>
#include <apr_thread_cond.h>

#include "diffusion.h"
#include "args.h"
#include "conversation.h"
#include "service/svc-update.h"

b) Declare an int value that and APR objects to use to manage threading:

int active = 0;

apr_pool_t *pool = NULL;
apr_thread_mutex_t *mutex = NULL;
apr_thread_cond_t *cond = NULL;

c) Create a main method:

int
main(int argc, char **argv)
{

}

d) Inside the maindefine a constant that is the topic name:

 const char *topic_name = "foo/counter";

e) Next, add the following lines to initialize the threading mechanism:

 apr_initialize();
 apr_pool_create(&pool, NULL);
 apr_thread_mutex_create(&mutex,
 APR_THREAD_MUTEX_UNNESTED, pool);
 apr_thread_cond_create(&, pool);

3. Create a connection to the Diffusion server.
Inside the main method add the following lines:

 /*
 * Create a session
 */
 DIFFUSION_ERROR_T error = { 0 };
 SESSION_T *session = NULL;
 // Edit this line to include the host and port of your
 Diffusion server
 session = session_create("ws://hostname:port", "user",
 credentials_create_password("password"), NULL, NULL, &error);
 if(session == NULL) {
 fprintf(stderr, "TEST: Failed to create session
\n");
 fprintf(stderr, "ERR : %s\n", error.message);
 return EXIT_FAILURE;
 } else {

Diffusion | 227

 fprintf(stdout, "Connected\n");
 }

Where hostname is the name of the system hosting your Diffusion server, hostname is the name
the Diffusion server accepts client connections on, user is the name of a user with the permissions
required to subscribe to a topic, and password is the user's password.
The client logs the string “Connected” to the console if the connection is a success.

4. Create the foo/counter topic.
a) Above the main method, create a callback for when the topic is added.

static int
on_topic_added(SESSION_T *session, const
 SVC_ADD_TOPIC_RESPONSE_T *response, void *context)
{
 printf("Added topic\n");
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

This callback prints a message to the console when the foo/counter topic is created.
b) Above the main method, create a callback for if the topic add fails.

static int
on_topic_add_failed(SESSION_T *session, const
 SVC_ADD_TOPIC_RESPONSE_T *response, void *context)
{
 printf("Failed to add topic (%d)\n", response-
>response_code);
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

This callback prints a message to the console if the client was unable to create the foo/counter
topic.

c) In the main method, define the topic details:

 const TOPIC_DETAILS_T *string_topic_details =
 create_topic_details_single_value(M_DATA_TYPE_STRING);

This defines the topic type as a single value topic of data type string.
d) Define the parameters for the add topic request:

 const ADD_TOPIC_PARAMS_T add_topic_params = {
 .topic_path = topic_name,
 .details = string_topic_details,
 .on_topic_added = on_topic_added,
 .on_topic_add_failed = on_topic_add_failed
 };

e) Within a locked thread, call the add_topic method:

 apr_thread_mutex_lock(mutex);
 add_topic(session, add_topic_params);
 apr_thread_cond_wait(cond, mutex);

Diffusion | 228

 apr_thread_mutex_unlock(mutex);

5. Register an update source.
a) Above the main method, create a callback for when the update source is registered.

static int
on_update_source_registered(SESSION_T *session,
 const CONVERSATION_ID_T *updater_id,
 const
 SVC_UPDATE_REGISTRATION_RESPONSE_T *response,
 void *context)
{
 printf("Registered update source\n");
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

This callback prints a message to the console when the update source is registered.
b) Above the main method, create a callback for when the update source becomes active.

static int
on_update_source_active(SESSION_T *session,
 const CONVERSATION_ID_T *updater_id,
 const SVC_UPDATE_REGISTRATION_RESPONSE_T
 *response,
 void *context)
{
 printf("Topic source active\n");
 active = 1;
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

This callback prints a message to the console when the update source becomes the active
update source and can update the topic exclusively. The callback also sets the active flag to
1.

c) In the main method, define the parameters for registering the update source:

 const UPDATE_SOURCE_REGISTRATION_PARAMS_T
 update_reg_params = {
 .topic_path = topic_name,
 .on_registered = on_update_source_registered,
 .on_active = on_update_source_active,
 };

d) Within a locked thread, call the register_update_source method:

 apr_thread_mutex_lock(mutex);
 const CONVERSATION_ID_T *updater_id =
 register_update_source(session, update_reg_params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

Registering an update source returns an updater ID that can be used to update topics.
6. Send updates to the topic.

Diffusion | 229

a) Above the main method, create a callback for when a topic update is a success.

static int
on_update_success(SESSION_T *session,
 const CONVERSATION_ID_T *updater_id,
 const SVC_UPDATE_RESPONSE_T *response,
 void *context)
{
 printf("Updated topic\n");
 return HANDLER_SUCCESS;
}

This callback prints a message to the console when the foo/counter topic is successfully
updated.

b) Above the main method, create a callback for if a topic update fails.

static int
on_update_failure(SESSION_T *session,
 const CONVERSATION_ID_T *updater_id,
 const SVC_UPDATE_RESPONSE_T *response,
 void *context)
{
 printf("Update failed\n");
 return HANDLER_SUCCESS;
}

This callback prints a message to the console if an update of the foo/counter topic fails.
c) Define the unchanging parameters for updating a topic using the update source.

 UPDATE_SOURCE_PARAMS_T update_source_params_base = {
 .updater_id = updater_id,
 .topic_path = topic_name,
 .on_success = on_update_success,
 .on_failure = on_update_failure
 };

d) Define a variable count which is used for the value published to the topic:

 int count=1;

e) Create a loop that runs while the update source is active:

 while(active) {

 }

f) Inside the loop, create a buffer to contain the counter value:

 BUF_T *buf = buf_create();
 char str[15];
 sprintf(str, "%d", count);
 buf_write_string(buf, str);

g) Next, use the buffer to create content:

 CONTENT_T *content =
 content_create(CONTENT_ENCODING_NONE, buf);

Diffusion | 230

h) Create an update from the content:

 UPDATE_T *upd =
 update_create(UPDATE_ACTION_REFRESH,

 UPDATE_TYPE_CONTENT,

 content);

i) Add the update into the parameters defined for the update.

 UPDATE_SOURCE_PARAMS_T update_source_params =
 update_source_params_base;
 update_source_params.update = upd;

j) Update the topic.

 update(session, update_source_params);

k) Free the resources used by this iteration of the loop.

 content_free(content);
 update_free(upd);
 buf_free(buf);

l) Wait for a second and increment the count variable before the next iteration of the loop:

 sleep(1);
 count++;

7. Close the session with the Diffusion server and close the client.

 session_close(session, NULL);
 session_free(session);

 apr_thread_mutex_destroy(mutex);
 apr_thread_cond_destroy(cond);
 apr_pool_destroy(pool);
 apr_terminate();

 return EXIT_SUCCESS;

Ensure that you free all resources and destroy the threading objects.
8. Build your C client.

a) Create a Makefile in the same directory as your C file.
An example Makefile is provided after the steps.

b) Ensure that your Makefile links to the include and lib directory of the Diffusion C library.

DIFFUSION_C_CLIENT_INCDIR = ../path-to-client/include
DIFFUSION_C_CLIENT_LIBDIR = ../path-to-client/lib

c) Run the make command to build the example.
The getting-started-publisher binary is created in the target/bin directory.

9. Run your C client from the command line.

Diffusion | 231

Results

The client updates the value of the foo/counter topic. You can see the value of the foo/counter topic by
creating a subscribing client to subscribe to the topic. For more information, see Start subscribing with
C on page 221.

Example

The completed getting-started-publisher.c file contains the following code:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include <apr.h>
#include <apr_thread_mutex.h>
#include <apr_thread_cond.h>

#include "diffusion.h"
#include "args.h"
#include "conversation.h"
#include "service/svc-update.h"

int active = 0;

apr_pool_t *pool = NULL;
apr_thread_mutex_t *mutex = NULL;
apr_thread_cond_t *cond = NULL;

/*
 * Handlers for add topic feature.
 */
static int
on_topic_added(SESSION_T *session, const SVC_ADD_TOPIC_RESPONSE_T
 *response, void *context)
{
 printf("Added topic\n");
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

static int
on_topic_add_failed(SESSION_T *session, const
 SVC_ADD_TOPIC_RESPONSE_T *response, void *context)
{
 printf("Failed to add topic (%d)\n", response-
>response_code);
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

/*
 * Handlers for creating update source
 */
static int
on_update_source_registered(SESSION_T *session,
 const CONVERSATION_ID_T *updater_id,

Diffusion | 232

 const
 SVC_UPDATE_REGISTRATION_RESPONSE_T *response,
 void *context)
{
 printf("Registered update source\n");
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

static int
on_update_source_active(SESSION_T *session,
 const CONVERSATION_ID_T *updater_id,
 const SVC_UPDATE_REGISTRATION_RESPONSE_T
 *response,
 void *context)
{
 printf("Topic source active\n");
 active = 1;
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

/*
 * Handlers for update of data.
 */
static int
on_update_success(SESSION_T *session,
 const CONVERSATION_ID_T *updater_id,
 const SVC_UPDATE_RESPONSE_T *response,
 void *context)
{
 printf("Updated topic\n");
 return HANDLER_SUCCESS;
}

static int
on_update_failure(SESSION_T *session,
 const CONVERSATION_ID_T *updater_id,
 const SVC_UPDATE_RESPONSE_T *response,
 void *context)
{
 printf("Update failed\n");
 return HANDLER_SUCCESS;
}

int
main(int argc, char** argv)
{

 const char *topic_name = "foo/counter";

 /*
 * Setup for condition variable.
 */
 apr_initialize();
 apr_pool_create(&pool, NULL);

Diffusion | 233

 apr_thread_mutex_create(&mutex, APR_THREAD_MUTEX_UNNESTED,
 pool);
 apr_thread_cond_create(&, pool);

 /*
 * Create a session
 */
 SESSION_T *session;
 DIFFUSION_ERROR_T error = { 0 };

 // Edit this line to include the host and port of your
 Diffusion server
 session = session_create("ws://hostname:port", "user",
 credentials_create_password("password"), NULL, NULL, &error);
 if(session == NULL) {
 fprintf(stderr, "TEST: Failed to create session
\n");
 fprintf(stderr, "ERR : %s\n", error.message);
 return EXIT_FAILURE;
 } else {
 fprintf(stdout, "Connected\n");
 }

 /*
 * Create a topic holding simple string content.
 */
 const TOPIC_DETAILS_T *string_topic_details =
 create_topic_details_single_value(M_DATA_TYPE_STRING);
 const ADD_TOPIC_PARAMS_T add_topic_params = {
 .topic_path = "foo/counter",
 .details = string_topic_details,
 .on_topic_added = on_topic_added,
 .on_topic_add_failed = on_topic_add_failed
 };

 apr_thread_mutex_lock(mutex);
 add_topic(session, add_topic_params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

/*
 * Define the handlers for add_update_source()
 */
 const UPDATE_SOURCE_REGISTRATION_PARAMS_T
 update_reg_params = {
 .topic_path = topic_name,
 .on_registered = on_update_source_registered,
 .on_active = on_update_source_active,
 };

 /*
 * Register an updater.
 */
 apr_thread_mutex_lock(mutex);
 const CONVERSATION_ID_T *updater_id =
 register_update_source(session, update_reg_params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

 /*
 * Define default parameters for an update source.
 */
 UPDATE_SOURCE_PARAMS_T update_source_params_base = {

Diffusion | 234

 .updater_id = updater_id,
 .topic_path = topic_name,
 .on_success = on_update_success,
 .on_failure = on_update_failure
 };

 int count=1;
 while(active) {

 /*
 * Create an update structure containing the
 counter.
 */
 BUF_T *buf = buf_create();
 char str[15];
 sprintf(str, "%d", count);
 buf_write_string(buf, str);

 CONTENT_T *content =
 content_create(CONTENT_ENCODING_NONE, buf);

 UPDATE_T *upd =
 update_create(UPDATE_ACTION_REFRESH,
 UPDATE_TYPE_CONTENT,
 content);

 UPDATE_SOURCE_PARAMS_T update_source_params =
 update_source_params_base;
 update_source_params.update = upd;

 /*
 * Update the topic.
 */
 update(session, update_source_params);

 content_free(content);
 update_free(upd);
 buf_free(buf);

 sleep(1);
 count++;
 }

 /*
 * Close session and free resources.
 */
 session_close(session, NULL);
 session_free(session);

 apr_thread_mutex_destroy(mutex);
 apr_thread_cond_destroy(cond);
 apr_pool_destroy(pool);
 apr_terminate();

 return EXIT_SUCCESS;
}

The Makefile contains the following code:

The following two variables must be set.
#

Diffusion | 235

Directory containing the C client include files.
DIFFUSION_C_CLIENT_INCDIR = ../path-to-client/include
#
Directory containing libdiffusion.a
DIFFUSION_C_CLIENT_LIBDIR = ../path-to-client/lib

ifndef DIFFUSION_C_CLIENT_INCDIR
$(error DIFFUSION_C_CLIENT_INCDIR is not set)
endif

ifndef DIFFUSION_C_CLIENT_LIBDIR
$(error DIFFUSION_C_CLIENT_LIBDIR is not set)
endif

CC = gcc

Extra definitions from parent directory, if they exist.
-include ../makefile.defs

CFLAGS += -g -Wall -Werror -std=c99 -D_POSIX_C_SOURCE=200112L -
D_XOPEN_SOURCE=700 -c -I$(DIFFUSION_C_CLIENT_INCDIR)
LDFLAGS += $(LIBS) $(DIFFUSION_C_CLIENT_LIBDIR)/libdiffusion.a -
lpthread -lpcre -lssl -lcrypto

ARFLAGS +=
SOURCES = getting-started-publisher.c

TARGETDIR = target
OBJDIR = $(TARGETDIR)/objs
BINDIR = $(TARGETDIR)/bin
OBJECTS = $(SOURCES:.c=.o)
TARGETS = getting-started-publisher

all: prepare $(TARGETS)
.PHONY: all

prepare:
 mkdir -p $(OBJDIR) $(BINDIR)

$(OBJDIR)/%.o: %.c
 $(CC) $(CFLAGS) -o $@ $<

getting-started-publisher: $(OBJDIR)/getting-started-publisher.o
 $(CC) $< $(LDFLAGS) -o $(BINDIR)/$@

clean:
 rm -rf $(TARGETS) $(OBJECTS) $(TARGETDIR) core a.out

Connecting to the Diffusion server
One of the first actions your Diffusion client takes is to connect to the Diffusion server. Clients connect
to the Diffusion server by opening a session. A session represents a logical context between a client
and the Diffusion server. All interactions with the Diffusion server happen within a session.

Sessions

The act of opening the session establishes a connection with the the Diffusion server. When a session
is opened it is assigned a unique session identifier by the Diffusion server, which identifies the session
even if it becomes connected to another server.

Diffusion | 236

The session does not receive input from the Diffusion server until it is started, but can be used to
obtain features and perform certain setup actions before it is started.

Session state

The session between a client and the Diffusion server can be in one of a number of states.

The following diagram shows the session state model:

Figure 22: Session state model

CONNECTING

The client session is in this state while it attempts to connect to the Diffusion server. If
the connection attempt is successful, the session changes to CONNECTED_ACTIVE
state. If the connection is not successful, the session changes to one of the closed
states.

CONNECTED_ACTIVE

developerguide/client/basics/session_state.png

Diffusion | 237

The client session is in this state while it is connected to the Diffusion server.
The session spends the majority of its lifetime in this state. If the session
becomes disconnected and reconnect is enabled, the session changes to
RECOVERING_CONNECT state. If the session closes, it changes to one of the closed
states.

RECOVERING_CONNECT

The client session is in this state while it attempts to reconnect to the Diffusion server
after a disconnection. If the reconnection attempt is successful, the session changes
back to CONNECTED_ACTIVE state. If the reconnection attempt is not successful,
the session changes to one of the closed states.

CLOSED_BY_CLIENT

The client session is in this state when it is closed by the client. If a session is in closed
state, it cannot be reopened. A new session must be established.

CLOSED_BY_SERVER

The client session is in this state when it is closed by the Diffusion server. If a session
is in closed state, it cannot be reopened. A new session must be established.

CLOSED_FAILED

The client session is in this state when it is closed for any reason other than a close
by the client or by the Diffusion server. If a session is in closed state, it cannot be
reopened. A new session must be established.

For more information, see Managing your session on page 241.

Session properties

When you connect to the Diffusion server by opening a session, the session is assigned a set of
properties. These properties are assigned by either the Diffusion server or an authentication handler
and can be used by clients to filter the set of connected client sessions to take actions on.

For more information, see Session properties on page 265.

Session roles

When a session authenticates with the Diffusion server, the session is assigned a set of roles. These
roles are assigned by either the Diffusion server or an authentication handler and define the set of
permissions a client session has.

For more information, see Role-based authorization on page 127.

Connecting basics
To make a connection to the Diffusion server the client must specify the host name and port number of
the Diffusion server, the transport to use to connect, and whether that connection is secure.

The Diffusion API is an asynchronous API. As such, the client APIs for all languages provide
asynchronous connect methods.

A subset of the Diffusion APIs also provide synchronous connect methods: the Android, Java, .NET,
and C APIs. In the following sections, all examples for these APIs are synchronous for simplicity. For
asynchronous examples for these APIs, see Asynchronous connections on page 240.

Connection parameters

host
The host name or IP address of the system on which the Diffusion server is located.

port

Diffusion | 238

The port on which the Diffusion server accepts connections from clients using
the Unified API. You can configure which ports to provide connectors for in the
Connectors.xml configuration file. For more information, see Connectors.xml on
page 572.

transport
The transport used to make the connection. For example, WebSocket (ws). The
transports your client can use to make a connection depend on the client library
capabilities. For more information, see Platform support for the Diffusion Unified API
libraries on page 44.

secure
Whether the connection is made over SSL.

Connecting

In JavaScript, Android and Java, you can define each of these parameters individually:

JavaScript

diffusion.connect({
 host : 'host_name',
 port : 'port', // If not specified, port defaults to 80 for
 standard connections or 443 for secure connections
 transports : 'transport', // If not specified, transports
 defaults to 'WS' and the client uses a WebSocket connection
 secure : false // If not specified, secure defaults to false
}).then(function(session) { ... });

Java and Android

final Session session = Diffusion
 .sessions()
 .serverHost("host_name")
 // If no port is specified, the port defaults to 80 for standard
 connections or 443 for secure connections
 // There is no default port for DPT. If you use the DPT
 transport, you must also define a port.
 .serverPort(port)
 // If no transports are specified, the connection defaults to
 use the WebSocket transport
 .transports(transport)
 // If not specified, secure transport defaults to false
 .secureTransport(false)
 .open();

In Apple, Android, Java, .NET and C, composite the host, port, transport, and whether the connection
is secure into a single URL-style string of the following form: transport[s]://host:port.

For example, ws://diffusion.example.com:8080.

Use this URL to open the connection to the Diffusion server:

Apple

 // Excluding the port from the URL defaults to 80, or 443 for
 secure connections
 [PTDiffusionSession openWithURL:[NSURL URLWithString:@"ws://
push.example.com"]
 completionHandler:^(PTDiffusionSession *
 newSession, NSError * error)
 {

Diffusion | 239

 if (newSession) {
 NSLog(@"Session open.");
 self.session = newSession;
 } else {
 NSLog(@"Session Failed to open with error: %@", error);
 }
 }];

Java and Android

Session session = Diffusion.sessions().open("url");

.NET

var session = Diffusion.Sessions.Open("url");

C

SESSION_T *session = NULL;
session = session_create(url, NULL, NULL, &session_listener, NULL,
 NULL);
session_start(session, &error);

Connecting with multiple transports

In JavaScript, you can specify a list of transports. The client uses these transports to provide a
transport cascading capability.

JavaScript

diffusion.connect({
 host : 'host_name',
 transports : ['transport','transport','transport']
}).then(function(session) { ... });

Java and Android

final Session session = Diffusion
 .sessions()
 .serverHost("host_name")
 .serverPort(port)
 .transports(transport, transport, transport)
 .open();

1. The client attempts to connect using the first transport listed.
2. If the connection is unsuccessful, the client attempts to connect using the next transport listed.
3. This continues until the one of the following events happens:

• The client makes a connection
• The client has attempted to make a connection using every listed transport. If this happens, the

connection fails.

You can use specify that a client attempt to connect with a transport more than once. This enables you
to define retry behavior. For example:

JavaScript

transports: ['WS', 'XHR', 'WS']

Diffusion | 240

Java and Android

.transports(WEBSOCKET, WEBSOCKET, WEBSOCKET)

Transport cascading is useful to specify in your clients as it enables them to connect from many
different environments. Factors such as the firewall in use, your end-user's mobile provider, or your
end-user's browser can affect which transports can successfully make a connection to the Diffusion
server.

Asynchronous connections

All Diffusion APIs can connect asynchronously to the Diffusion server:

JavaScript

diffusion.connect({
 host : 'host_name',
 port : 'port'
}).then(function(session) { ... });

Apple

 // Excluding the port from the URL defaults to 80, or 443 for
 secure connections
 [PTDiffusionSession openWithURL:[NSURL URLWithString:@"url"]
 completionHandler:^(PTDiffusionSession *
 newSession, NSError * error)
 {
 if (newSession) {
 NSLog(@"Session open.");
 self.session = newSession;
 } else {
 NSLog(@"Session Failed to open with error: %@", error);
 }
 }];

Java and Android

// Define a callback that implements SessionFactory.OpenCallback and
 pass this to the open method
Diffusion.sessions().open("url", callback);

.NET

// Define a callback that implements ISessionOpenCallback and pass
 this to the open method
Diffusion.Sessions.Open("url", callback);

C

 /*
 * Asynchronous connections have callbacks for notifying that
 * a connection has been made, or that an error occurred.
 */
 SESSION_CREATE_CALLBACK_T *callbacks = calloc(1,
 sizeof(SESSION_CREATE_CALLBACK_T));
 callbacks->on_connected = &on_connected;
 callbacks->on_error = &on_error;

Diffusion | 241

 session_create_async(url, principal, credentials,
 &session_listener, reconnection_strategy, callbacks, &error);

Synchronous connections

The following APIs can connect synchronously to the Diffusion server:

Java and Android

Session session = Diffusion.sessions().open("url");

.NET

var session = Diffusion.Sessions.Open("url");

C

SESSION_T *session = NULL;
session = session_create(url, NULL, NULL, &session_listener, NULL,
 NULL);
session_start(session, &error);

When connecting to the Diffusion server using the Android API, prefer the asynchronous open()
method with a callback. Using the synchronous open() method might open a connection on the
same thread as the UI and cause a runtime exception. However, the synchronous open() method can
be used in any thread that is not the UI thread.

Managing your session

When your client has opened a session with the Diffusion server, you can listen for session events to be
notified when the session state changes. For more information about session states, see Session state
on page 236.

JavaScript

In JavaScript, listen for the following events on the session:

• disconnect: The session has lost connection to the Diffusion server.

The session state changes from CONNECTED_ACTIVE to RECOVERING_RECONNECT. This event
is only emitted if reconnect is enabled.

• reconnect: The session has re-established connection to the Diffusion server.

The session state changes from RECOVERING_RECONNECT to CONNECTED_ACTIVE.
• close: The session has closed. The provided close reason indicates whether this was caused by

the client, the Diffusion server, a failure to connect, or an error.

The session state changes to one of CLOSED_FAILED, CLOSED_BY_SERVER, or
CLOSED_BY_CLIENT.

• error: A session error occurs.

JavaScript

session.on('disconnect', function() {
 console.log('Lost connection to the server.');
});
session.on('reconnect', function() {
 console.log('Reconnected to the session on the server.');
});
session.on('close', function() {
 console.log('Session is closed.');

Diffusion | 242

});
session.on('error', function() {
 console.log('A session error occurred.');
});

Apple

In Apple, the following boolean properties are available on the states that are broadcast through the
default notification center for the application process and posted on the main dispatch queue:

• isConnected: If true, the state is equivalent to the CONNECTED_ACTIVE state.
• isRecovering: If true, the state is equivalent to the RECOVERING_RECONNECT state.
• isClosed: If true, the state is one of CLOSED_FAILED, CLOSED_BY_SERVER, or

CLOSED_BY_CLIENT.

The broadcast includes both the old state and new state of the session. It also includes an error
property that is nil unless the session closure was caused by a failure.

Apple

NSNotificationCenter * nc = [NSNotificationCenter defaultCenter];
[nc addObserverForName:PTDiffusionSessionStateDidChangeNotification
 object:session
 queue:nil
 usingBlock:^(NSNotification * note)
{
 PTDiffusionSessionStateChange * change =
 note.userInfo[PTDiffusionSessionStateChangeUserInfoKey];
 NSLog(@"Session state change: %@", change);
}];

Other SDKs

In Android, Java, .NET, and C listen for changes to the session state. The listener provides both the old
state and new state of the session. The states provided are those listed in the session state diagram.
For more information, see Session state on page 236.

Java and Android

// Add the listener to the session
session.addListener(new Listener() {
 @Override
 public void onSessionStateChanged(Session session, State
 oldState, State newState) {

 System.out.println("Session state changed from " +
 oldState.toString() + " to " + newState.toString());

 }
});

.NET

// Add the listener to the session factory you will use to create the
 session
var sessionFactory =
 Diffusion.Sessions.SessionStateChangedHandler((sender, args) => {

 Console.WriteLine("Session state changed from " +
 args.OldState.ToString() + " to " + args.NewState.ToString());

});

Diffusion | 243

C

// Define a session listener
static void
on_session_state_changed(SESSION_T *session,
 const SESSION_STATE_T old_state,
 const SESSION_STATE_T new_state)
{
 printf("Session state changed from %s (%d) to %s (%d)\n",
 session_state_as_string(old_state), old_state,
 session_state_as_string(new_state), new_state);
}

// ...

 // Use the session listener when opening your session
 SESSION_LISTENER_T session_listener = { 0 };
 session_listener.on_state_changed =
 &on_session_state_changed;

 session_create_async(url, principal, credentials,
 &session_listener, &reconnection_strategy, callbacks, &error);

Connecting securely
A Diffusion client can make secure connections to the Diffusion server over TLS. All supported
transports can connect securely.

To connect securely do one of the following:

• In JavaScript, set the secure parameter to true
• In Android and Java, when specifying parameters individually, pass true to the

secureTransport() method.
• If using a URL to connect, insert an “s” after the transport value in the url parameter. For example,

wss://diffusion.example.com:443.

Configure the SSL context or behavior

A secure connection to the Diffusion server uses SSL to secure the communication.

When connecting over SSL, you might need to configure SSL.

• In JavaScript, the SSL context is provided by the browser.
• In Android, Java, and .NET, you can provide an SSL context when creating the session.
• In Apple, you can use the sslOptions property of the to provide a dictionary of values that

specify the SSL behavior. For more information, see the CFStreamConstants documentation.

Java and Android

Session session =
 Diffusion.sessions().sslContext(ssl_context).open("secure_url");

.NET

var session =
 Diffusion.Sessions.SslContext(ssl_context).Open("secure_url");

If no SSL context or behavior is specified, the client uses the default context or configuration.

https://developer.apple.com/library/ios/documentation/CoreFoundation/Reference/CFStreamConstants/#//apple_ref/doc/constant_group/CFStream_Property_SSL_Settings_Constants

Diffusion | 244

Validating server-side certificates

Diffusion clients that connect over a secure transport use certificates to validate the security of their
connection to the Diffusion server. These certificates are validated against any certificates in the set
trusted by the framework, runtime, or platform that the client library runs on.

If the client does not trust the certificate provided by a CA, you can configure the client to add
certificates to its trust store:

• For Java, see Certificates on page 194
• For .NET, see Certificates on page 204

You can also write a trust manager that explicitly allows the CA's certificates.

Disabling certificate validation on the client

You can disable client validation of the server-side certificates.

Note: We do not recommend disabling this validation on your production clients. However, it
can be useful for testing.

Certificates can only be strictly validated if they have been issue by an appropriate Certificate
Authority (CA) and if the CA's certificates are also known to your client.

Since certificates are specific to the domain name that the server is deployed on, Diffusion ships
with demo certificates and these cannot be strictly validated. To test against a server with demo
certificates, disable client-side SSL certificate validation as shown in the following examples:

Apple

// Create a session configuration with non-standard SSL options...
PTDiffusionMutableSessionConfiguration *const configuration =
 [PTDiffusionMutableSessionConfiguration new];
configuration.sslOptions = @{
 (__bridge id)kCFStreamSSLValidatesCertificateChain
 : (__bridge id)kCFBooleanFalse
};

// Use the configuration to open a new session...
[PTDiffusionSession openWithURL:[NSURL URLWithString:@"wss://
TestServer"]
 configuration:configuration
 completionHandler:^(PTDiffusionSession *session,
 NSError *error)
{
 // Check error is `nil`, then use session as required.
 // Ensure to maintain a strong reference to the session beyond
 the lifetime
 // of this callback, for example by assigning it to an instance
 variable.
}];

Java and Android

 TrustManager tm = new X509TrustManager() {
 public void checkClientTrusted(X509Certificate[] chain,
 String authType) throws CertificateException {
 }

 public void checkServerTrusted(X509Certificate[] chain,
 String authType) throws CertificateException {
 }

Diffusion | 245

 public X509Certificate[] getAcceptedIssuers()
 {
 return new X509Certificate[0];
 }
 };

 final SSLContext context = SSLContext.getInstance("TLS");
 context.init(null, new TrustManager[] { tm }, null);

 Session session =
 Diffusion.sessions().sslContext(context).open("secure_url");

Connect to the Diffusion server with a security principal and credentials
The Diffusion server can accept anonymous connections. However, if your clients specify a security
principal (for example, a username) and its associated credentials (for example, a password) when
they connect, these client sessions can be authenticated and authorized in a more granular way.

Authentication parameters

principal
A string that contains the name of the principal or identity that is connecting to the
Diffusion server. If a value is not specified when connecting, the principal defaults to
ANONYMOUS.

credentials
Credentials are a piece of information that authenticates the principal. This can be
empty or contain a password, a cryptographic key, an image, or any other piece of
information.

If you connect to the Diffusion server using a principal and credentials, connect over SSL to ensure that
these details are encrypted.

Connecting using any type of credentials

In JavaScript and C the method that opens a connection to the Diffusion server takes principal and
credentials as parameters:

JavaScript

diffusion.connect({
 host : 'host_name',
 port : 'port',
 principal: 'principal',
 credentials: 'credentials'
});

C

SESSION_T *session = NULL;
session = session_create(url, principal, credentials,
 &session_listener, NULL, NULL);
session_start(session, &error);

Any form of credentials can be wrapped in a credentials object. This can be empty or contain a
password, a cryptographic key, an image, or any other piece of information. The authentication
handler is responsible for interpreting the bytes.

Diffusion | 246

In the Apple, Android, Java, and .NET Unified API specify the credentials as a credentials object. The
principal and credentials are specified when configuring the session before opening it:

Apple

 NSData *const credentialsData = [NSData dataWithBytes:(char[])
{2,4,6,8} length:4];

 PTDiffusionCredentials *const credentials =
 [[PTDiffusionCredentials alloc] initWithData:credentialsData];
 PTDiffusionSessionConfiguration *const sessionConfiguration =
 [[PTDiffusionSessionConfiguration alloc]

 initWithPrincipal:@"somePrincipalName"

 credentials:credentials];
 [PTDiffusionSession openWithURL:[NSURL URLWithString:@"ws://
push.example.com"]
 configuration:sessionConfiguration
 completionHandler:^(PTDiffusionSession *newSession,
 NSError *error)
 {
 if (newSession) {
 NSLog(@"Session open.");
 self.session = newSession;
 } else {
 NSLog(@"Session Failed to open with error: %@", error);
 }
 }];

Java and Android

Session session =
 Diffusion.sessions().principal("principal").credentials("credentials").open("url");

.NET

var session =
 Diffusion.Sessions.Principal("principal").Credentials("credentials").Open("url");

Connecting using a string password as credentials

A string password is the most commonly used type of credentials. The Apple, Android, Java, and
.NET Unified API provide a convenience method that enables you to specify credentials as a string
password. The principal and credentials are specified when configuring the session before opening it:

Apple

 PTDiffusionCredentials *const credentials =
 [[PTDiffusionCredentials alloc] initWithPassword:@"s3cret"];
 PTDiffusionSessionConfiguration *const sessionConfiguration =
 [[PTDiffusionSessionConfiguration alloc]

 initWithPrincipal:@"somePrincipalName"

 credentials:credentials];
 [PTDiffusionSession openWithURL:[NSURL URLWithString:@"ws://
push.example.com"]
 configuration:sessionConfiguration

Diffusion | 247

 completionHandler:^(PTDiffusionSession *newSession,
 NSError *error)
 {
 if (newSession) {
 NSLog(@"Session open.");
 self.session = newSession;
 } else {
 NSLog(@"Session Failed to open with error: %@", error);
 }
 }];

Java and Android

Session session =
 Diffusion.sessions().principal("principal").password("credentials").open("url");

.NET

var session =
 Diffusion.Sessions.Principal("principal").Password("credentials").Open("url");

Connecting using a byte array as credentials

The Android, Java, and .NET Unified API provide a convenience method that enables you to specify
credentials as a byte array. The principal and credentials are specified when configuring the session
before opening it:

Java and Android

Session session =
 Diffusion.sessions().principal("principal").customCredentials(credentials).open("url");

.NET

var session =
 Diffusion.Sessions.Principal("principal").CustomCredentials(credentials).Open("url");

Changing the principal and credentials a session uses

The client session can change the principal and credentials it uses to connect to the Diffusion server
at any time. For more information, see Change the security principal and credentials associated with
your client session on page 264.

Diffusion | 248

Connecting through an HTTP proxy
Clients can connect to the Diffusion server through an HTTP proxy by using the HTTP CONNECT verb to
create the connection and tunneling any of the supported transports through that connection.

Figure 23: Flow of requests and responses when connecting to Diffusion through a proxy.

Android, Java, and .NET clients can connect to the Diffusion server through an HTTP proxy by
specifying additional information on connection.

With no authentication at the proxy

When creating your session, add an HTTP proxy to the session by passing in the host and port number
of the proxy.

Java and Android

Diffusion.sessions().httpProxy(host, port)

.NET

var session = Diffusion.Sessions
 .HttpProxy(host, port)
 .Open(diffusionUrl);

With basic authentication at the proxy

If the proxy requires basic authentication, the client can use the implementation in the Unified API to
authenticate.

When creating your session, add an HTTP proxy to the session by passing in the host and port
number of the proxy and a proxy authentication object that provides the challenge handler for basic
authentication.

Java and Android

HTTPProxyAuthentication auth =
 Diffusion.proxyAuthentication().basic(username, password);
Diffusion.sessions().httpProxy(host, port, auth);

.NET

var clientAuth = Diffusion.ProxyAuthentication.Basic(username,
 password);

Diffusion | 249

var session = Diffusion.Sessions
 .HttpProxy(host, port, clientAuth)
 .Open(diffusionUrl);

With another form of authentication at the proxy

If the proxy requires another form of authentication, the client can implement a challenge handler that
the client uses to authenticate.

Implement the HTTPProxyAuthentication interface to provide a challenge handler that can
handle the type of authentication your proxy uses. When creating your session, add an HTTP proxy to
the session by passing in the host and port number of the proxy and a proxy authentication object that
provides your challenge handler.

Note: The proxy authentication mechanism is separate from the client authentication
mechanism and is transparent to the Diffusion server.

Connecting through a load balancer
Connections between Diffusion clients and Diffusion servers can be routed through a load balancer.
Some clients can pass additional information to a load balancer in the request path of their URL.

Supported in: JavaScript, Android, and Java APIs

An additional request path can be specified to define the connection URL context. This request path
can only be specified when connecting with individual parameters and not with the URL-style string.

JavaScript

diffusion.connect({
 host : 'host_name',
 port : 'port',
 transports : 'transport',
 secure : false,
 path: '/path/diffusion'
}).then(function(session) { ... });

Java and Android

final Session session = Diffusion
 .sessions()
 .serverHost("host_name")
 .serverPort(port)
 .transports(transport)
 .secureTransport(false)
 .requestPath("/path/diffusion");
 .open();

The value of the request path must begin with / and end with /diffusion. The default value is /
diffusion.

Load balancer configuration

Connections between Diffusion clients and Diffusion servers have specific requirements. If your load
balancer handles Diffusion connections incorrectly, for example by routing subsequent client requests
to different backend Diffusion servers, this can cause problems for your solution.

For more information about how to configure your load balancers to work with Diffusion, see Load
balancers on page 631.

Diffusion | 250

Reconnect to the Diffusion server
When clients connect to the Diffusion server over unreliable networks these connections can be lost.
Clients can attempt to reconnect to the Diffusion server after they lose connection.

Diffusion keeps client sessions in the DISCONNECTED state for a period of time, during which the client
can reconnect to the same session. The length of time the Diffusion server keeps a client session in the
DISCONNECTED state for is configured for the connector that the client uses. For more information,
see Configuring connectors on page 570.

Configuring reconnection on the client

Clients have reconnection enabled by default.

You can configure a reconnection timeout that restricts the amount of time the client can be
disconnected and still reconnect to its session on the Diffusion server. The period of time that the
Diffusion server keeps the session available for reconnect is the lowest of the following values:

• The reconnection timeout configured by the client when it creates its session
• The reconnection timeout configured on the Diffusion server for the connector that the client

connects on

When the reconnection timeout period configured by the client ends, the client stops attempting to
reconnect and closes its session.

JavaScript

diffusion.connect({
 host : 'url',
 reconnect : {
 // Specify the timeout in milliseconds
 timeout : reconnection_time
 }
 })

Apple

 PTDiffusionMutableSessionConfiguration *const
 sessionConfiguration = [PTDiffusionMutableSessionConfiguration new];

 // Specify the timeout in seconds
 sessionConfiguration.reconnectionTimeout = @10;

 [PTDiffusionSession openWithURL:url
 configuration:sessionConfiguration
 completionHandler:^(PTDiffusionSession *newSession,
 NSError *error)
 {
 if (newSession) {
 NSLog(@"Session open");
 } else {
 NSLog(@"Session Failed to open with error: %@", error);
 }
 }];

Java and Android

final Session session = Diffusion
 .sessions()
 // Specify the timeout in milliseconds
 .reconnectionTimeout(reconnection_time)

Diffusion | 251

 .open("url");

.NET

var session = Diffusion.Sessions
 // Specify the timeout in milliseconds
 .ReconnectionTimeout(reconnection_time)
 .Open("url");

C

reconnection_strategy_set_timeout(&reconnection_strategy, reconnection_time);
SESSION_T *session = session_create(url, NULL, NULL, NULL,
 &reconnection_strategy, NULL);

Set the value of the reconnection timeout to zero to disable reconnection. If no reconnection timeout
is specified, a default of 60 seconds (60000 ms) is used.

You can also define your own custom reconnection behavior using reconnection strategies. For more
information, see Specifying a reconnection strategy on page 252.

If no custom reconnection strategy is defined, the client attempts to reconnect at five second intervals
until the reconnection timeout is reached.

Reliable reconnection

If a client loses connection to the Diffusion server, data sent between the client and the Diffusion
server in either direction might be lost in transmission. If this happens and the client reconnects, lost
data might cause the client state or topic data to be incorrect.

To prevent any data being lost, the reconnection process re-synchronizes the streams of messages
from client to the Diffusion server and from the Diffusion server to client. When reconnecting, the
client notifies the Diffusion server of the last message received and the earliest message it can send
again. The Diffusion server resends any missing messages and instructs the client to resume from the
appropriate message.

To be able to send messages again, the Diffusion server maintains a recovery buffer of sent messages.
Some types of client also maintain a recovery buffer of sent messages that can be sent again if
necessary. For more information, see the following table.

If a message has been lost and is no longer present in the recovery buffer, the server will abort the
reconnection. If reconnection succeeds, delivery of all messages is assured.

Configuring the recovery buffer on the client

JavaScript, Java, Android, and C clients can retain a buffer of messages that they have sent to
the Diffusion server. In the case when messages from the client are lost in transmission during a
disconnection and subsequent reconnection, the client can resend the missing messages to the
Diffusion server.

In Java and Android, you can configure the size of this buffer, in messages, when creating your session
on the Diffusion server:

Java and Android

final Session session = Diffusion
 .sessions()
 .recoveryBufferSize(number_of_messages)
 .open("url");

The default size of the recovery buffer is 128 messages.

Diffusion | 252

The larger this buffer is, the greater the chance of successful reconnection. However, a larger buffer of
messages increases the memory footprint of a client.

Configuring the recovery buffer on the Diffusion server

The recovery buffers on the Diffusion server can be configured on a per-connector basis in the
Connectors.xml configuration file. For more information, see Configuring connectors on page
570.

Detecting connection problems
A client can automatically detect if there are problems with its connection to the Diffusion server and
take action to handle any disconnection.

When a client detects that it has become disconnected from the Diffusion server, the session state
changes from CONNECTED to one of the following states:

• If reconnection is enabled at the client and at the Diffusion server, the session state changes to
RECOVERING.

• If reconnection is not enabled, the session state changes to DISCONNECTED.

The client can detect that it has become disconnected from the Diffusion server using the following
methods:

Monitoring the connection activity

The client automatically monitors the activity between the client and the Diffusion server and uses this
information to quickly discover any connection problems.

Using TCP state

Depending on the transport the client uses to connect to the Diffusion server, the client can use
the TCP state to detect whether to change its state from CONNECTED to one of RECOVERING or
DISCONNECTED.

• WebSocket or DPT: The client uses the TCP state to detect whether to trigger a state change.
• HTTP Polling: The client uses the TCP state at certain points during an HTTP request to detect

whether to trigger a state change.

Specifying a reconnection strategy
Reconnection behavior can be configured using custom reconnection strategies.

The reconnection behavior of a client session can be configured using reconnection strategies.
A reconnection strategy is applied when the session enters the RECOVERING_RECONNECT state,
enabling the session to attempt to reconnect and recover its previous state.

Reconnection can only succeed if the client session is still available on the Diffusion server. The
maximum time that the Diffusion server keeps client sessions in the DISCONNECTED state before
closing them can be configured using the Connectors.xml configuration file. For more information,
see Configuring connectors on page 570.

Individual client sessions can request a shorter reconnection timeout for their sessions or request to
disable reconnection when they first connect to the Diffusion server

Examples

JavaScript

// When establishing a session, it is possible to specify whether
 reconnection

Diffusion | 253

// should be attempted in the event of an unexpected disconnection.
 This allows
// the session to recover its previous state.

// Set the maximum amount of time we'll try and reconnect for to 10
 minutes
var maximumTimeoutDuration = 1000 * 60 * 10;

// Set the maximum interval between reconnect attempts to 60 seconds
var maximumAttemptInterval = 1000 * 60;

// Set an upper limit to the number of times we'll try to reconnect
 for
var maximumAttempts = 25;

// Count the number of reconnection attempts we've made
var attempts = 0;

// Create a reconnection strategy that applies an exponential back-
off
// The strategy will be called with two arguments, start & abort.
 Both
// of these are functions, which allow the strategy to either start a
// reconnection attempt, or to abort reconnection (which will close
 the session)
var reconnectionStrategy = function(start, abort) {
 if (attempts > maximumAttempts) {
 abort();
 } else {
 var wait = Math.min(Math.pow(2, attempts++) * 100,
 maximumAttemptInterval);

 // Wait the specified time period, and then start the
 reconnection attempt
 setTimeout(start, wait);
 }
};

// Connect to the server.
diffusion.connect({
 host : 'diffusion.example.com',
 port : 443,
 secure : true,
 principal : 'control',
 credentials : 'password',
 reconnect : {
 timeout : maximumTimeoutDuration,
 strategy : reconnectionStrategy
 }
}).then(function(session) {

 session.on('disconnect', function() {
 // This will be called when we lose connection. Because we've
 specified the
 // reconnection strategy, it will be called automatically
 when this event
 // is dispatched
 });

 session.on('reconnect', function() {
 // If the session is able to reconnect within the reconnect
 timeout, this

Diffusion | 254

 // event will be dispatched to notify that normal operations
 may resume
 attempts = 0;
 });

 session.on('close', function() {
 // If the session is closed normally, or the session is
 unable to reconnect,
 // this event will be dispatched to notify that the session
 is no longer
 // operational.
 });
});

Apple

@import Diffusion;

@interface ExponentialBackoffReconnectionStrategy : NSObject
 <PTDiffusionSessionReconnectionStrategy>
@end

@implementation CustomReconnectionStrategyExample {
 PTDiffusionSession* _session;
}

-(void)startWithURL:(NSURL*)url {
 NSLog(@"Connecting...");

 PTDiffusionMutableSessionConfiguration *const
 sessionConfiguration =
 [PTDiffusionMutableSessionConfiguration new];

 // Set the maximum amount of time we'll try and reconnect for to
 10 minutes.
 sessionConfiguration.reconnectionTimeout = @(10.0 * 60.0); //
 seconds

 // Set the reconnection strategy to be used.
 sessionConfiguration.reconnectionStrategy =
 [ExponentialBackoffReconnectionStrategy new];

 // Start connecting asynchronously.
 [PTDiffusionSession openWithURL:url
 configuration:sessionConfiguration
 completionHandler:^(PTDiffusionSession *session,
 NSError *error)
 {
 if (!session) {
 NSLog(@"Failed to open session: %@", error);
 return;
 }

 // At this point we now have a connected session.
 NSLog(@"Connected.");

 // Set ivar to maintain a strong reference to the session.
 _session = session;
 }];
}

@end

Diffusion | 255

@implementation ExponentialBackoffReconnectionStrategy {
 NSUInteger _attemptCount;
}

-(void) diffusionSession:(PTDiffusionSession *const)session
 wishesToReconnectWithAttempt:
(PTDiffusionSessionReconnectionAttempt *const)attempt {
 // Limit the maximum time to delay between reconnection attempts
 to 60 seconds.
 const NSTimeInterval maximumAttemptInterval = 60.0;

 // Compute delay for exponential backoff based on the number of
 attempts so far.
 const NSTimeInterval delay = MIN(pow(2.0, _attemptCount++) * 0.1,
 maximumAttemptInterval);

 // Schedule asynchronous execution.
 NSLog(@"Reconnection attempt scheduled for %.2fs", delay);
 dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(delay *
 NSEC_PER_SEC)),
 dispatch_get_main_queue(), ^
 {
 NSLog(@"Attempting reconnection.");
 [attempt start];
 });
}

@end

Java and Android

import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;

import com.pushtechnology.diffusion.client.Diffusion;
import com.pushtechnology.diffusion.client.session.Session;
import com.pushtechnology.diffusion.client.session.Session.Listener;
import com.pushtechnology.diffusion.client.session.Session.State;
import
 com.pushtechnology.diffusion.client.session.reconnect.ReconnectionStrategy;

/**
 * This example class demonstrates the ability to set a custom {@link
 ReconnectionStrategy}
 * when creating sessions.
 *
 * @author Push Technology Limited
 * @since 5.5
 */
public class ClientWithReconnectionStrategy {

 private volatile int retries = 0;
 /**
 * Constructor.
 */
 public ClientWithReconnectionStrategy() {

Diffusion | 256

 // Set the maximum amount of time we'll try and reconnect for
 to 10 minutes.
 final int maximumTimeoutDuration = 1000 * 60 * 10;

 // Set the maximum interval between reconnect attempts to 60
 seconds.
 final long maximumAttemptInterval = 1000 * 60;

 // Create a new reconnection strategy that applies an
 exponential backoff
 final ReconnectionStrategy reconnectionStrategy = new
 ReconnectionStrategy() {
 private final ScheduledExecutorService scheduler =
 Executors.newScheduledThreadPool(1);

 @Override
 public void performReconnection(final ReconnectionAttempt
 reconnection) {
 final long exponentialWaitTime =
 Math.min((long) Math.pow(2, retries++) * 100L,
 maximumAttemptInterval);

 scheduler.schedule(new Runnable() {
 @Override
 public void run() {
 reconnection.start();
 }
 }, exponentialWaitTime, TimeUnit.MILLISECONDS);
 }
 };

 final Session session =
 Diffusion.sessions().reconnectionTimeout(maximumTimeoutDuration)

 .reconnectionStrategy(reconnectionStrategy)
 .open("ws://
diffusion.example.com:80");
 session.addListener(new Listener() {
 @Override
 public void onSessionStateChanged(Session session, State
 oldState, State newState) {

 if (newState == State.RECOVERING_RECONNECT) {
 // The session has been disconnected, and has
 entered recovery state. It is during this state that
 // the reconnect strategy will be called
 }

 if (newState == State.CONNECTED_ACTIVE) {
 // The session has connected for the first time,
 or it has been reconnected.
 retries = 0;
 }

 if (oldState == State.RECOVERING_RECONNECT) {
 // The session has left recovery state. It may
 either be attempting to reconnect, or the attempt has
 // been aborted; this will be reflected in the
 newState.
 }
 }
 });
 }

Diffusion | 257

}

.NET

using System;
using System.Threading.Tasks;
using PushTechnology.ClientInterface.Client.Factories;
using PushTechnology.ClientInterface.Client.Session;
using PushTechnology.ClientInterface.Client.Session.Reconnection;

namespace Examples {
 /// <summary>
 /// These examples show how to configure and enable the
 reconnection feature of the API.
 /// Every method represents a different selfcontained example.
 /// </summary>
 public class ClientReconnection {
 private static int counter = 0;

 /// <summary>
 /// Sets the reconnection timeout that represents the
 duration in which the client is trying to reconnect to
 /// the server.
 /// If we are not reconnected after the timeout, the client
 will close the session.
 /// </summary>
 public void SetReconnectionTimeout() {
 // The timeout is set in milliseconds and should be high
 enough to
 // account for actual reconnection time
 var sessionFactory =
 Diffusion.Sessions.ReconnectionTimeout(60000);
 }

 /// <summary>
 /// Disables the reconnection feature.
 /// </summary>
 public void DisableReconnection() {
 // This will disable the reconnection feature completely
 and instead of switching to the RECOVERING_RECONNECT
 // session state it will switch straight to
 CLOSED_BY_SERVER.
 var sessionFactoryNoReconnection =
 Diffusion.Sessions.NoReconnection();

 // This call has exactly the same effect as the above
 statement.
 var sessionFactoryNoTimeout =
 Diffusion.Sessions.ReconnectionTimeout(0);
 }

 /// <summary>
 /// This is a custom reconnection strategy that will try to
 reconnect
 /// to the server up to 3 times and then abort.
 /// </summary>
 public class MyReconnectionStrategy : IReconnectionStrategy {
 /// <summary>
 /// Here we put our actual reconnection logic. The async
 keyword should always be added since it makes
 /// things easier for a void return type.
 /// </summary>

Diffusion | 258

 /// <param name="reconnectionAttempt">The reconnection
 attempt wil be given by the session.</param>
 public async Task
 PerformReconnection(IReconnectionAttempt reconnectionAttempt) {
 ++counter;
 if (counter <= 3) {
 // We start the next reconnection attempt
 reconnectionAttempt.Start();
 } else {
 counter = 0;

 // We abort any other reconnection attempt and
 let the session switch to CLOSED_BY_SERVER.
 reconnectionAttempt.Abort();
 }
 }
 }

 /// <summary>
 /// This applies the custom reconnection strategy.
 /// </summary>
 public void SetCustomReconnectionStrategy() {
 // We don't need to hold a reference to the reconnection
 strategy
 var sessionFactoryWithCustomStrategy
 = Diffusion.Sessions.ReconnectionStrategy(new
 MyReconnectionStrategy());
 }

 /// <summary>
 /// Reconnection can be observed via session state changes
 within the SessionStateChangeHandler.
 /// </summary>
 public void ObserveReconnection() {
 var sessionFactory =
 Diffusion.Sessions.SessionStateChangedHandler((sender, args) => {
 if
 (args.NewState.Equals(SessionState.RECOVERING_RECONNECT)) {
 // This will be set on a connection loss and
 indicates a reconnection attempt.
 // Unless reconnection is disabled, at which
 point the session never gets switched to this state.
 Console.WriteLine("We are in the process of
 reconnecting.");
 } else if
 (args.NewState.Equals(SessionState.CONNECTION_ATTEMPT_FAILED)) {
 // If a reconnection attempt fails because the
 server session timed out, we won't be able
 // to reconnect anymore. At which point the
 session will switch to this state.
 Console.WriteLine("We couldn't connect.");
 } else if
 (args.NewState.Equals(SessionState.CLOSED_BY_SERVER)) {
 // If the reconnection timeout is over, we will
 switch to this state. In case of disabled
 // reconnection we will switch directly to this
 state on a connection loss.
 Console.WriteLine("We lost connection.");
 } else if
 (args.NewState.Equals(SessionState.CONNECTED_ACTIVE)) {
 // This is the obvious state on our first
 connection. It is also the state to which we switch
 // after a successful reconnection attempt.

Diffusion | 259

 Console.WriteLine("We are connected.");
 counter = 0;
 }
 });
 }
 }
}

C

/*
 * This example shows how to make a synchronous connection to
 * Diffusion, with user-provided reconnection logic.
 */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>

#include <apr_time.h>

#include "diffusion.h"
#include "args.h"

ARG_OPTS_T arg_opts[] = {
 ARG_OPTS_HELP,
 {'u', "url", "Diffusion server URL", ARG_OPTIONAL,
 ARG_HAS_VALUE, "ws://localhost:8080"},
 {'p', "principal", "Principal (username) for the connection",
 ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'c', "credentials", "Credentials (password) for the
 connection", ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'s', "sleep", "Time to sleep before disconnecting (in
 seconds).", ARG_OPTIONAL, ARG_HAS_VALUE, "5" },
 END_OF_ARG_OPTS
};

/*
 * This callback is used when the session state changes, e.g. when a
 session
 * moves from a "connecting" to a "connected" state, or from
 "connected" to
 * "closed".
 */
static void
on_session_state_changed(SESSION_T *session,
 const SESSION_STATE_T old_state,
 const SESSION_STATE_T new_state)
{
 printf("Session state changed from %s (%d) to %s (%d)\n",
 session_state_as_string(old_state), old_state,
 session_state_as_string(new_state), new_state);
}

typedef struct {
 long current_wait;
 long max_wait;
} BACKOFF_STRATEGY_ARGS_T;

static RECONNECTION_ATTEMPT_ACTION_T
backoff_reconnection_strategy(SESSION_T *session, void *args)
{

Diffusion | 260

 BACKOFF_STRATEGY_ARGS_T *backoff_args = args;

 printf("Waiting for %ld ms\n", backoff_args->current_wait);

 apr_sleep(backoff_args->current_wait * 1000); // µs -> ms

 // But only up to some maximum time.
 if(backoff_args->current_wait > backoff_args->max_wait) {
 backoff_args->current_wait = backoff_args->max_wait;
 }

 return RECONNECTION_ATTEMPT_ACTION_START;
}

static void
backoff_success(SESSION_T *session, void *args)
{
 printf("Reconnection successful\n");

 BACKOFF_STRATEGY_ARGS_T *backoff_args = args;
 backoff_args->current_wait = 0; // Reset wait.
}

static void
backoff_failure(SESSION_T *session, void *args)
{
 printf("Reconnection failed (%s)\n",
 session_state_as_string(session->state));

 BACKOFF_STRATEGY_ARGS_T *backoff_args = args;

 // Exponential backoff.
 if(backoff_args->current_wait == 0) {
 backoff_args->current_wait = 1;
 }
 else {
 backoff_args->current_wait *= 2;
 }
}

/*
 * Entry point for the example.
 */
int
main(int argc, char **argv)
{
 /*
 * Standard command-line parsing.
 */
 HASH_T *options = parse_cmdline(argc, argv, arg_opts);
 if(options == NULL || hash_get(options, "help") != NULL) {
 show_usage(argc, argv, arg_opts);
 return EXIT_FAILURE;
 }

 const char *url = hash_get(options, "url");
 const char *principal = hash_get(options, "principal");
 CREDENTIALS_T *credentials = NULL;
 const char *password = hash_get(options, "credentials");
 if(password != NULL) {
 credentials = credentials_create_password(password);
 }

Diffusion | 261

 const unsigned int sleep_time = atol(hash_get(options,
 "sleep"));

 SESSION_T *session;
 DIFFUSION_ERROR_T error = { 0 };

 SESSION_LISTENER_T session_listener = { 0 };
 session_listener.on_state_changed =
 &on_session_state_changed;

 /*
 * Set the arguments to our exponential backoff strategy.
 */
 BACKOFF_STRATEGY_ARGS_T *backoff_args = calloc(1,
 sizeof(BACKOFF_STRATEGY_ARGS_T));
 backoff_args->current_wait = 0;
 backoff_args->max_wait = 5000;

 /*
 * Create the backoff strategy.
 */
 RECONNECTION_STRATEGY_T *reconnection_strategy =

 make_reconnection_strategy_user_function(backoff_reconnection_strategy,

 backoff_args,

 backoff_success,

 backoff_failure,
 NULL);

 /*
 * Only ever retry for 30 seconds.
 */
 reconnection_strategy_set_timeout(reconnection_strategy, 30 *
 1000);

 /*
 * Create a session, synchronously.
 */
 session = session_create(url, principal, credentials,
 &session_listener, reconnection_strategy, &error);
 if(session != NULL) {
 char *sid_str = session_id_to_string(session->id);
 printf("Session created (state=%d, id=%s)\n",
 session_state_get(session), sid_str);
 free(sid_str);
 }
 else {
 printf("Failed to create session: %s\n",
 error.message);
 free(error.message);
 }

 // With the exception of backoff_args, the reconnection
 strategy is
 // copied withing session_create() and may be freed now.
 free(reconnection_strategy);

 /*
 * Sleep for a while.
 */

Diffusion | 262

 sleep(sleep_time);

 /*
 * Close the session, and release resources and memory.
 */
 session_close(session, NULL);
 session_free(session);

 free(backoff_args);

 credentials_free(credentials);
 hash_free(options, NULL, free);

 return EXIT_SUCCESS;
}

Session failover
Session failover occurs when a client that disconnects from a Diffusion server attempts to connect to a
different Diffusion server that also has information about that client's session.

For session failover to occur, session replication must be configured for a cluster of Diffusion servers.
For more information, see Configuring replication on page 600.

Differences between session reconnection and session failover

When a client loses a load-balanced connection to Diffusion, one of the following things can occur
when the client attempts to reconnect through the load balancer:

Session reconnection
The load balancer forwards the client connection to the Diffusion server it was
previously connected to, if that server is still available. For more information, see
Reconnect to the Diffusion server on page 250.

Session failover
The load balancer forwards the client connection to a different Diffusion server
that shares information about the client's session, if session replication is enabled
between the servers.

Prefer session reconnection to session failover wherever possible by ensuring that the load balancer is
configured to route all connections from a specific client to the same server if that server is available.

Session reconnection is more efficient as less data must be sent to the client and has less risk of data
loss, as sent messages can be recovered, in-flight requests are not lost, and handlers do not need to be
registered again.

For more information, see Routing strategies at your load balancer on page 632.

To a client the process of disconnection and subsequent reconnection has the following differences for
session reconnection or session failover.

Session reconnection Session failover

The client connects to the same Diffusion server
it was previously connected to.

The client connects to a Diffusion server different
to the one it was previously connected to.

The client sends its last session token to the server.

The server authenticates the client connection or validates its session token.

Diffusion | 263

Session reconnection Session failover

The server uses the session token to
resynchronize the streams of messages between
the server and client by resending any messages
that were lost in transmission from a buffer of
sent messages.

If lost messages cannot be recovered because
they are no longer present in a buffer, the server
aborts the reconnection.

The server uses the session token to retrieve
the session state and topic selections from the
datagrid.

The server sends any messages that have been
queued since the session disconnected.

The server uses the state to recover the session,
uses the topic selections to match the subscribed
topics, and sends the session the current topic
value for each subscribed topic.

Any in-flight requests made by the client session
to the previous server are cancelled and the
client session is notified by a callback. All
handlers, including authentication handlers
and update sources, that the client session had
registered with the previous server are closed
and receive a callback to notify them of the
closure.

Ping the Diffusion server
Ping the Diffusion server from your client. If the ping is successful it reports the round-trip time
between your client and the Diffusion server.

Supported in: Java Unified API, .NET Unified API, Apple Unified API, Android Unified API, C Unified API

The Diffusion client libraries and the Diffusion server include capabilities that automatically check
whether the connection is active. However, there might be times when you want to check the
connection from within your client code. For example, if the client is aware that the device it is hosted
on has recently changed from a 3G connection to a WiFi connection.

Use the pings capability to asynchronously ping the Diffusion server.

Apple

[_session.pings
 pingServerWithCompletionHandler:pingCompletionHandler];

Java and Android

Pings pings = session.feature(Pings.class);
pings.pingServer(context, callback);

.NET

IPings pings = session.GetPingFeature();
pings.PingServer(context, callback);

C

 PING_USER_PARAMS_T params = {
 .on_ping_response = on_ping_response_user

Diffusion | 264

 };
 ping_user(session, params);

Change the security principal and credentials associated with your client
session

A client session can change the credentials it uses to authenticate with the Diffusion server at any time.

JavaScript

 session.security.changePrincipal('admin',
 'password').then(function() {
 console.log('Authenticated as admin');
 });

Apple

 [_session.security changePrincipal:@"somePrincipalWithAuthority"
 credentials:[[PTDiffusionCredentials
 alloc] initWithPassword:@"s3cret"]
 completionHandler:^(NSError *const error)
 {
 if (error) {
 NSLog(@"Failed to change principal: %@", error);
 }
 }];

Java and Android

 security = session.feature(Security.class);
 security.changePrincipal(
 principal,
 Diffusion.credentials().password(password),
 callback);

.NET

 security = session.GetSecurityFeature();
 security.ChangePrincipal(principal,
 Diffusion.Credentials.Password(password), callback);

C

// Specify callbacks for the change_principal request.
 CHANGE_PRINCIPAL_PARAMS_T params = {
 .principal = hash_get(options, "principal"),
 .credentials = credentials,
 .on_change_principal = on_change_principal,
 .on_change_principal_failure =
 on_change_principal_failure
 };

 // Do the change.
 change_principal(session, params);

When the principal associated with a session changes, the following happens:

• The $Principal session property is updated to contain the new principal.

Diffusion | 265

• The roles associated with the old principal are removed from the session and those roles
associated with the new principal are assigned to the session.

• Topic subscriptions made with the old principal are not re-evaluated. The session remains
subscribed to any topics the new principal does not have permissions for.

Session properties
A client session has a number of properties associated with it. Properties are key-value pairs. Both the
key and the value are case sensitive.

Session properties provide a powerful way for clients to target actions at a specific client or set of
clients whose session properties match a given criteria. Clients can use session filtering to select a set
of clients to perform one of the following actions on:

• Send messages directly to that client or set of clients.
• Subscribe that client or set of clients to a topic.
• Unsubscribe that client or set of clients from a topic.

For more information, see Session filtering on page 266.

Clients can also request the full set of properties or a subset, for a particular client.

Fixed properties

Fixed properties are set by the Diffusion server when a client opens a session with it. Fixed property
keys are prefixed by a dollar sign ($). The fixed session properties are:

$SessionId
The session identifier.

$Principal
The security principal the session uses to connect to the Diffusion server.

$ClientType
The client type of the session. For more information, see Client types on page 109.

$Transport
The transport the client session uses to connect to the Diffusion server. For more
information, see Client types on page 109.

$ServerName
The name of the Diffusion server that the client connects to.

$Connector
The name of the connector on which the client connected to the Diffusion server.

$Country
The two letter country code for the country where the client's internet address is
located. The value is uppercase.

$Language
The two letter language code for the most common language of the country where
the client's internet address is located. The value is lowercase.

User-defined properties

An authentication handler that allows the client session to connect can assign additional properties to
the session. The keys of these properties are case sensitive, must begin with an alphabetic character,
must be alphanumeric, and must not include any whitespace.

Diffusion | 266

Related concepts
Session filtering on page 266
Session filters enable you to query the set of connected client sessions on the Diffusion server based
on their session properties.

Messaging to clients on page 372
A client can use the MessagingControl feature to send individual messages to any known client on any
topic path. It can also register a handler for messages sent from clients.

Managing subscriptions on page 351
A client can use the SubscriptionControl feature to subscribe other client sessions to topics that they
have not requested subscription to themselves and also to unsubscribe clients from topics. It also
enables the client to register as the handler for routing topic subscriptions.

Managing clients on page 425
A client with the appropriate permissions can receive notifications and information about other client
sessions. A client with the appropriate permissions can also manage these client sessions.

Session filtering
Session filters enable you to query the set of connected client sessions on the Diffusion server based
on their session properties.

To perform an action on a subset of the connected client sessions, you can create a query expression
that filters the set of connected client sessions by the values of their session properties. Filter query
expressions are parsed and evaluated by the Diffusion server.

The query expression used to filter the session is made up of one or more search clauses chained
together by boolean operators.

Creating a single search clause

Search clauses have the following form:

key operator 'value'

key
The key name of the session property to be tested. The key name is case sensitive.

operator
The operator that defines the test to be performed. The operator is not case sensitive.

value
The test value to be compared to the session property value. This value is a string and
must be contained in single or double quotation marks. Any special characters must
be escaped with Java escaping. The value is case sensitive.

Table 30: Session filter search clause operators

Operator Description

IS Tests whether the session property value
associated with the property key matches the
test value.

EQ Equals. Tests whether the session property value
associated with the property key matches the
test value. Equivalent to 'IS'.

Diffusion | 267

Operator Description

NE Not equal. Tests whether the session property
value associated with the key is not equal to the
test value.

Examples: single search clause

Filter by clients that connect with the principal Ellington:

$Principal IS 'Ellington'

Filter by clients that connect to the Diffusion server using WebSocket:

$Transport EQ 'WEBSOCKET'

Filter by clients that are not located in the United Kingdom:

$Country NE 'GB'

Filter by clients that have the user-defined property Location set to San Jose:

Location IS "San Jose"

Filter by clients that have the user-defined property Status set to Active:

Status EQ 'Active'

Filter by clients that do not have the user-defined property Tier set to Premium:

Tier NE 'Premium'

Chaining multiple search clauses

Chain individual search clauses together using boolean operator or use the NOT operator to negate a
search clause. Boolean operators are not case sensitive.

Table 31: Session filter boolean operators

Operator Description

AND Specifies that both joined search clauses must be
true.

OR Specifies that at least one of the joined search
clauses must be true.

NOT Specifies that the following search clause or set
of search clauses must not be true.

Use parentheses to group sets of search clauses and indicate the order of precedence for evaluation. If
no order of precedence is explicitly defined, the AND operator takes precedence over the OR operator.

Diffusion | 268

Examples: multiple search clauses

Filter by clients that connect with one of the principals Fitzgerald, Gillespie, or Hancock:

$Principal IS 'Fitzgerald' OR $Principal IS 'Gillespie' OR $Principal
 IS 'Hancock'

Filter by clients that connect to the Diffusion server using WebSocket and are located in France and
have the user-defined property Status set to Active:

$Transport EQ 'WEBSOCKET' AND $Country IS 'FR' AND Status EQ 'Active'

Filter by clients that are located in the United States, but do not connect with either of the principals
Monk or Peterson:

$Country EQ 'US' AND NOT ($Principal IS 'Monk' OR $Principal IS
 'Peterson')

Filter by clients excluding those that have both the user-defined property Status set to Inactive and the
user-defined property Tier set to Free:

NOT (Status IS 'Inactive' AND Tier IS 'Free')

Related concepts
Session properties on page 265
A client session has a number of properties associated with it. Properties are key-value pairs. Both the
key and the value are case sensitive.

Messaging to clients on page 372
A client can use the MessagingControl feature to send individual messages to any known client on any
topic path. It can also register a handler for messages sent from clients.

Managing subscriptions on page 351
A client can use the SubscriptionControl feature to subscribe other client sessions to topics that they
have not requested subscription to themselves and also to unsubscribe clients from topics. It also
enables the client to register as the handler for routing topic subscriptions.

Managing clients on page 425
A client with the appropriate permissions can receive notifications and information about other client
sessions. A client with the appropriate permissions can also manage these client sessions.

Receiving data from topics
A client can use the Topics feature to subscribe to a topic or to fetch the state of a topic.

Streams

Clients use streams registered against sets of topics to receive values published to those topics.

Streams are registered using topic selectors and can be registered multiple times with different
selectors. If more than one of the topic selectors used to register a stream matches a topic, the stream
receives each value for that topic only once.

Multiple streams can be registered against the same topic. All streams registered against the topic
receive a value for it. The order that these streams receive the value is not defined.

The following table describes the types of stream a client can use to receive values from topics:

Diffusion | 269

Stream type Description

Value stream Value streams are typed. Register value streams against a set of topics by
using a topic selector. A value stream receives updates for any subscribed
topics that match the value stream's type and the topic selectors used
when registering the value stream.

If a value stream receives a delta update, this delta is automatically applied
to a locally cached value so that the stream always receives full values.

A value stream can have one of the following types:

JSON
JSON topics are routed to this type of stream.

Binary
Binary topics are routed to this type of stream.

Content
JSON, binary, and single value topics are routed to
this type of stream.

Value streams are provided in the JavaScript, Android, and Java APIs.

Topic stream Topic streams are not typed and are used to receive value and delta
updates for all subscribed topics that match the topic selectors used when
registering the value stream. This type of stream provides the value and
the deltas but relies upon the application to apply the deltas to a client
maintained current value.

Where a value type is available for your topic, we recommend you use a
value stream instead of a topic stream.

Fetch stream Fetch streams are not typed and are used to receive responses to fetch
requests for all topics that match the topic selectors used when registering
the value stream.

You can register one or more fallback streams to receive updates to subscribed topics that do have a
value stream or topic stream registered against them.

Subscribing to a topic

Required permissions: select_topic and read_topic permissions for the specified topic

A client can subscribe to a topic to receive updates that are published to the topic. If the topic has
state, when the client subscribes to that topic it receives the topic state as a full value. Subsequent
updates to the data on the topic can be received as delta update messages or as values depending on
the type of the topic and the structure of its data.

Subscribing to multiple topics using a topic selector

Required permissions: select_topic and read_topic permissions for the specified topics

A client can subscribe to multiple topics in a single request by using topic selectors. Topic selectors
enable you to select whole branches of the topic tree or use regular expressions to select topics based
on the names in the topic path.

For more information, see Topic selectors in the Unified API on page 60.

Diffusion | 270

Fetching the state of a topic

Required permissions: select_topic and read_topic permissions for the specified topic

A client can send a fetch request for the state of a topic. If the topic is of a type that maintains its state,
the Diffusion server provides the current state of that topic to the client.

Example: Subscribe to a topic
The following examples use the Unified API to subscribe to topics and assign handlers to topics to
receive the topic content.

JavaScript

diffusion.connect({
 host : 'diffusion.example.com',
 port : 443,
 secure : true
}).then(function(session) {

 // 1. Subscriptions are how sessions receive streams of data from
 the server.

 // When subscribing, a topic selector is used to select which
 topics to subscribe to. Topics do not need to exist
 // at the time of subscription - the server dynamically resolves
 subscriptions as topics are added or removed.

 // Subscribe to the "foo" topic with an inline callback function
 var subscription = session.subscribe('foo', function(update) {
 // Log the new value whenever the 'foo' topic is updated
 // By default, we get a Buffer object which preserves binary
 // data.
 console.log(update);
 });

 // Callbacks can also be registered after the subscription has
 occurred
 subscription.on({
 update : function(value, topic) {
 console.log('Update for topic: ' + topic, value);
 },
 subscribe : function(details, topic) {
 console.log('Subscribed to topic: ' + topic);
 },
 unsubscribe : function(reason, topic) {
 console.log('Unsubscribed from topic:' + topic);
 subscription.close();
 }
 });

 // 2. Sessions may unsubscribe from any topic to stop receiving
 data

 // Unsubscribe from the "foo" topic. Sessions do not need to have
 previously been subscribed to the topics they are
 // unsubscribing from. Unsubscribing from a topic will result in
 the 'unsubscribe' callback registered above being
 // called.
 session.unsubscribe('foo');

 // 3. Subscriptions / Unsubscriptions can select multiple topics
 using Topic Selectors

Diffusion | 271

 // Topic Selectors provide regex-like capabilities for
 subscribing to topics. These are resolved dynamically, much
 // like subscribing to a single topic.
 var subscription2 = session.subscribe('?foo/.*/[a-z]');

 // 4. Subscriptions can use transformers to convert update values

 // Subscribe to a topic and then convert all received values to
 JSON. Transforming a subscription creates a new
 // subscription stream, rather than modifying the original. This
 assumes that the topic is a single value topic
 // receiving stringified JSON and is not a JSON topic.
 session.subscribe('bar').transform(JSON.parse).on('update',
 function(value, topic) {
 console.log('Got JSON update for topic: ' + topic, value);
 });

 // 5. Metadata can be used within transformers to parse data

 // Create a simple metadata instance
 var meta = new diffusion.metadata.RecordContent();

 // Add a single record/field
 meta.addRecord('record', {
 'field' : meta.string('some-value')
 });

 // Subscribe to a topic and transform with the metadata
 session.subscribe('baz').transform(meta).on('update',
 function(value) {
 console.log('Field value: ',
 value.get('record').get('field'));
 });
});

Apple

@import Diffusion;

@interface SubscribeUnsubscribeExample
 (PTDiffusionTopicStreamDelegate) <PTDiffusionTopicStreamDelegate>
@end

@implementation SubscribeUnsubscribeExample {
 PTDiffusionSession* _session;
}

-(void)startWithURL:(NSURL*)url {
 NSLog(@"Connecting...");

 [PTDiffusionSession openWithURL:url
 completionHandler:^(PTDiffusionSession *session,
 NSError *error)
 {
 if (!session) {
 NSLog(@"Failed to open session: %@", error);
 return;
 }

 // At this point we now have a connected session.
 NSLog(@"Connected.");

Diffusion | 272

 // Set ivar to maintain a strong reference to the session.
 _session = session;

 // Register self as the fallback handler for topic updates.
 [session.topics addFallbackTopicStreamWithDelegate:self];

 // Wait 5 seconds and then subscribe.
 [self performSelector:@selector(subscribe:)
 withObject:session afterDelay:5.0];
 }];
}

static NSString *const _TopicSelectorExpression = @"*Assets//";

-(void)subscribe:(const id)object {
 PTDiffusionSession *const session = object;

 NSLog(@"Subscribing...");
 [session.topics
 subscribeWithTopicSelectorExpression:_TopicSelectorExpression
 completionHandler:^(NSError *
 const error)
 {
 if (error) {
 NSLog(@"Subscribe request failed. Error: %@", error);
 } else {
 NSLog(@"Subscribe request succeeded.");

 // Wait 5 seconds and then unsubscribe.
 [self performSelector:@selector(unsubscribe:)
 withObject:session afterDelay:5.0];
 }
 }];
}

-(void)unsubscribe:(const id)object {
 PTDiffusionSession *const session = object;

 NSLog(@"Unsubscribing...");
 [session.topics
 unsubscribeFromTopicSelectorExpression:_TopicSelectorExpression
 completionHandler:^(NSError
 * const error)
 {
 if (error) {
 NSLog(@"Unsubscribe request failed. Error: %@", error);
 } else {
 NSLog(@"Unsubscribe request succeeded.");

 // Wait 5 seconds and then subscribe.
 [self performSelector:@selector(subscribe:)
 withObject:session afterDelay:5.0];
 }
 }];
}

@end

@implementation SubscribeUnsubscribeExample
 (PTDiffusionTopicStreamDelegate)

-(void)diffusionStream:(PTDiffusionStream * const)stream

Diffusion | 273

 didUpdateTopicPath:(NSString * const)topicPath
 content:(PTDiffusionContent * const)content
 context:(PTDiffusionUpdateContext * const)context {
 NSString *const string = [[NSString alloc]
 initWithData:content.data encoding:NSUTF8StringEncoding];
 NSLog(@"\t%@ = \"%@\"", topicPath, string);
}

-(void) diffusionStream:(PTDiffusionStream * const)stream
 didSubscribeToTopicPath:(NSString * const)topicPath
 details:(PTDiffusionTopicDetails * const)details
 {
 NSLog(@"Subscribed: \"%@\" (%@)", topicPath, details);
}

-(void) diffusionStream:(PTDiffusionStream *const)stream
 didUnsubscribeFromTopicPath:(NSString *const)topicPath
 reason:(const
 PTDiffusionTopicUnsubscriptionReason)reason {
 NSLog(@"Unsubscribed: \"%@\" [Reason: %@]", topicPath,
 PTDiffusionTopicUnsubscriptionReasonToString(reason));
}

@end

Java and Android

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.pushtechnology.diffusion.client.Diffusion;
import com.pushtechnology.diffusion.client.content.Content;
import com.pushtechnology.diffusion.client.features.Topics;
import
 com.pushtechnology.diffusion.client.features.Topics.ValueStream;
import com.pushtechnology.diffusion.client.session.Session;
import
 com.pushtechnology.diffusion.client.topics.details.TopicSpecification;
import com.pushtechnology.diffusion.datatype.json.JSON;

/**
 * In this simple and commonest case for a client we just subscribe
 to a few
 * topics and assign handlers for each to receive content.
 * <P>
 * This makes use of the 'Topics' feature only.
 * <P>
 * To subscribe to a topic, the client session must have the
 * 'select_topic' and 'read_topic' permissions for that branch of the
 * topic tree.
 *
 * @author Push Technology Limited
 * @since 5.0
 */
public final class ClientSimpleSubscriber {

 private static final Logger LOG =
 LoggerFactory.getLogger(ClientSimpleSubscriber.class);

 private final Session session;

 /**

Diffusion | 274

 * Constructor.
 */
 public ClientSimpleSubscriber() {

 session =

 Diffusion.sessions().principal("client").password("password")
 .open("ws://diffusion.example.com:80");

 // Use the Topics feature to add a topic stream for
 // Foo and all topics under Bar and request subscription to
 those topics
 final Topics topics = session.feature(Topics.class);
 topics.addStream(">Foo", Content.class, new FooStream());
 topics.addStream(">Bar//", JSON.class, new BarStream());
 topics.subscribe(
 Diffusion.topicSelectors().anyOf("Foo", "Bar//"),
 new Topics.CompletionCallback.Default());
 }

 /**
 * Close session.
 */
 public void close() {
 session.close();
 }

 /**
 * The stream for all messages on the 'Foo' topic.
 */
 private class FooStream extends ValueStream.Default<Content> {
 @Override
 public void onValue(
 String topicPath,
 TopicSpecification specification,
 Content oldValue,
 Content newValue) {
 LOG.info(newValue.asString());
 }
 }

 /**
 * The stream for all messages on 'Bar' topics which are JSON
 topics.
 */
 private class BarStream extends ValueStream.Default<JSON> {
 @Override
 public void onValue(
 String topicPath,
 TopicSpecification specification,
 JSON oldValue,
 JSON newValue) {
 LOG.info(newValue.toJsonString());
 }
 }
}

.NET

using System;
using System.Threading;
using PushTechnology.ClientInterface.Client.Callbacks;

Diffusion | 275

using PushTechnology.ClientInterface.Client.Content;
using PushTechnology.ClientInterface.Client.Factories;
using PushTechnology.ClientInterface.Client.Features;
using PushTechnology.ClientInterface.Client.Features.Topics;
using PushTechnology.ClientInterface.Client.Topics.Details;

namespace PushTechnology.ClientInterface.GettingStarted {
 /// <summary>
 /// A client that subscribes to the topic 'foo/counter'.
 /// </summary>
 public sealed class SubscribingClient {
 public static void Main(string[] args) {

 // Connect anonymously
 var session = Diffusion.Sessions.Open("ws://
localhost:8080");

 // Get the Topics feature to subscribe to topics
 var topics = session.GetTopicsFeature();

 // Add a topic stream for 'foo/counter' and request
 subscription
 topics.AddStream(">foo/counter", new
 CounterTopicStream());

 topics.Subscribe(">foo/counter", new
 TopicsCompletionCallbackDefault());

 // Stay connected for 1 minute
 Thread.Sleep(TimeSpan.FromMinutes(1));

 session.Close();
 }
 }

 /// <summary>
 /// A simple IValueStream implementation.
 /// </summary>
 internal sealed class CounterTopicStream : IValueStream<IContent>
 {
 /// <summary>
 /// Notification of stream being closed normally.
 /// </summary>
 public void OnClose() {
 Console.WriteLine("The subscription stream is now
 closed.");
 }
 /// <summary>
 /// Notification of a contextual error related to this
 callback.
 /// </summary>
 /// <remarks>
 /// Situations in which <code>OnError</code> is called
 include the session being closed, a communication
 /// timeout, or a problem with the provided parameters. No
 further calls will be made to this callback.
 /// </remarks>
 /// <param name="errorReason"></param>
 public void OnError(ErrorReason errorReason) {
 Console.WriteLine("An error has occured : {0}",
 errorReason);
 }
 /// <summary>

Diffusion | 276

 /// Notification of a successful subscription.
 /// </summary>
 /// <param name="topicPath"></param>
 /// <param name="specification"></param>
 public void OnSubscription(string topicPath,
 ITopicSpecification specification) {
 Console.WriteLine("Client subscribed to {0} ",
 topicPath);
 }
 /// <summary>
 /// Notification of a successful unsubscription.
 /// </summary>
 /// <param name="topicPath">topic</param>
 /// <param name="specification">the specification of the
 topic</param>
 /// <param name="reason">error reason</param>
 public void OnUnsubscription(string topicPath,
 ITopicSpecification specification, TopicUnsubscribeReason reason) {
 Console.WriteLine("Client unsubscribed from {0} : {1}",
 topicPath, reason);
 }

 /// <summary>
 /// Topic update received.
 /// </summary>
 /// <param name="topicPath">topic</param>
 /// <param name="specification">the specification of the
 topic</param>
 /// <param name="oldValue">value prior to update</param>
 /// <param name="newValue">value after update</param>
 public void OnValue(string topicPath, ITopicSpecification
 specification, IContent oldValue, IContent newValue) {
 Console.WriteLine("New value of {0} is {1}", topicPath,
 newValue.AsString());
 }
 }
}

C

/*
 * This is a sample client which connects to Diffusion and subscribes
 * to topics using a user-specified selector. Any messages received
 on
 * those topics are then displayed to standard output.
 */

#include <stdio.h>
#include <unistd.h>

#include "diffusion.h"
#include "args.h"

ARG_OPTS_T arg_opts[] = {
 ARG_OPTS_HELP,
 {'u', "url", "Diffusion server URL", ARG_OPTIONAL,
 ARG_HAS_VALUE, "ws://localhost:8080"},
 {'t', "topic_selector", "Topic selector", ARG_REQUIRED,
 ARG_HAS_VALUE, NULL},
 END_OF_ARG_OPTS
};

Diffusion | 277

/*
 * This callback is used when the session state changes, e.g. when a
 session
 * moves from a "connecting" to a "connected" state, or from
 "connected" to
 * "closed".
 */
static void
on_session_state_changed(SESSION_T *session,
 const SESSION_STATE_T old_state,
 const SESSION_STATE_T new_state)
{
 printf("Session state changed from %s (%d) to %s (%d)\n",
 session_state_as_string(old_state), old_state,
 session_state_as_string(new_state), new_state);
}

/*
 * When a subscribed message is received, this callback is invoked.
 */
static int
on_topic_message(SESSION_T *session, const TOPIC_MESSAGE_T *msg)
{
 printf("Received message for topic %s\n", msg->name);
 printf("Payload: (%d bytes) %.*s\n",
 (int)msg->payload->len,
 (int)msg->payload->len,
 msg->payload->data);

 hexdump_buf(msg->payload);

 return HANDLER_SUCCESS;
}

/*
 * This callback is fired when Diffusion responds to say that a topic
 * subscription request has been received and processed.
 */
static int
on_subscribe(SESSION_T *session, void *context_data)
{
 printf("on_subscribe\n");
 return HANDLER_SUCCESS;
}

/*
 * This is callback is for when Diffusion response to an
 unsubscription
 * request to a topic, and only indicates that the request has been
 received.
 */
static int
on_unsubscribe(SESSION_T *session, void *context_data)
{
 printf("on_unsubscribe\n");
 return HANDLER_SUCCESS;
}

/*
 * Publishers and control clients may choose to subscribe any other
 client to
 * a topic of their choice at any time. We register this callback to
 capture

Diffusion | 278

 * messages from these topics and display them.
 */
static int
on_unexpected_topic_message(SESSION_T *session, const TOPIC_MESSAGE_T
 *msg)
{
 printf("Received a message for a topic we didn't subscribe to
 (%s)\n", msg->name);
 printf("Payload: %.*s\n", (int)msg->payload->len, msg-
>payload->data);
 return HANDLER_SUCCESS;
}

/*
 * We use this callback when Diffusion notifies us that we've been
 subscribed
 * to a topic. Note that this could be called for topics that we
 haven't
 * explicitly subscribed to - other control clients or publishers may
 ask to
 * subscribe us to a topic.
 */
static int
on_notify_subscription(SESSION_T *session, const
 SVC_NOTIFY_SUBSCRIPTION_REQUEST_T *request, void *context)
{
 printf("on_notify_subscription: %d: \"%s\"\n",
 request->topic_info.topic_id,
 request->topic_info.topic_path);
 return HANDLER_SUCCESS;
}

/*
 * This callback is used when we receive notification that this
 client has been
 * unsubscribed from a specific topic. Causes of the unsubscription
 are the same
 * as those for subscription.
 */
static int
on_notify_unsubscription(SESSION_T *session, const
 SVC_NOTIFY_UNSUBSCRIPTION_REQUEST_T *request, void *context)
{
 printf("on_notify_unsubscription: ID: %d, Path: %s, Reason:
 %d\n",
 request->topic_id,
 request->topic_path,
 request->reason);
 return HANDLER_SUCCESS;
}

int
main(int argc, char **argv)
{
 /*
 * Standard command-line parsing
 */
 HASH_T *options = parse_cmdline(argc, argv, arg_opts);
 if(options == NULL || hash_get(options, "help") != NULL) {
 show_usage(argc, argv, arg_opts);
 return EXIT_FAILURE;
 }

Diffusion | 279

 char *url = hash_get(options, "url");
 char *topic = hash_get(options, "topic_selector");

 /*
 * A SESSION_LISTENER_T holds callbacks to inform the client
 * about changes to the state. Used here for informational
 * purposes only.
 */
 SESSION_LISTENER_T session_listener = { 0 };
 session_listener.on_state_changed =
 &on_session_state_changed;

 /*
 * Creating a session requires at least a URL. Creating a
 * session initiates a connection with Diffusion.
 */
 DIFFUSION_ERROR_T error = { 0 };
 SESSION_T *session = NULL;
 session = session_create(url, NULL, NULL, &session_listener,
 NULL, &error);
 if(session == NULL) {
 fprintf(stderr, "TEST: Failed to create session\n");
 fprintf(stderr, "ERR : %s\n", error.message);
 return EXIT_FAILURE;
 }

 /*
 * When issuing commands to Diffusion (in this case,
 subscribe
 * to a topic), it's typical that more than one message may
 be
 * received in response and a handler can be installed for
 * each message type. In the case of subscription, we can
 * install handlers for:
 * 1. The topic message data (on_topic_message).
 * 2. Notification that the subscription has been received
 * (on_subscribe).
 * 3. Topic details (on_topic_details).
 */
 notify_subscription_register(session,
(NOTIFY_SUBSCRIPTION_PARAMS_T) { .on_notify_subscription =
 on_notify_subscription });
 notify_unsubscription_register(session,
 (NOTIFY_UNSUBSCRIPTION_PARAMS_T) { .on_notify_unsubscription =
 on_notify_unsubscription });

 subscribe(session, (SUBSCRIPTION_PARAMS_T) { .topic_selector
 = topic, .on_topic_message = on_topic_message, .on_subscribe =
 on_subscribe });

 /*
 * Install a global topic handler to capture messages for
 * topics we haven't explicitly subscribed to, and therefore
 * don't have a specific handler for.
 */
 session->global_topic_handler = on_unexpected_topic_message;

 /*
 * Receive messages for 5 seconds.
 */
 sleep(5);

 /*

Diffusion | 280

 * Unsubscribe from the topic
 */
 unsubscribe(session, (UNSUBSCRIPTION_PARAMS_T)
 {.topic_selector = topic, .on_unsubscribe = on_unsubscribe});

 /*
 * Wait for any unsubscription notifications to be received.
 */
 sleep(5);

 /*
 * Politely tell Diffusion we're closing down.
 */
 session_close(session, NULL);
 session_free(session);

 return EXIT_SUCCESS;
}

Change the URL from that provided in the example to the URL of the Diffusion server.

Related concepts
Topic selectors in the Unified API on page 60
A topic selector identifies one or more topics. You can create a topic selector object from a pattern
expression.

Topic selectors in the Classic API (deprecated) on page 67
A topic selector is a string that can be used by the Classic API to select more than one topic by
indicating that subordinate topics are to be included or by fuzzy matching on topic names or both.

Example: Subscribe to a JSON topic
The following examples subscribe to JSON topics and receive a stream of values from the topics.

JavaScript

diffusion.connect({
 host : 'diffusion.example.com',
 port : 443,
 secure : true,
 principal : 'control',
 credentials : 'password'
}).then(function(session) {

 // 1. Data Types are exposed from the top level Diffusion
 namespace. It is often easier
 // to assign these directly to a local variable.
 var jsonDataType = diffusion.datatypes.json();

 // 2. Data Types are currently provided for JSON and Binary topic
 types.
 session.topics.add('topic/json',
 diffusion.topics.TopicType.JSON);

 // 3. Values can be created directly from the data type.
 var jsonValue = jsonDataType.from({
 "foo" : "bar"
 });

 // Topics are updated using the standard update mechanisms
 session.topics.update('topic/json', jsonValue);

Diffusion | 281

 // Subscriptions are performed normally
 session.subscribe('topic/json');

 // 4. Streams can be specialised to provide values from a
 specific datatype.
 session.stream('topic/json').asType(jsonDataType).on('value',
 function(topic, specification, newValue, oldValue) {
 // When a JSON or Binary topic is updated, any value handlers
 on a subscription will be called with both the
 // new value, and the old value.

 // The oldValue parameter will be undefined if this is the
 first value received for a topic.

 // For JSON topics, value#get returns a JavaScript object
 // For Binary topics, value#get returns a Buffer instance
 console.log("Update for " + topic, newValue.get());
 });

 // 5. Raw values of an appropriate type can also be used for JSON
 and Binary topics.
 // For example, plain JSON objects can be used to update JSON
 topics.
 session.topics.update('topic/json', {
 "foo" : "baz",
 "numbers" : [1, 2, 3]
 });
});

Apple

@import Diffusion;

@interface JSONSubscribeExample (PTDiffusionJSONValueStreamDelegate)
 <PTDiffusionJSONValueStreamDelegate>
@end

/**
 This example demonstrates a client consuming JSON topics.

 It is assumed that under the FX topic there is a JSON topic for each
 currency
 which contains a map of conversion rates to each target currency.
 For example,
 FX/GBP could contain {"USD":"123.45","HKD":"456.3"}.

 @note For a topic updater compatible with this example, see the
 following
 in our Java examples: ControlClientUpdatingJSONTopics
 */
@implementation JSONSubscribeExample {
 PTDiffusionSession* _session;
}

-(void)startWithURL:(NSURL *const)url {
 NSLog(@"Connecting...");

 [PTDiffusionSession openWithURL:url
 completionHandler:^(PTDiffusionSession *session,
 NSError *error)
 {

Diffusion | 282

 if (!session) {
 NSLog(@"Failed to open session: %@", error);
 return;
 }

 // At this point we now have a connected session.
 NSLog(@"Connected.");

 // Set ivar to maintain a strong reference to the session.
 _session = session;

 // Register self as the fallback handler for JSON value
 updates.
 PTDiffusionValueStream *const valueStream =
 [PTDiffusionJSON valueStreamWithDelegate:self];
 [session.topics addFallbackStream:valueStream];

 // Subscribe.
 NSLog(@"Subscribing...");
 [session.topics subscribeWithTopicSelectorExpression:@"?FX/"

 completionHandler:^(NSError * const error)
 {
 if (error) {
 NSLog(@"Subscribe request failed. Error: %@", error);
 } else {
 NSLog(@"Subscribe request succeeded.");
 }
 }];
 }];
}

-(NSString *)currencyFromTopicPath:(NSString *const)topicPath {
 // The currency from which we're converting is the last component
 of the
 // topic path - e.g. topic path "FX/GBP" is currency "GBP".
 return [topicPath lastPathComponent];
}

@end

@implementation JSONSubscribeExample
 (PTDiffusionJSONValueStreamDelegate)

-(void) diffusionStream:(PTDiffusionStream *const)stream
 didSubscribeToTopicPath:(NSString *const)topicPath
 specification:(PTDiffusionTopicSpecification
 *const)specification {
 NSString *const currency = [self
 currencyFromTopicPath:topicPath];
 NSLog(@"Subscribed: Rates from %@", currency);
}

-(void)diffusionStream:(PTDiffusionValueStream *const)stream
 didUpdateTopicPath:(NSString *const)topicPath
 specification:(PTDiffusionTopicSpecification
 *const)specification
 oldJSON:(PTDiffusionJSON *const)oldJSON
 newJSON:(PTDiffusionJSON *const)newJSON {
 NSString *const currency = [self
 currencyFromTopicPath:topicPath];

Diffusion | 283

 // We're assuming that the incoming JSON document is correct as
 expected,
 // in that the root element is a map of currencies to which we
 have
 // conversion rates.
 NSError * error;
 NSDictionary *const map = [newJSON objectWithError:&error];
 if (!map) {
 NSLog(@"Failed to create map from received JSON. Error: %@",
 error);
 return;
 }

 // For the purposes of a meaningful example, only emit a log line
 if we
 // have a rate for GBP to USD.
 if ([currency isEqualToString:@"GBP"]) {
 const id rate = map[@"USD"];
 if (rate) {
 NSLog(@"Rate for GBP to USD: %@", rate);
 }
 }
}

-(void) diffusionStream:(PTDiffusionStream *const)stream
 didUnsubscribeFromTopicPath:(NSString *const)topicPath
 specification:(PTDiffusionTopicSpecification
 *const)specification
 reason:(const
 PTDiffusionTopicUnsubscriptionReason)reason {
 NSString *const currency = [self
 currencyFromTopicPath:topicPath];
 NSLog(@"Unsubscribed: Rates from %@", currency);
}

@end

Java and Android

package com.pushtechnology.diffusion.examples;

import static java.util.Objects.requireNonNull;

import java.io.IOException;
import java.math.BigDecimal;
import java.util.Map;

import com.fasterxml.jackson.core.type.TypeReference;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.dataformat.cbor.CBORFactory;
import com.fasterxml.jackson.dataformat.cbor.CBORParser;
import com.pushtechnology.diffusion.client.Diffusion;
import com.pushtechnology.diffusion.client.features.Topics;
import
 com.pushtechnology.diffusion.client.features.Topics.UnsubscribeReason;
import com.pushtechnology.diffusion.client.session.Session;
import
 com.pushtechnology.diffusion.client.topics.details.TopicSpecification;
import com.pushtechnology.diffusion.datatype.json.JSON;

/**
 * This demonstrates a client consuming JSON topics.

Diffusion | 284

 * <P>
 * It is assumed that under the FX topic there is a JSON topic for
 each currency
 * which contains a map of conversion rates to each target currency.
 For
 * example, FX/GBP could contain {"USD":"123.45","HKD":"456.3"}.
 * <P>
 * All updates will be notified to a listener.
 *
 * @author Push Technology Limited
 * @since 5.7
 * @see ControlClientUpdatingJSONTopics
 */
public final class ClientConsumingJSONTopics {

 private static final String ROOT_TOPIC = "FX";
 private static final String TOPIC_SELECTOR = String.format("?
%s/", ROOT_TOPIC);

 private final RatesListener listener;

 private final Session session;

 /**
 * Constructor.
 *
 * @param serverUrl for example "ws://diffusion.example.com:80
 */
 public ClientConsumingJSONTopics(String serverUrl, RatesListener
 listener) {

 this.listener = requireNonNull(listener);

 session =

 Diffusion.sessions().principal("client").password("password")
 .open(serverUrl);

 // Use the Topics feature to add a topic stream and subscribe
 to all
 // topics under the root
 final Topics topics = session.feature(Topics.class);
 topics.addStream(TOPIC_SELECTOR, JSON.class, new
 RatesStream());
 topics.subscribe(TOPIC_SELECTOR, new
 Topics.CompletionCallback.Default());
 }

 /**
 * Close session.
 */
 public void close() {
 session.feature(Topics.class).unsubscribe(
 TOPIC_SELECTOR,
 new Topics.CompletionCallback.Default() {
 @Override
 public void onComplete() {
 session.close();
 }
 });
 }

 private static String pathToCurrency(String path) {

Diffusion | 285

 return path.substring(path.indexOf('/') + 1);
 }

 /**
 * A listener for Rates updates.
 */
 public interface RatesListener {

 /**
 * Notification of a new rate or rate update.
 *
 * @param currency the base currency
 * @param rates map of rates
 */
 void onNewRates(String currency, Map<String, BigDecimal>
 rates);

 /**
 * Notification of a rate being removed.
 *
 * @param currency the base currency
 */
 void onRatesRemoved(String currency);
 }

 /**
 * The value stream.
 */
 private final class RatesStream extends
 Topics.ValueStream.Default<JSON> {

 private final CBORFactory factory = new CBORFactory();
 private final ObjectMapper mapper = new ObjectMapper();
 private final TypeReference<Map<String, BigDecimal>>
 typeReference =
 new TypeReference<Map<String, BigDecimal>>() {
 };

 @Override
 public void onValue(
 String topicPath,
 TopicSpecification specification,
 JSON oldValue,
 JSON newValue) {
 try {
 // Use the third-party Jackson library to parse the
 newValue's
 // binary representation and convert to a map
 final CBORParser parser =
 factory.createParser(newValue.asInputStream());
 final Map<String, BigDecimal> map =
 mapper.readValue(parser, typeReference);
 final String currency = pathToCurrency(topicPath);
 listener.onNewRates(currency, map);
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 }

 @Override
 public void onUnsubscription(
 String topicPath,

Diffusion | 286

 TopicSpecification specification,
 UnsubscribeReason reason) {

 final String currency = pathToCurrency(topicPath);
 listener.onRatesRemoved(currency);
 }

 }
}

Change the URL from that provided in the example to the URL of the Diffusion server.

Example: Fetch topic state
The following examples use the Unified API to fetch the current state of a topic without subscribing to
the topic.

Apple

@import Diffusion;

@interface FetchExample (PTDiffusionFetchStreamDelegate)
 <PTDiffusionFetchStreamDelegate>
@end

@implementation FetchExample {
 PTDiffusionSession* _session;
}

-(void)startWithURL:(NSURL*)url {
 NSLog(@"Connecting...");

 [PTDiffusionSession openWithURL:url
 completionHandler:^(PTDiffusionSession *session,
 NSError *error)
 {
 if (!session) {
 NSLog(@"Failed to open session: %@", error);
 return;
 }

 // At this point we now have a connected session.
 NSLog(@"Connected.");

 // Set ivar to maintain a strong reference to the session.
 _session = session;

 // Send fetch request.
 [session.topics fetchWithTopicSelectorExpression:@"*Assets//"
 delegate:self];
 }];
}

@end

@implementation FetchExample (PTDiffusionFetchStreamDelegate)

-(void)diffusionStream:(PTDiffusionStream * const)stream
 didFetchTopicPath:(NSString * const)topicPath
 content:(PTDiffusionContent * const)content {
 NSLog(@"Fetch Result: %@ = \"%@\"", topicPath, content);
}

Diffusion | 287

-(void)diffusionDidCloseStream:(PTDiffusionStream * const)stream {
 NSLog(@"Fetch stream finished.");
}

-(void)diffusionStream:(PTDiffusionStream * const)stream
 didFailWithError:(NSError * const)error {
 NSLog(@"Fetch stream failed error: %@", error);
}

@end

Java and Android

package com.pushtechnology.diffusion.examples;

import com.pushtechnology.diffusion.client.Diffusion;
import com.pushtechnology.diffusion.client.features.Topics;
import
 com.pushtechnology.diffusion.client.features.Topics.FetchContextStream;
import com.pushtechnology.diffusion.client.session.Session;
import com.pushtechnology.diffusion.client.topics.TopicSelector;

/**
 * This is a simple example of a client that fetches the state of
 topics but
 * does not subscribe to them.
 * <P>
 * This makes use of the 'Topics' feature only.
 *
 * @author Push Technology Limited
 * @since 5.0
 */
public final class ClientUsingFetch {

 private final Session session;
 private final Topics topics;

 /**
 * Constructor.
 */
 public ClientUsingFetch() {

 session =

 Diffusion.sessions().principal("client").password("password")
 .open("ws://diffusion.example.com:80");

 topics = session.feature(Topics.class);
 }

 /**
 * Issues a fetch request for a topic or selection of topics.
 *
 * @param topicSelector a {@link TopicSelector} expression
 * @param fetchContext context string to be returned with the
 fetch
 * response(s)
 * @param stream callback for fetch responses
 */
 public void fetch(
 String topicSelector,
 String fetchContext,

Diffusion | 288

 FetchContextStream<String> stream) {

 topics.fetch(topicSelector, fetchContext, stream);
 }

 /**
 * Close the session.
 */
 public void close() {
 session.close();
 }

}

.NET

using PushTechnology.ClientInterface.Client.Factories;
using PushTechnology.ClientInterface.Client.Features;
using PushTechnology.ClientInterface.Client.Session;

namespace Examples {
 /// <summary>
 /// This is a simple example of a client that fetches the state
 of topics but does not subscribe to them.
 ///
 /// This makes use of the <see cref="ITopics"/> feature only.
 /// </summary>
 public class ClientUsingFetch {
 private readonly ISession session;
 private readonly ITopics topics;

 public ClientUsingFetch() {
 session =
 Diffusion.Sessions.Principal("client").Password("password")
 .Open("ws://diffusion.example.com:80");

 topics = session.GetTopicsFeature();
 }

 /// <summary>
 /// Issues a fetch request for a topic or selection of
 topics.
 /// </summary>
 /// <param name="topicSelector">A <see cref="TopicSelector"/>
 expression.</param>
 /// <param name="fetchContext">The context string to be
 returned with the fetch response(s).</param>
 /// <param name="stream">The callback for fetch responses.</
param>
 public void Fetch(string topicSelector, string fetchContext,
 IFetchContextStream<string> stream) {
 topics.Fetch(topicSelector, fetchContext, stream);
 }

 /// <summary>
 /// Close the session.
 /// </summary>
 public void Close() {
 session.Close();
 }
 }
}

Diffusion | 289

C

/*
 * This is a sample client which connects to Diffusion and
 demonstrates
 * the following features:
 *
 * 1. Fetch topic state using a user-specified topic selector.
 * 2. Connect to Diffusion with a username and password.
 * 3. Automatic retry of a connection if unable to connect at the
 first
 * attempt.
 */

#include <stdio.h>
#include <unistd.h>

#include "diffusion.h"
#include "args.h"

extern void topic_message_debug();

ARG_OPTS_T arg_opts[] = {
 ARG_OPTS_HELP,
 {'u', "url", "Diffusion server URL", ARG_OPTIONAL,
 ARG_HAS_VALUE, "ws://localhost:8080"},
 {'t', "topic_selector", "Topic selector", ARG_REQUIRED,
 ARG_HAS_VALUE, NULL},
 {'r', "retries", "Number of connection retries",
 ARG_OPTIONAL, ARG_HAS_VALUE, "3"},
 {'d', "retry_delay", "Delay (in ms) between connection
 attempts", ARG_OPTIONAL, ARG_HAS_VALUE, "1000"},
 {'p', "principal", "Principal (username) for the connection",
 ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'c', "credentials", "Credentials (password) for the
 connection", ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 END_OF_ARG_OPTS
};

/*
 * This callback is used when the session state changes, e.g. when a
 session
 * moves from a "connecting" to a "connected" state, or from
 "connected" to
 * "closed".
 */
static void
on_session_state_changed(SESSION_T *session, const SESSION_STATE_T
 old_state, const SESSION_STATE_T new_state)
{
 printf("Session state changed from %s (%d) to %s (%d)\n",
 session_state_as_string(old_state), old_state,
 session_state_as_string(new_state), new_state);
 if(new_state == CONNECTED_ACTIVE) {
 printf("Session ID=%s\n",
 session_id_to_string(session->id));
 }
}

/*
 * This callback is invoked when Diffusion acknowledges that it has
 received

Diffusion | 290

 * the fetch request. It does not indicate that there will be any
 subsequent
 * messages; see on_topic_message() and on_fetch_status_message() for
 that.
 */
static int
on_fetch(SESSION_T *session, void *context)
{
 puts("Fetch acknowledged by server");
 return HANDLER_SUCCESS;
}

/*
 * This callback is invoked when all messages for a topic selector
 have
 * been received, or there was some kind of server-side error during
 the
 * fetch processing.
 */
static int
on_fetch_status_message(SESSION_T *session,
 const SVC_FETCH_STATUS_RESPONSE_T *status,
 void *context)
{
 switch(status->status_flag) {
 case DIFFUSION_TRUE:
 puts("Fetch succeeded");
 break; //exit(0);
 case DIFFUSION_FALSE:
 puts("Fetch failed");
 break; //exit(1);
 default:
 printf("Unknown fetch status: %d\n", status-
>status_flag);
 break;
 }

 return HANDLER_SUCCESS;
}

/*
 * When a fetched message is received, this callback in invoked.
 */
static int
on_topic_message(SESSION_T *session, const TOPIC_MESSAGE_T *msg)
{
 printf("Received message for topic %s\n", msg->name);
 printf("Payload: %.*s\n", (int)msg->payload->len, msg-
>payload->data);

#ifdef DEBUG
 topic_message_debug(response->payload);
#endif

 return HANDLER_SUCCESS;
}

int
main(int argc, char **argv)
{
 /*
 * Standard command-line parsing.
 */

Diffusion | 291

 HASH_T *options = parse_cmdline(argc, argv, arg_opts);
 if(options == NULL || hash_get(options, "help") != NULL) {
 show_usage(argc, argv, arg_opts);
 return EXIT_FAILURE;
 }

 char *url = hash_get(options, "url");
 char *topic = hash_get(options, "topic_selector");
 int retries = atoi(hash_get(options, "retries"));
 long retry_delay = atol(hash_get(options, "retry_delay"));

 /*
 * A SESSION_LISTENER_T holds callbacks to inform the client
 * about changes to the state. Used here for informational
 * purposes only.
 */
 SESSION_LISTENER_T foo_listener = {
 foo_listener.on_state_changed =
 &on_session_state_changed
 };

 /*
 * The client-side API can automatically keep retrying to
 * connect to the Diffusion server if it's not immediately
 * available.
 */
 RECONNECTION_STRATEGY_T *reconnection_strategy =
 make_reconnection_strategy_repeating_attempt(retries,
 retry_delay);

 /*
 * Creating a session requires at least a URL. Creating a
 session
 * initiates a connection with Diffusion.
 */
 SESSION_T *session;
 DIFFUSION_ERROR_T error = { 0 };
 session = session_create(url,
 hash_get(options, "principal"),

 credentials_create_password(hash_get(options, "credentials")),
 &foo_listener,
 reconnection_strategy, &error);
 if(session == NULL) {
 fprintf(stderr, "TEST: Failed to create session\n");
 fprintf(stderr, "ERR : %s\n", error.message);
 return EXIT_FAILURE;
 }

 /*
 * Register handlers for callbacks we're interested in
 * relating to the fetch request. In particular, we want to
 * know about the topic messages that are returned, and the
 * status message which tells us when all messages have been
 * received for the selector (or, if something went wrong.)
 */
 FETCH_PARAMS_T params = {
 .selector = topic,
 .on_topic_message = on_topic_message,
 .on_fetch = on_fetch,
 .on_status_message = on_fetch_status_message
 };

Diffusion | 292

 /*
 * Issue the fetch request.
 */
 fetch(session, params);

 /*
 * Wait for 5 seconds for the results to come in.
 */
 sleep(5);

 /*
 * Clean up.
 */
 session_close(session, NULL);
 session_free(session);

 return EXIT_SUCCESS;
}

Change the URL from that provided in the example to the URL of the Diffusion server.

Managing topics
A client can use the TopicControl feature of the Unified API to add and remove topics at the server.

Currently all topics created using a client have a lifespan the same as the Diffusion server. The topics
remain at the Diffusion server even after the client session that created them has closed unless you
explicitly specify that the topic is removed with the session.

Adding topics by initial value

Required permissions: modify_topic

A client can add a topic and define its type by providing an initial value. Diffusion uses the initial value
to derive the topic type and to set the initial value of the topic.

The following table lists the topic types derived from different types of provided values:

Value type Topic type Metadata Initial value

JSON JSON Not applicable The supplied value

Binary Binary Not applicable The supplied value

Content created using a
builder method

Record The metadata of the
content is derived from
the records and fields
in the content with the
following assumptions:

• Numeric values
are assumed to be
MIntegerString

• Numeric values
that contain a
decimal point (.)
are assumed to be
MDecimalString
with a scale equal

The supplied content

Diffusion | 293

Value type Topic type Metadata Initial value
to the number of
places after the
decimal point

• All other values
are assumed to be
MString

Content not created
using a builder method

Single value MString The supplied content as
a string

Integer, Long, Short,
Byte, BigInteger,
AtomicInteger,
AtomicLong

Single value MIntegerString A value derived
from the string
representation of the
supplied value

BigDecimal Single value MDecimalString
with scale from
supplied value

A value derived
from the string
representation of the
supplied value

Double, Float Single value MDecimalString
with scale 2

A value derived
from the string
representation of the
supplied value

Note: We
do not
recommend
using floating
point numbers.
If used, the
number is
converted
to decimal
using half even
rounding.

Other Single value MString A string representation
of the supplied value

The addTopicFromValue operation is asynchronous and calls back to notify of either successful
creation of the topic or failure to create the topic. If the topic add fails at the Diffusion server, the
reason for failure is returned.

A client can create topics subordinate to topics created by another client.

Note: It is not currently possible to add new topics under branches of the topic tree that have
been created by internal publishers.

Adding topics with topic specifications

Required permissions: modify_topic

Supported platforms: JavaScript, Android, Java

To create a JSON or binary topic, you can either create the topic by defining just the topic type or use
the more complex topic specification to specify other attributes of the topic.

Diffusion | 294

You can use the same instance of topic specification to create many topics.

The addTopic operation is asynchronous and calls back to notify of either successful creation of the
topic or failure to create the topic. If the topic add fails at the Diffusion server, the reason for failure is
returned.

A client can create topics subordinate to topics created by another client.

Note: It is not currently possible to add new topics under branches of the topic tree that have
been created by internal publishers.

Adding other topics

Required permissions: modify_topic

For a client to create a topic it must first define the topic details that describe the topic. Builders of
topic details can be created using the TopicControl feature. For more information, see .

You can use the same instance of topic details to create many topics. This is recommended when
many topics with the same definition are to be created, because caching optimizations occur that
prevent complex definitions from being transmitted to the Diffusion server many times.

For some types of topic, setting up metadata is part of the task of describing the topic.

The client can use the TopicControl feature to supply the initial state of the topic to the Diffusion
server, as content, when the topic is created.

The addTopic operation is asynchronous and calls back to notify of either successful creation of the
topic or failure to create the topic. If the topic add fails at the Diffusion server, the reason for failure is
returned. Possible reasons for failure include the following:

• The topic already exists at the Diffusion server
• The name of the supplied topic is not valid
• The supplied details are not valid. This can occur only if properties are supplied.
• A user-supplied class cannot be found or instantiated. This can occur if you try to create a routing,

paged, custom, or service topic and you have defined server-side classes to instantiate the topic.
• A referenced topic cannot be found
• Permission to create the topic was denied
• An error occurred trying to initialize the newly created topic with the supplied content, possibly

because it was not validly formatted

A client can create topics subordinate to topics created by another client.

Note: It is not currently possible to add new topics under branches of the topic tree that have
been created by internal publishers.

Removing topics

Required permissions: modify_topic

A client can remove topics anywhere in the topic tree. The remove operation takes a topic selector,
which enables the client to remove many topics at once.

You can also opt to remove all topics beneath a selected topic path by appending the descendant
pattern qualifiers, / and //. For more information, see Topic selectors in the Unified API on page 60.

Example: Create a topic
The following examples use the TopicControl feature in the Unified API to create topics.

JavaScript

var diffusion = require('diffusion');

Diffusion | 295

// Connect to the server. Change these options to suit your own
 environment.
// Node.js does not accept self-signed certificates by default. If
 you have
// one of these, set the environment variable
 NODE_TLS_REJECT_UNAUTHORIZED=0
// before running this example.
diffusion.connect({
 host : 'diffusion.example.com',
 port : 443,
 secure : true,
 principal : 'control',
 credentials : 'password'
}).then(function(session) {
 // 1. Topics can be created with a specified topic path and
 value. If the path contains multiple levels, any
 // intermediary topic path that do not already have topics remain
 unchanged.

 // Create a topic with string values, and an initial value of
 "xyz".
 session.topics.add('topic/string', 'xyz');

 // Create a topic with integer values, and an initial value of
 123.
 session.topics.add('topic/integer', 123);

 // Create a topic with decimal values, with an implicit scale of
 2 and an initial value of 1.23.
 session.topics.add('topic/decimal', 1.23);

 // 2. Adding a topic returns a result, which allows us to handle
 when the operation has either
 // completed successfully or encountered an error.
 session.topics.add('topic/result', 'abc').then(function(result) {
 console.log('Added topic: ' + result.topic);
 }, function(reason) {
 console.log('Failed to add topic: ', reason);
 });

 // Adding a topic that already exists will succeed, so long as it
 has the same value type
 session.topics.add('topic/result', 'xyz').then(function(result) {
 // result.added will be false, as the topic already existed
 console.log('Added topic: ' + result.topic, result.added);
 });

 // Because the result returned from adding a topic is a promise,
 we can easily chain
 // multiple topic adds together
 session.topics.add('chain/foo',
 1).then(session.topics.add('chain/bar', 2))

 .then(session.topics.add('chain/baz', 3))

 .then(session.topics.add('chain/bob', 4))
 .then(function() {
 console.log('Added all
 topics');
 }, function(reason) {
 console.log('Failed to add
 topic', reason);

Diffusion | 296

 });

 // 3. Metadata can be used to create topics that will contain
 values of a specified format.

 // RecordContent formats data in a series of records and fields,
 similar to tabular data.
 // Each record & field is named, allowing direct lookup of
 values. Each field value has a
 // particular type (string, integer, decimal)
 var metadata = new diffusion.metadata.RecordContent();

 // Records are like rows in a table. They can have fields
 assigned, with default values.
 // You can add fields all at once like this, or individually (see
 below).
 var game = metadata.addRecord('game', 1, {
 'title' : metadata.string(),
 'round' : metadata.integer(0),
 'count' : metadata.integer(0)
 });

 // Records and fields can be set as occurring a certain number of
 times.
 var player = metadata.addRecord('player', metadata.occurs(0, 8));

 // Add fields to a record individually.
 player.addField('name', 'Anonymous');
 player.addField('score', 0);

 // Adding the topic works just like normal.
 session.topics.add('games/some-game', metadata);

 // And the metadata can be re-used for multiple topics.
 session.topics.add('games/some-other-game', metadata);

 // 4. Using metadata, it is possible to create a topic with both
 a metadata format, and the initial value

 // Topic values can be produced from metadata via the builder
 interface
 var builder = metadata.builder();

 // Values must be set before a value can be created
 builder.add('game', { title : 'Planet Express!', count : 3 });

 builder.add('player', { name : 'Fry', score : 0 });
 builder.add('player', { name : 'Amy', score : 0 });
 builder.add('player', { name : 'Kif', score : 0 });

 // Build a content instance
 var content = builder.build();

 // Now that the content has been built, a topic can be added with
 the metadata & initial value
 session.topics.add('games/yet-another-game', metadata,
 content).then(function() {
 console.log('Topic was added with metadata and content');
 });
});

Diffusion | 297

Apple

#import "AddTopicExample.h"

@import Diffusion;

@implementation AddTopicExample {
 PTDiffusionSession* _session;
}

-(void)startWithURL:(NSURL*)url {

 PTDiffusionCredentials *const credentials =
 [[PTDiffusionCredentials alloc]
 initWithPassword:@"password"];

 PTDiffusionSessionConfiguration *const sessionConfiguration =
 [[PTDiffusionSessionConfiguration alloc]
 initWithPrincipal:@"control"

 credentials:credentials];

 NSLog(@"Connecting...");

 [PTDiffusionSession openWithURL:url
 configuration:sessionConfiguration
 completionHandler:^(PTDiffusionSession *session,
 NSError *error)
 {
 if (!session) {
 NSLog(@"Failed to open session: %@", error);
 return;
 }

 // At this point we now have a connected session.
 NSLog(@"Connected.");

 // Set ivar to maintain a strong reference to the session.
 _session = session;

 // Add topics.
 [self addTopicsForSession:session];
 }];
}

-(void)addTopicsForSession:(PTDiffusionSession *const)session {
 // Add a stateless topic.
 [session.topicControl addWithTopicPath:@"Example/Stateless"

 type:PTDiffusionTopicType_Stateless
 value:nil
 completionHandler:^(NSError *const error)
 {
 if (error) {
 NSLog(@"Failed to add stateless topic. Error: %@",
 error);
 } else {
 NSLog(@"Stateless topic created.");
 }
 }];

 // Add a single value topic with an initial value.

Diffusion | 298

 NSData *const data = [@"Hello"
 dataUsingEncoding:NSUTF8StringEncoding];
 PTDiffusionContent *const initialValue =
 [[PTDiffusionContent alloc] initWithData:data];
 [session.topicControl addWithTopicPath:@"Example/SingleValue"

 type:PTDiffusionTopicType_SingleValue
 value:initialValue
 completionHandler:^(NSError * _Nullable
 error)
 {
 if (error) {
 NSLog(@"Failed to add single value topic. Error: %@",
 error);
 } else {
 NSLog(@"Single value topic created.");
 }
 }];
}

@end

Java and Android

import java.util.List;

import com.pushtechnology.diffusion.client.Diffusion;
import
 com.pushtechnology.diffusion.client.callbacks.TopicTreeHandler;
import com.pushtechnology.diffusion.client.content.Content;
import
 com.pushtechnology.diffusion.client.content.RecordContentBuilder;
import com.pushtechnology.diffusion.client.content.metadata.MContent;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl.AddContextCallback;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl.RemovalCallback;
import com.pushtechnology.diffusion.client.session.Session;
import
 com.pushtechnology.diffusion.client.topics.details.RecordTopicDetails;
import
 com.pushtechnology.diffusion.client.topics.details.TopicDetails;

/**
 * An example of using a control client to add topics.
 * <P>
 * This uses the 'TopicControl' feature only.
 * <P>
 * To add or remove topics, the client session must have the
 'modify_topic'
 * permission for that branch of the topic tree.
 *
 * @author Push Technology Limited
 * @since 5.0
 */
public class ControlClientAddingTopics {

 private final Session session;

 private final TopicControl topicControl;

Diffusion | 299

 /**
 * Constructor.
 */
 public ControlClientAddingTopics() {

 session =

 Diffusion.sessions().principal("control").password("password")
 .open("ws://diffusion.example.com:80");

 topicControl = session.feature(TopicControl.class);

 }

 /**
 * Adds a topic with type derived from the initial value.
 * <P>
 * This uses the simple convenience method for adding topics
 where the topic
 * type (and metadata, if appropriate) are derived from a
 supplied value
 * which can be any object. For example, an Integer would result
 in a single
 * value topic of type integer or a JSON object would result in a
 JSON
 * topic.
 *
 * @param topicPath full topic path
 * @param initialValue an initial value for the topic
 * @param context this will be passed back to the callback when
 reporting
 * success or failure of the topic add
 * @param callback to notify result of operation
 * @param <T> the value type
 * @return the topic details used to add the topic
 */
 public <T> TopicDetails addTopic(
 String topicPath,
 T initialValue,
 String context,
 AddContextCallback<String> callback) {

 return topicControl.addTopicFromValue(
 topicPath,
 initialValue,
 context,
 callback);
 }

 /**
 * Add a record topic from a list of initial values.
 * <P>
 * This demonstrates the simplest mechanism for adding a record
 topic by
 * supplying values that both the metadata and the initial values
 are
 * derived from.
 *
 * @param topicPath full topic path
 * @param initialValues the initial values for the topic fields
 which will

Diffusion | 300

 * also be used to derive the metadata definition of the
 topic
 * @param context this will be passed back to the callback when
 reporting
 * success or failure of the topic add
 * @param callback to notify result of operation
 * @return the topic details used to add the topic
 */
 public TopicDetails addRecordTopic(
 String topicPath,
 List<String> initialValues,
 String context,
 AddContextCallback<String> callback) {

 return topicControl.addTopicFromValue(
 topicPath,

 Diffusion.content().newBuilder(RecordContentBuilder.class)
 .putFields(initialValues).build(),
 context,
 callback);

 }

 /**
 * Adds a record topic with supplied metadata and optional
 initial content.
 * <P>
 * This example shows details being created and would be fine
 when creating
 * topics that are all different but if creating many record
 topics with the
 * same details then it is far more efficient to pre-create the
 details.
 *
 * @param topicPath the full topic path
 * @param metadata pre-created record metadata
 * @param initialValue optional initial value for the topic which
 must have
 * been created to match the supplied metadata
 * @param context context passed back to callback when topic
 created
 * @param callback to notify result of operation
 */
 public void addRecordTopic(
 String topicPath,
 MContent metadata,
 Content initialValue,
 String context,
 AddContextCallback<String> callback) {

 final TopicDetails details =

 topicControl.newDetailsBuilder(RecordTopicDetails.Builder.class)
 .metadata(metadata).build();

 topicControl.addTopic(
 topicPath,
 details,
 initialValue,
 context,
 callback);
 }

Diffusion | 301

 /**
 * Remove a single topic given its path.
 *
 * @param topicPath the topic path
 * @param callback notifies result of operation
 */
 public void removeTopic(String topicPath, RemovalCallback
 callback) {
 topicControl.remove(topicPath, callback);
 }

 /**
 * Remove a topic and all of its descendants.
 *
 * @param topicPath the topic path
 * @param callback notifies result of operation
 */
 public void removeTopicBranch(String topicPath, RemovalCallback
 callback) {
 topicControl.remove("?" + topicPath + "//", callback);
 }

 /**
 * Remove one or more topics using a topic selector expression.
 *
 * @param topicSelector the selector expression
 * @param callback notifies result of operation
 */
 public void removeTopics(String topicSelector, RemovalCallback
 callback) {
 topicControl.remove(topicSelector, callback);
 }

 /**
 * Request that the topic {@code topicPath} and its descendants
 be removed
 * when the session is closed (either explicitly using {@link
 Session#close}
 * , or by the server). If more than one session calls this
 method for the
 * same {@code topicPath}, the topics will be removed when the
 last session
 * is closed.
 *
 * <p>
 * Different sessions may call this method for the same topic
 path, but not
 * for topic paths above or below existing registrations on the
 same branch
 * of the topic tree.
 *
 * @param topicPath the part of the topic tree to remove when the
 last
 * session is closed
 */
 public void removeTopicsWithSession(String topicPath) {
 topicControl.removeTopicsWithSession(
 topicPath, new TopicTreeHandler.Default());
 }

 /**
 * Close the session.

Diffusion | 302

 */
 public void close() {
 session.close();
 }

}

.NET

using System.Collections.Generic;
using PushTechnology.ClientInterface.Client.Callbacks;
using PushTechnology.ClientInterface.Client.Content;
using PushTechnology.ClientInterface.Client.Content.Metadata;
using PushTechnology.ClientInterface.Client.Factories;
using PushTechnology.ClientInterface.Client.Features.Control.Topics;
using PushTechnology.ClientInterface.Client.Session;
using PushTechnology.ClientInterface.Client.Topics;

namespace Examples {
 /// <summary>
 /// An example of using a control client to add topics.
 ///
 /// This uses the <see cref="ITopicControl"/> feature only.
 ///
 /// To add or remove topics, the client session must have the
 <see cref="TopicPermission.MODIFY_TOPIC"/> permission
 /// for that branch of the topic tree.
 /// </summary>
 public class ControlClientAddingTopics {
 private readonly ISession session;
 private readonly ITopicControl topicControl;

 public ControlClientAddingTopics() {
 session =
 Diffusion.Sessions.Principal("control").Password("password")
 .Open("ws://diffusion.example.com:80");

 topicControl = session.GetTopicControlFeature();
 }

 /// <summary>
 /// Adds a topic with the type derived from the value.
 ///
 /// This uses the simple convenience method for adding topics
 where the topic type and metadata are derived
 /// from a supplied value which can be any object. For
 example, an integer would result in a single value topic
 /// of type 'integer'.
 /// </summary>
 /// <typeparam name="T">The value type.</typeparam>
 /// <param name="topicPath">The full topic path.</param>
 /// <param name="initialValue">An optional initial value for
 the topic.</param>
 /// <param name="context">This will be passed back to the
 callback when reporting success or failure of the
 /// topic add.</param>
 /// <param name="callback">To notify the result of the
 operation.</param>
 /// <returns>The topic details used to add the topic.</
returns>
 public ITopicDetails AddTopicForValue<T>(string topicPath, T
 initialValue, string context,

Diffusion | 303

 ITopicControlAddContextCallback<string> callback) {
 return topicControl.AddTopicFromValue(topicPath,
 initialValue, context, callback);
 }

 /// <summary>
 /// Add a record topic from a list of initial values.
 ///
 /// This demonstrates the simplest mechanism for adding a
 record topic by supplying values that both the
 /// metadata and the initial values are derived from.
 /// </summary>
 /// <param name="topicPath">The full topic path.</param>
 /// <param name="initialValues">The initial values for the
 topic fields which will also be used to derive the
 /// metadata definition of the topic.</param>
 /// <param name="context">This will be passed back to the
 callback when reporting success or failure of the
 /// topic add.</param>
 /// <param name="callback">To notify the result of the
 operation.</param>
 /// <returns></returns>
 public ITopicDetails AddRecordTopic(string topicPath,
 List<string> initialValues, string context,
 ITopicControlAddContextCallback<string> callback) {
 return topicControl.AddTopicFromValue(topicPath,

 Diffusion.Content.NewBuilder<IRecordContentBuilder>().PutFields(initialValues.ToArray()).Build(),
 context, callback);
 }

 /// <summary>
 /// Adds a record topic with supplied metadata and optional
 initial content.
 ///
 /// This example shows details being created and would be
 fine when creating topics that are all different, but
 /// if creating many record topics with the same details,
 then it is far more efficient to pre-create the
 /// details.
 /// </summary>
 /// <param name="topicPath">The full topic path.</param>
 /// <param name="metadata">The pre-created record metadata.</
param>
 /// <param name="initialValue">The optional initial value for
 the topic which must have been created to match
 /// the supplied metadata.</param>
 /// <param name="context">The context passed back to the
 callback when the topic is created.</param>
 /// <param name="callback">To notify the result of the
 operation.</param>
 public void AddRecordTopic(string topicPath, IMContent
 metadata, IContent initialValue, string context,
 ITopicControlAddContextCallback<string> callback) {
 var details =
 topicControl.CreateDetailsBuilder<IRecordTopicDetailsBuilder>().Metadata(metadata).Build();

 topicControl.AddTopic(topicPath, details, initialValue,
 context, callback);
 }

 /// <summary>
 /// Remove a single topic given its path.

Diffusion | 304

 /// </summary>
 /// <param name="topicPath">The topic path.</param>
 /// <param name="callback">Notifies the result of the
 operation.</param>
 public void RemoveTopic(string topicPath,
 ITopicControlRemoveCallback callback) {
 topicControl.RemoveTopics(">" + topicPath, callback);
 }

 /// <summary>
 /// Remove one or more topics using a topic selector
 expression.
 /// </summary>
 /// <param name="topicSelector">The selector expression.</
param>
 /// <param name="callback">Notifies the result of the
 operation.</param>
 public void RemoveTopics(string topicSelector,
 ITopicControlRemoveCallback callback) {
 topicControl.RemoveTopics(topicSelector, callback);
 }

 /// <summary>
 /// Request that the topic path and its descendants be
 removed when the session is closed (either explicitly
 /// using <see cref="ISession.Close"/>, or by the server). If
 more than one session calls this method for the
 /// same topic path, the topics will be removed when the last
 session is closed.
 ///
 /// Different sessions may call this method for the same
 topic path, but not for topic paths above or below
 /// existing registrations on the same branch of the topic
 tree.
 /// </summary>
 /// <param name="topicPath">The part of the topic tree to
 remove when the last session is closed.</param>
 public void RemoveTopicsWithSession(string topicPath) {
 topicControl.RemoveTopicsWithSession(topicPath, new
 DefaultTopicTreeHandler());
 }

 /// <summary>
 /// Close the session.
 /// </summary>
 public void Close() {
 session.Close();
 }
 }
}

C

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include <apr.h>
#include <apr_thread_mutex.h>
#include <apr_thread_cond.h>

#include "diffusion.h"

Diffusion | 305

#include "args.h"
#include "utils.h"

/*
 * We use a mutex and a condition variable to help synchronize the
 * flow so that it becomes linear and easier to follow the core
 logic.
 */
apr_pool_t *pool = NULL;
apr_thread_mutex_t *mutex = NULL;
apr_thread_cond_t *cond = NULL;

ARG_OPTS_T arg_opts[] = {
 ARG_OPTS_HELP,
 {'u', "url", "Diffusion server URL", ARG_OPTIONAL,
 ARG_HAS_VALUE, "ws://localhost:8080"},
 {'p', "principal", "Principal (username) for the connection",
 ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'c', "credentials", "Credentials (password) for the
 connection", ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 END_OF_ARG_OPTS
};

// Various handlers which are common to all add_topic() functions.
static int
on_topic_added(SESSION_T *session, const SVC_ADD_TOPIC_RESPONSE_T
 *response, void *context)
{
 puts("on_topic_added");
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

static int
on_topic_add_failed(SESSION_T *session, const
 SVC_ADD_TOPIC_RESPONSE_T *response, void *context)
{
 printf("on_topic_add_failed: %d\n", response->response_code);
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

static int
on_topic_add_discard(SESSION_T *session, void *context)
{
 puts("on_topic_add_discard");
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

static int
on_topic_removed(SESSION_T *session, const
 SVC_REMOVE_TOPICS_RESPONSE_T *response, void *context)
{
 puts("on_topic_removed");
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);

Diffusion | 306

 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

static int
on_topic_remove_discard(SESSION_T *session, void *context)
{
 puts("on_topic_remove_discard");
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}
/*
 *
 */
int main(int argc, char** argv)
{
 /*
 * Standard command-line parsing.
 */
 HASH_T *options = parse_cmdline(argc, argv, arg_opts);
 if(options == NULL || hash_get(options, "help") != NULL) {
 show_usage(argc, argv, arg_opts);
 return EXIT_FAILURE;
 }

 char *url = hash_get(options, "url");
 const char *principal = hash_get(options, "principal");
 CREDENTIALS_T *credentials = NULL;
 const char *password = hash_get(options, "credentials");
 if(password != NULL) {
 credentials = credentials_create_password(password);
 }

 // Setup for condition variable
 apr_initialize();
 apr_pool_create(&pool, NULL);
 apr_thread_mutex_create(&mutex, APR_THREAD_MUTEX_UNNESTED,
 pool);
 apr_thread_cond_create(&cond, pool);

 // Setup for session
 SESSION_T *session;
 DIFFUSION_ERROR_T error = { 0 };
 session = session_create(url, principal, credentials, NULL,
 NULL, &error);
 if(session == NULL) {
 fprintf(stderr, "TEST: Failed to create session\n");
 fprintf(stderr, "ERR : %s\n", error.message);
 return EXIT_FAILURE;
 }

 // Common params for all add_topic() functions.
 ADD_TOPIC_PARAMS_T common_params = {
 .on_topic_added = on_topic_added,
 .on_topic_add_failed = on_topic_add_failed,
 .on_discard = on_topic_add_discard
 };

 /*
 * Create a stateless topic.
 */

Diffusion | 307

 TOPIC_DETAILS_T *topic_details =
 create_topic_details_stateless();
 ADD_TOPIC_PARAMS_T stateless_params = common_params;
 stateless_params.topic_path = "stateless";
 stateless_params.details = topic_details;

 apr_thread_mutex_lock(mutex);
 add_topic(session, stateless_params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

 /*
 * Create a topic with single value string data, but with
 * containing no default data.
 */
 TOPIC_DETAILS_T *string_topic_details =
 create_topic_details_single_value(M_DATA_TYPE_STRING);
 ADD_TOPIC_PARAMS_T string_params = common_params;
 string_params.topic_path = "string";
 string_params.details = string_topic_details;

 apr_thread_mutex_lock(mutex);
 add_topic(session, string_params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

 /*
 * Create a topic with single value string data and
 containing
 * some default data.
 */
 ADD_TOPIC_PARAMS_T string_data_params = common_params;
 string_data_params.topic_path = "string-data";
 string_data_params.details = string_topic_details;
 BUF_T *sample_data_buf = buf_create();
 buf_write_string(sample_data_buf, "Hello, world");
 string_data_params.content =
 content_create(CONTENT_ENCODING_NONE, sample_data_buf);

 apr_thread_mutex_lock(mutex);
 add_topic(session, string_data_params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

 /*
 * Create a topic with single value integer data, and with a
 * default value.
 */
 TOPIC_DETAILS_T *integer_topic_details =
 create_topic_details_single_value(M_DATA_TYPE_INTEGER_STRING);
 integer_topic_details-
>topic_details_params.integer.default_value = 999;

 ADD_TOPIC_PARAMS_T integer_params = common_params;
 integer_params.topic_path = "integer";
 integer_params.details = integer_topic_details;

 apr_thread_mutex_lock(mutex);
 add_topic(session, integer_params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

 /*

Diffusion | 308

 * Create a topic with integer data, but using a CONTENT_T to
 * specify the initial data.
 */
 ADD_TOPIC_PARAMS_T integer_data_params = common_params;
 integer_data_params.topic_path = "integer-data";
 integer_data_params.details = integer_topic_details;
 BUF_T *integer_data_buf = buf_create();
 buf_sprintf(integer_data_buf, "%d", 123);
 integer_data_params.content =
 content_create(CONTENT_ENCODING_NONE, integer_data_buf);

 apr_thread_mutex_lock(mutex);
 add_topic(session, integer_data_params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

 /*
 * Create a topic with single value decimal data, with a
 * default value and specifying the scale (i.e. positions
 * after the decimal place).
 */
 TOPIC_DETAILS_T *decimal_topic_details =
 create_topic_details_single_value(M_DATA_TYPE_DECIMAL_STRING);
 decimal_topic_details-
>topic_details_params.decimal.default_value = 123.456;
 decimal_topic_details->topic_details_params.decimal.scale =
 4;

 ADD_TOPIC_PARAMS_T decimal_params = common_params;
 decimal_params.topic_path = "decimal";
 decimal_params.details = decimal_topic_details;

 apr_thread_mutex_lock(mutex);
 add_topic(session, decimal_params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

 /*
 * Create a topic with decimal data, using a CONTENT_T to
 * specify the initial data.
 */
 ADD_TOPIC_PARAMS_T decimal_data_params = common_params;
 decimal_data_params.topic_path = "decimal-data";
 decimal_data_params.details = decimal_topic_details;
 BUF_T *decimal_data_buf = buf_create();
 buf_sprintf(decimal_data_buf, "%f", 987.654);
 decimal_data_params.content =
 content_create(CONTENT_ENCODING_NONE, decimal_data_buf);

 apr_thread_mutex_lock(mutex);
 add_topic(session, decimal_data_params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

 /*
 * Record topic data.
 *
 * The C API does not have the concept of "builders" for
 * creating record topic data, but requires you to build a
 * string containing XML that describes the structure of the
 * messages.
 */

Diffusion | 309

 /*
 * First of all, this adds a topic equivalent to single-value
 * strings, but defined with XML.
 */
 BUF_T *manual_schema = buf_create();
 buf_write_string(manual_schema,
 "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=
\"yes\"?>\n");
 buf_write_string(manual_schema,
 "<field name=\"x\" type=\"string\" default=\"xyzzy\"
 allowsEmpty=\"true\"/>");
 TOPIC_DETAILS_T *manual_topic_details =
 create_topic_details_single_value(M_DATA_TYPE_STRING);
 manual_topic_details->user_defined_schema = manual_schema;

 ADD_TOPIC_PARAMS_T string_manual_params = common_params;
 string_manual_params.topic_path = "string-manual";
 string_manual_params.details = manual_topic_details;

 apr_thread_mutex_lock(mutex);
 add_topic(session, string_manual_params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

 /*
 * This adds a topic with a record containing multiple fields
 * of different types.
 */
 BUF_T *record_schema = buf_create();
 buf_write_string(record_schema,
 "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=
\"yes\"?>");
 buf_write_string(record_schema,
 "<message topicDataType=\"record\" name=\"MyContent
\">");
 buf_write_string(record_schema,
 "<record name=\"Record1\">");
 buf_write_string(record_schema,
 "<field type=\"string\" default=\"\" allowsEmpty=
\"true\" name=\"Field1\"/>");
 buf_write_string(record_schema,
 "<field type=\"integerString\" default=\"0\"
 allowsEmpty=\"false\" name=\"Field2\"/>");
 buf_write_string(record_schema,
 "<field type=\"decimalString\" default=\"0.00\"
 scale=\"2\" allowsEmpty=\"false\" name=\"Field3\"/>");
 buf_write_string(record_schema,
 "</record>");
 buf_write_string(record_schema,
 "</message>");
 TOPIC_DETAILS_T *record_topic_details =
 create_topic_details_record();
 record_topic_details->user_defined_schema = record_schema;

 ADD_TOPIC_PARAMS_T record_params = common_params;
 record_params.topic_path = "record";
 record_params.details = record_topic_details;

 apr_thread_mutex_lock(mutex);
 add_topic(session, record_params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

Diffusion | 310

 /*
 * Create a topic with binary data
 */
 TOPIC_DETAILS_T *binary_topic_details =
 create_topic_details_binary();
 ADD_TOPIC_PARAMS_T binary_params = common_params;
 binary_params.topic_path = "binary-data";
 binary_params.details = binary_topic_details;

 char binary_bytes[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05 };

 BUF_T *binary_data_buf = buf_create();
 buf_write_bytes(binary_data_buf, binary_bytes,
 sizeof(binary_bytes));
 binary_params.content = content_create(CONTENT_ENCODING_NONE,
 binary_data_buf);

 apr_thread_mutex_lock(mutex);
 add_topic(session, binary_params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

 /*
 * We can also remove topics. First, add a couple of topics
 * and then remove their parent topic. All child topics are
 * removed with the parent.
 */
 puts("Adding topics remove_me/1 and remove_me/2");

 ADD_TOPIC_PARAMS_T topic_params = common_params;
 topic_params.details = topic_details;
 topic_params.topic_path = "remove_me/1";

 apr_thread_mutex_lock(mutex);
 add_topic(session, topic_params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

 topic_params.topic_path = "remove_me/2";
 apr_thread_mutex_lock(mutex);
 add_topic(session, topic_params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

 puts("Removing topics in 5 seconds...");
 sleep(5);

 REMOVE_TOPICS_PARAMS_T remove_params = {
 .on_removed = on_topic_removed,
 .on_discard = on_topic_remove_discard,
 .topic_selector = ">remove_me"
 };

 apr_thread_mutex_lock(mutex);
 remove_topics(session, remove_params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

 /*
 * Close our session, and release resources and memory.
 */
 session_close(session, NULL);
 session_free(session);

Diffusion | 311

 apr_thread_mutex_destroy(mutex);
 apr_thread_cond_destroy(cond);
 apr_pool_destroy(pool);
 apr_terminate();

 return EXIT_SUCCESS;
}

Change the URL from that provided in the example to the URL of the Diffusion server.

Creating a metadata definition for a record topic
You can use the Unified API to specify the metadata structure that describes the byte data content of a
message.

About this task

Publishing clients define the metadata structure for messages. This metadata structure can be used
when defining a topic. All messages placed on the topic must conform to the metadata structure.

The Unified API for the following platforms provides builder methods that enable you to define the
metadata structure:

• JavaScript
• Java
• .NET

The C Unified API does not provide builder methods, but instead takes the definition of the metadata
as XML. For more information, see C API overview.

The following example demonstrates how to define the metadata structure using the Java Unified API.

Note: Where there notation c.p.d is used in class or package names, it indicates
com.pushtechnology.diffusion.

Procedure

1. Define the metadata structure.
a) Import c.p.d.client.Diffusion and the following classes from the

c.p.d.client.content.metadata package:

• MetadataFactory

• MContent

• MRecord

• MField

• MString

• MIntegerString

• MDecimalString

• MCustomString

b) Use the Diffusion.metadata method to get a MetadataFactory.

private final MetadataFactory factory = Diffusion.metadata();

c) Use the methods on the MetadataFactory to specify the content, record, and field
definitions that make up the metadata structure.

Diffusion | 312

For example, the following code uses a content builder to create content metadata with a single
record type that can occur zero to n times.

public MContent createContentRepeating() {
 return
 factory.contentBuilder("Content").
 add(
 factory.record(
 "Rec1",
 factory.string("A"),
 factory.string("B")),
 0,
 -1).
 build();

}

For more information, see Java Unified API documentation.
2. Create a record topic and apply the metadata definition to it.

a) Import the TopicControl feature, Session class, and RecordTopicDetails class.

import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl;
import com.pushtechnology.diffusion.client.session.Session;
import
 com.pushtechnology.diffusion.client.topics.details.RecordTopicDetails;

b) Create a Session instance and use it to get the TopicControl feature.

final Session session = Diffusion.sessions().open("ws://
diffusion.example.com:80");
final TopicControl tc = session.feature(TopicControl.class);

c) Get a topic builder for a record topic from the TopicControl feature.

final RecordTopicDetails.Builder builder =

 tc.newDetailsBuilder(RecordTopicDetails.Builder.class);

d) Use the metadata method of the topic builder to create the topic definition.

tc.addTopic(
 TOPIC_NAME,
 builder.metadata(metadata).build(),
 new TopicControl.AddCallback.Default() {
 @Override
 public void onTopicAdded(String topic) {
 theTopic = topic;
 }

 });

Example: A client that creates a metadata definition and uses it when creating a topic.

package com.example.metadata;

import com.pushtechnology.diffusion.client.Diffusion;
import
 com.pushtechnology.diffusion.client.content.metadata.MContent;

http://docs.pushtechnology.com/docs/5.9.4/java/index.html

Diffusion | 313

import
 com.pushtechnology.diffusion.client.content.metadata.MDecimalString;
import
 com.pushtechnology.diffusion.client.content.metadata.MField;
import
 com.pushtechnology.diffusion.client.content.metadata.MRecord;
import
 com.pushtechnology.diffusion.client.content.metadata.MetadataFactory;
import
 com.pushtechnology.diffusion.client.topics.details.TopicType;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl;
import com.pushtechnology.diffusion.client.session.Session;
import
 com.pushtechnology.diffusion.client.topics.details.RecordTopicDetails;
import com.pushtechnology.diffusion.client.types.UpdateOptions;

/**
 * An example of a client creating metadata definition and using
 it when creating a
 * topic definition.
 */
public class ControlClient {

 private final MetadataFactory factory = Diffusion.metadata();

 /**
 * Creates control client instance.
 */
 public ControlClient() {

 // Create the Session
 final Session session = Diffusion.sessions()
 .open("ws://diffusion.example.com:80");

 // Add the TopicControl feature
 final TopicControl tc =
 session.feature(TopicControl.class);

 // Create metadata for the topic
 final MContent metadata = defineMetadata();

 // Get a topic builder
 final RecordTopicDetails.Builder builder =

 tc.newDetailsBuilder(RecordTopicDetails.Builder.class);

 // Create the topic with metadata
 tc.addTopic(
 TOPIC_NAME,
 builder.metadata(metadata).build(),
 new TopicControl.AddCallback.Default() {
 @Override
 public void onTopicAdded(String topic) {
 theTopic = topic;
 }

 });

 }

Diffusion | 314

 /**
 * A simple example of creating content metadata with two
 records.
 *
 * @return content metadata
 */
 public MContent defineMetadata() {
 return factory.content(
 "Content",
 createNameAndAddressRecord(),
 createMultipleRateCurrencyRecord("Exchange Rates",
 5));
 }

 /**
 * Creates a simple name and address record with fixed name
 single
 * multiplicity fields.
 *
 * @return record definition.
 */
 public MRecord createNameAndAddressRecord() {
 return factory.record(
 "NameAndAddress",
 factory.string("FirstName"),
 factory.string("Surname"),
 factory.string("HouseNumber"),
 factory.string("Street"),
 factory.string("Town"),
 factory.string("State"),
 factory.string("PostCode"));
 }

 /**
 * This creates a record with two fields, a string called
 "Currency" and a
 * decimal string called "Rate" with a default value of 1.00
 which repeats a
 * specified number of times.
 *
 * @param name the record name
 * @param occurs the number of occurrences of the "Rate" field
 * @return the metadata record
 */
 public MRecord createMultipleRateCurrencyRecord(String name,
 int occurs) {
 return factory.recordBuilder(name).
 add(factory.string("Currency")).
 add(factory.decimal("Rate", "1.00"), occurs).
 build();
 }

}

Diffusion | 315

Handling subscriptions to missing topics
A client can use the TopicControl feature of the Unified API to handle subscription or fetch requests for
topics that do not exist.

Registering a missing topic handler and dynamically adding topics

Required permissions: modify_topic, register_handler

You can use the TopicControl feature to dynamically create topics on demand when a client tries to
subscribe or fetch a topic that does not exist.

The client can register itself as a handler for missing topics for any part of the topic tree. The client
is notified of attempts to subscribe to or fetch topics that are subordinate to that topic and that do
not exist. This enables the client to create the topics and notify the Diffusion server that the client
operation subscribe or fetch can proceed.

Note: The handler is called only when a client attempts to subscribe or fetch using a single
topic path. If another type of selector is used to subscribe to or fetch the topic, the handler is
not notified.

Figure 24: Flow from a subscribing client to the client that handles a missing topic subscription

The missing topic handler is removed when the registering session is closed. If the registering session
loses connection, it goes into DISCONNECTED state. When in DISCONNECTED state the handler
remains active but cannot pass on the notifications to the client. In this case, cancel or proceed
callbacks for these notifications might not function as expected because of timeouts. If the client then
closes, these notifications are discarded.

To ensure that missing topic notifications are always received by your solution, you can use multiple
clients to register missing topic handlers. Ensure that if any of these clients lose connection they go
straight to CLOSED state by setting the reconnection timeout to zero. When the client loses connect it
closes straight away, the handler is registered is removed, and further missing topic notifications are
routed to a handler registered by another client.

developerguide/client/topics/topiccontrol/flow_missing_topic.png

Diffusion | 316

Related concepts
Using missing topic notifications with fan-out on page 100
Missing topic notifications generated by subscription or fetch requests to a secondary server are
propagated to missing topic handlers registered against the primary servers.

Example: Receive missing topic notifications
The following examples use the TopicControl feature in the Unified API to register a missing topic
notification handler.

JavaScript

var diffusion = require('diffusion');

// Connect to the server. Change these options to suit your own
 environment.
// Node.js will not accept self-signed certificates by default. If
 you have
// one of these, set the environment variable
 NODE_TLS_REJECT_UNAUTHORIZED=0
// before running this example.
diffusion.connect({
 host : 'diffusion.example.com',
 port : 443,
 secure : true
}).then(function(session) {

 // Register a missing topic handler on the "example" root topic
 // Any subscriptions to missing topics along this path will invoke
 this handler
 session.topics.addMissingTopicHandler("example", {
 // Called when a handler is successfully registered
 onRegister : function(path, close) {
 console.log("Registered missing topic handler on path: " + path);
 // Once we've registered the handler, we initiate a subscription
 with the selector "?example/topic/.*"
 // This will invoke the handler.
 session.subscribe("?example/topic/.*").on('subscribe',
 function(type, path) {
 console.log("Subscribed to topic: " + path);
 });
 },
 // Called when the handler is closed
 onClose : function(path) {
 console.log("Missing topic handler on path '" + path + "' has been
 closed");
 },
 // Called if there is an error on the handler
 onError : function(path, error) {
 console.log("Error on missing topic handler");
 },
 // Called when we've received a missing topic notification on our
 registered handler path
 onMissingTopic : function(notification) {
 console.log("Received missing topic notification with selector: "
 + notification.selector);
 // Once we've received the missing topic notification initiated
 from subscribing to "?example/topic/.*",
 // we add a topic that will match the selector

Diffusion | 317

 var topic = "example/topic/foo";

 session.topics.add(topic).then(function(result) {
 console.log("Topic add success: " + topic);
 // If the topic addition is successful, we proceed() with the
 session's subscription.
 // The client will now be subscribed to the topic
 notification.proceed();
 }, function(reason) {
 console.log("Topic add failed: " + reason);
 // If the topic addition fails, we cancel() the session's
 subscription request.
 notification.cancel();
 });
 }
 });

});

Apple

@import Diffusion;

@interface MissingTopicHandlerExample
 (PTDiffusionMissingTopicHandler) <PTDiffusionMissingTopicHandler>
@end

@implementation MissingTopicHandlerExample {
 PTDiffusionSession* _session;
}

-(void)startWithURL:(NSURL*)url {
 PTDiffusionCredentials *const credentials =
 [[PTDiffusionCredentials alloc]
 initWithPassword:@"password"];

 PTDiffusionSessionConfiguration *const sessionConfiguration =
 [[PTDiffusionSessionConfiguration alloc]
 initWithPrincipal:@"control"

 credentials:credentials];

 NSLog(@"Connecting...");

 [PTDiffusionSession openWithURL:url
 configuration:sessionConfiguration
 completionHandler:^(PTDiffusionSession *session,
 NSError *error)
 {
 if (!session) {
 NSLog(@"Failed to open session: %@", error);
 return;
 }

 // At this point we now have a connected session.
 NSLog(@"Connected.");

 // Set ivar to maintain a strong reference to the session.
 _session = session;

 // Register as missing topic handler for a branch of the
 topic tree.

Diffusion | 318

 [self registerAsMissingTopicHandlerForSession:session];
 }];
}

-(void)registerAsMissingTopicHandlerForSession:(PTDiffusionSession
 *const)session {
 [session.topicControl addMissingTopicHandler:self
 forTopicPath:@"Example/Control
 Client Handler"

 completionHandler:^(PTDiffusionTopicTreeRegistration *const
 registration, NSError *const error)
 {
 if (registration) {
 NSLog(@"Registered as missing topic handler.");
 } else {
 NSLog(@"Failed to register as missing topic handler.
 Error: %@", error);
 }
 }];
}

@end

@implementation MissingTopicHandlerExample
 (PTDiffusionMissingTopicHandler)

-(void)diffusionTopicTreeRegistration:
(PTDiffusionTopicTreeRegistration *const)registration
 hadMissingTopicNotification:
(PTDiffusionMissingTopicNotification *const)notification {
 NSString *const expression =
 notification.topicSelectorExpression;
 NSLog(@"Received Missing Topic Notification: %@", expression);

 // Expect a path pattern expression.
 if (![expression hasPrefix:@">"]) {
 NSLog(@"Topic selector expression is not a path pattern.");
 return;
 }

 // Extract topic path from path pattern expression.
 NSString *const topicPath = [expression substringFromIndex:1];

 // Add a stateless topic at this topic path.
 [_session.topicControl addWithTopicPath:topicPath

 type:PTDiffusionTopicType_Stateless
 value:nil
 completionHandler:^(NSError *const error)
 {
 if (error) {
 NSLog(@"Failed to add topic.");
 return;
 }

 // Topic added so allow subscriber to proceed.
 [notification proceed];
 }];
}

@end

Diffusion | 319

Java and Android

package com.pushtechnology.diffusion.examples;

import com.pushtechnology.diffusion.client.Diffusion;
import
 com.pushtechnology.diffusion.client.features.RegisteredHandler;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicAddFailReason;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl.MissingTopicHandler;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl.MissingTopicNotification;
import com.pushtechnology.diffusion.client.session.Session;
import
 com.pushtechnology.diffusion.client.topics.details.TopicDetails;
import com.pushtechnology.diffusion.client.topics.details.TopicType;

/**
 * An example of registering a missing topic notification handler and
 processing
 * notifications using a control client.
 *
 * @author Push Technology Limited
 */
public final class ControlClientHandlingMissingTopicNotification {

 // UCI features
 private final Session session;
 private final TopicControl topicControl;
 private final TopicDetails details;

 /**
 * Constructor.
 */
 public ControlClientHandlingMissingTopicNotification() {
 // Create a session
 session =
 Diffusion.sessions().password("password").principal("admin").open("ws://
diffusion.example.com:8080");

 topicControl = session.feature(TopicControl.class);

 // Registers a missing topic notification on a topic path
 topicControl.addMissingTopicHandler("A", new
 MissingTopicNotificationHandler());

 // For details that may be reused many times it is far more
 efficient to
 // create just once - this creates a default string type
 details.
 details = topicControl.newDetails(TopicType.SINGLE_VALUE);

 }

 // Private class that implements MissingTopicHandler interface
 private final class MissingTopicNotificationHandler implements
 MissingTopicHandler {
 /**
 * @param topicPath
 * - the path that the handler is active for

Diffusion | 320

 * @param registeredHandler
 * - allows the handler to be closed
 */
 @Override
 public void onActive(String topicPath, RegisteredHandler
 registeredHandler) {
 }

 /**
 * @param topicPath
 * - the branch of the topic tree for which the
 handler was
 * registered
 */
 @Override
 public void onClose(String topicPath) {
 }

 /**
 * @param notification
 * - the missing topic details
 */
 @Override
 public void onMissingTopic(MissingTopicNotification
 notification) {
 // Create a topic and do process() in the callback
 topicControl.addTopic(notification.getTopicPath(),
 details, new AddTopicCallback(notification));
 }
 }

 private final class AddTopicCallback implements
 TopicControl.AddCallback {
 private final MissingTopicNotification notification;

 AddTopicCallback(MissingTopicNotification notification) {
 this.notification = notification;
 }

 @Override
 public void onDiscard() {
 }

 /**
 * @param topicPath
 * - the topic path as supplied to the add request
 * @param reason
 * - the reason for failure
 */
 @Override
 public void onTopicAddFailed(String topicPath,
 TopicAddFailReason reason) {
 // Cancel the notification because the server have failed
 to
 notification.cancel();
 }

 /**
 * @param topicPath
 * - the full path of the topic that was added
 */
 @Override
 public void onTopicAdded(String topicPath) {

Diffusion | 321

 // Proceed the notification
 notification.proceed();
 }

 }

}

.NET

using System.Threading.Tasks;
using PushTechnology.ClientInterface.Client.Factories;
using PushTechnology.ClientInterface.Client.Features;
using PushTechnology.ClientInterface.Client.Features.Control.Topics;
using PushTechnology.ClientInterface.Client.Session;

namespace Examples {
 public class ControlClientMissingTopicNotification {
 private readonly ISession clientSession;
 private readonly ITopicControl topicControl;

 public ControlClientMissingTopicNotification() {
 clientSession =
 Diffusion.Sessions.Principal("client").Password("password")
 .Open("ws://diffusion.example.com:80");

 topicControl =
 Diffusion.Sessions.Principal("control").Password("password")
 .Open("ws://
diffusion.example.com:80").GetTopicControlFeature();

 Subscribe("some/path10");
 }

 /// <summary>
 /// Subscribes to a topic which may or may not be missing.
 /// </summary>
 /// <param name="topicPath">The path of the topic to
 subscribe to.</param>
 public async void Subscribe(string topicPath) {
 var missingTopicHandler = new MissingTopicHandler();

 // Add the 'missing topic handler' to the topic control
 object
 topicControl.AddMissingTopicHandler(topicPath,
 missingTopicHandler);

 // Wait for the successful registration of the handler
 var registeredHandler = await
 missingTopicHandler.OnActiveCalled;

 var topics = clientSession.GetTopicsFeature();

 var topicCompletion = new TaskCompletionSource<bool>();

 // Attempt to subscribe to the topic
 topics.Subscribe(topicPath, new
 TopicsCompletionCallback(topicCompletion));

 await topicCompletion.Task;

Diffusion | 322

 // Wait and see if a missing topic notification is
 generated
 var request = await
 missingTopicHandler.OnMissingTopicCalled;

 // Cancel the client request on the server
 request.Cancel();

 // Close the registered handler
 registeredHandler.Close();

 // All events in Diffusion are asynchronous, so we must
 wait for the close to happen
 await missingTopicHandler.OnCloseCalled;
 }

 private class TopicsCompletionCallback :
 ITopicsCompletionCallback {
 private readonly TaskCompletionSource<bool>
 theCompletionSource;

 public
 TopicsCompletionCallback(TaskCompletionSource<bool> source) {
 theCompletionSource = source;
 }

 /// <summary>
 /// This is called to notify that a call context was
 closed prematurely, typically due to a timeout or the
 /// session being closed. No further calls will be made
 for the context.
 /// </summary>
 public void OnDiscard() {
 theCompletionSource.SetResult(false);
 }

 /// <summary>
 /// Called to indicate that the requested operation has
 been processed by the server.
 /// </summary>
 public void OnComplete() {
 theCompletionSource.SetResult(true);
 }
 }

 /// <summary>
 /// Asynchronous helper class for handling missing topic
 notifications.
 /// </summary>
 private class MissingTopicHandler : IMissingTopicHandler {
 private readonly TaskCompletionSource<IRegisteredHandler>
 onActive =
 new TaskCompletionSource<IRegisteredHandler>();

 private readonly
 TaskCompletionSource<IMissingTopicNotification> onMissingTopic =
 new
 TaskCompletionSource<IMissingTopicNotification>();

 private readonly TaskCompletionSource<bool> onClose = new
 TaskCompletionSource<bool>();

 /// <summary>

Diffusion | 323

 /// Waits for the 'OnActive' event to be called.
 /// </summary>
 public Task<IRegisteredHandler> OnActiveCalled {
 get {
 return onActive.Task;
 }
 }

 /// <summary>
 /// Waits for the 'OnMissingTopic' event to be called.
 /// </summary>
 public Task<IMissingTopicNotification>
 OnMissingTopicCalled {
 get {
 return onMissingTopic.Task;
 }
 }

 public Task OnCloseCalled {
 get {
 return onClose.Task;
 }
 }

 /// <summary>
 /// Called when a client session requests a topic that
 does not exist, and the topic path belongs to part of
 /// the topic tree for which this handler was registered.
 ///
 /// The handler implementation should take the
 appropriate action (for example, create the topic), and then
 /// call IMissingTopicNotification.Proceed on the
 supplied notification. This allows the client request to
 /// continue and successfully resolve against the topic
 if it was created.
 ///
 /// A handler should always call Proceed() otherwise
 resources will continue to be reserved on the server
 /// and the client's request will not complete.
 /// </summary>
 /// <param name="notification">The client notification
 object.</param>
 void
 IMissingTopicHandler.OnMissingTopic(IMissingTopicNotification
 notification) {
 onMissingTopic.SetResult(notification);
 }

 /// <summary>
 /// Called when the handler has been successfully
 registered with the server.
 ///
 /// A session can register a single handler of each type
 for a given branch of the topic tree. If there is
 /// already a handler registered for the topic path the
 operation will fail, <c>registeredHandler</c> will
 /// be closed, and the session error handler will be
 notified. To change the handler, first close the
 /// previous handler.
 /// </summary>
 /// <param name="topicPath">The path that the handler is
 active for.</param>

Diffusion | 324

 /// <param name="registeredHandler">Allows the handler to
 be closed.</param>
 void ITopicTreeHandler.OnActive(string topicPath,
 IRegisteredHandler registeredHandler) {
 onActive.SetResult(registeredHandler);
 }

 /// <summary>
 /// Called if the handler is closed. This happens if the
 call to register the handler fails, or the handler
 /// is unregistered.
 /// </summary>
 /// <param name="topicPath">The branch of the topic tree
 for which the handler was registered.</param>
 void ITopicTreeHandler.OnClose(string topicPath) {
 onClose.TrySetResult(false);
 }
 }
 }
}

C

/*
 * This example shows how to register a missing topic notification
 * handler and return a missing topic notification response - calling
 * missing_topic_proceed() once we've created the topic.
 */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>

#include <apr.h>
#include <apr_thread_mutex.h>
#include <apr_thread_cond.h>

#include "diffusion.h"
#include "args.h"

ARG_OPTS_T arg_opts[] = {
 ARG_OPTS_HELP,
 {'u', "url", "Diffusion server URL", ARG_OPTIONAL,
 ARG_HAS_VALUE, "ws://localhost:8080"},
 {'p', "principal", "Principal (username) for the connection",
 ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'c', "credentials", "Credentials (password) for the
 connection", ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'r', "topic_root", "Topic root to process missing topic
 notifications on", ARG_OPTIONAL, ARG_HAS_VALUE, "foo"},
 END_OF_ARG_OPTS
};

static int
on_topic_added(SESSION_T *session, const SVC_ADD_TOPIC_RESPONSE_T
 *response, void *context)
{
 puts("Topic added");
 return HANDLER_SUCCESS;
}

static int

Diffusion | 325

on_topic_add_failed(SESSION_T *session, const
 SVC_ADD_TOPIC_RESPONSE_T *response, void *context)
{
 puts("Topic add failed");
 printf("Reason code: %d\n", response->reason);
 return HANDLER_SUCCESS;
}

static int
on_topic_add_discard(SESSION_T *session, void *context)
{
 puts("Topic add discarded");
 return HANDLER_SUCCESS;
}

/*
 * A request has been made for a topic that doesn't exist; create it
 * and inform Diffusion that the client's subcription request can
 * proceed.
 */
static int
on_missing_topic(SESSION_T *session, const
 SVC_MISSING_TOPIC_REQUEST_T *request, void *context)
{
 printf("Missing topic: %s\n", request->topic_selector);

 BUF_T *sample_data_buf = buf_create();
 buf_write_string(sample_data_buf, "Hello, world");

 // Add the missing topic.
 ADD_TOPIC_PARAMS_T topic_params = {
 .on_topic_added = on_topic_added,
 .on_topic_add_failed = on_topic_add_failed,
 .on_discard = on_topic_add_discard,
 .topic_path = strdup(request->topic_selector+1),
 .details =
 create_topic_details_single_value(M_DATA_TYPE_STRING),
 .content = content_create(CONTENT_ENCODING_NONE,
 sample_data_buf)
 };

 add_topic(session, topic_params);

 // Proceed with the client's subscription to the topic
 missing_topic_proceed(session, (SVC_MISSING_TOPIC_REQUEST_T
 *) request);

 return HANDLER_SUCCESS;
}

/*
 * Entry point for the example.
 */
int
main(int argc, char **argv)
{
 /*
 * Standard command-line parsing.
 */
 HASH_T *options = parse_cmdline(argc, argv, arg_opts);
 if(options == NULL || hash_get(options, "help") != NULL) {
 show_usage(argc, argv, arg_opts);
 return EXIT_FAILURE;

Diffusion | 326

 }

 const char *url = hash_get(options, "url");
 const char *principal = hash_get(options, "principal");
 const char *topic_root = hash_get(options, "topic_root");

 CREDENTIALS_T *credentials = NULL;
 const char *password = hash_get(options, "credentials");
 if(password != NULL) {
 credentials = credentials_create_password(password);
 }

 SESSION_T *session;
 DIFFUSION_ERROR_T error = { 0 };

 session = session_create(url, principal, credentials, NULL,
 NULL, &error);
 if(session != NULL) {
 printf("Session created (state=%d, id=%s)\n",
 session_state_get(session),
 session_id_to_string(session->id));
 }
 else {
 printf("Failed to create session: %s\n",
 error.message);
 free(error.message);
 return EXIT_FAILURE;
 }

 /*
 * Register the missing topic handler
 */
 MISSING_TOPIC_PARAMS_T handler = {
 .on_missing_topic = on_missing_topic,
 .topic_path = topic_root,
 .context = NULL
 };

 missing_topic_register_handler(session, handler);

 /*
 * Run for 5 minutes.
 */
 sleep(5 * 60);

 /*
 * Close session and clean up.
 */
 session_close(session, NULL);
 session_free(session);

 hash_free(options, NULL, free);

 return EXIT_SUCCESS;
}

Change the URL from that provided in the example to the URL of the Diffusion server.

Diffusion | 327

Listening for topic events
A client can use the TopicControl feature of the Unified API to listen for events that happen on topics in
a specific topic branch.

Registering a topic event listener

Required permissions: register_handler

You can use the TopicControl feature to receive a notification whenever one of the following topic
events occurs:

• A topic that previously had zero subscribers gains one or more subscribers
• A topic that previously had one or more subscribers goes to zero subscribers

Note: Subscriber numbers also include indirect subscriptions, for example: subscriptions via a
slave topic or routing topic; subscriptions by another Diffusion server for fan-out replication; or
replication of the topic using high-availability replication.

A client can register a topic event listener against any branch of the topic tree. When a topic event
occurs on one of the topics in that branch of the topic tree the listening client receives a notification.

If multiple clients register listeners against the same branch of the topic tree, all receive notifications.
However, if a client registers a listener at a more specific branch of the topic tree, the most specific
listener or listeners receive a notification and any less specific listeners within that same branch do not
receive a notification.

For example: Client One registers a topic event listener against A, Client Two registers a topic event
listener against A, and Client Three registers a topic event listener against A/B/C. If a topic event occurs
on A/B, both Client One and Client Two receive notifications. If a topic event occurs on A/B/C/D, only
Client Three receives a notification.

Removing topics with sessions

Updating topics
A client can use the TopicUpdateControl feature to update topics.

A client can update a topic in one of the following ways:

Exclusive updating

By registering with the Diffusion server as an update source for the branch of the
topic tree that contains the topic to be updated.

If a client is registered as the active update source for a branch of the topic tree, no
other clients can update topics in that branch of the topic tree.

Non-exclusive updating
By getting a non-exclusive updater from the TopicUpdateControl feature. This
updater can be used to update any topic that does not already have an active update
source registered against it.

Registering as an update source

Required permissions: update_topic, register_handler

A client must register as an update source for a branch of the topic tree to be able to exclusively
publish content to topics in that branch. This locks the branch of the topic tree and prevents other
clients from publishing updates to topics in the branch.

Diffusion | 328

When a client registers as an update source the following events occur:

1. The client requests to register as an update source on a branch of the topic tree.

• The update source is registered against a topic path. This is a path that identifies a branch of
the topic tree, for example foo/bar. The update source is registered as a source for that branch
of the topic tree, for example the topics foo/bar/baz and foo/bar/fred/qux are included in the
specified branch of the topic tree.

• You cannot register an update source above or below an existing update source. For example, if
a client has registered an update source against foo/bar/fred another client cannot register an
update source against foo/bar or foo/bar/fred/qux.

• You can register an update source against a topic owned by an existing publisher or a topic that
has an update source created by the server that is used for topic failover.

2. The server validates the registration request and returns one of the following responses:

• If the request is valid, the Diffusion server calls the OnRegister callback of the update source
and passes a RegisteredHandler that you can use to deregister the update source.

• If the request is not valid, the Diffusion server calls the onClose callback of the update source.

For example, a registration request is not valid if it registers against a topic branch that is above
or below a branch where an existing update source is registered.

3. When the update source is registered, the Diffusion server calls one of the following callbacks:

• If the update source is the primary update source, the Diffusion server calls the onActive
callback of the update source.

• If another update source is already the primary source for this branch of the topic tree, the
Diffusion server calls the onStandby callback of the update source.

4. If an update source is on standby, the update source cannot update the topics it is registered
against. If the active update source for a branch of the topic tree closes or becomes inactive, a
standby update source can then become active and become the primary update source for that
branch of the topic tree.

5. If an update source is active, the Diffusion server provides the update source with an Updater.
The update source can use the Updater to update the topics it is registered against.

6. If an active update source exists for a branch of the topic tree, no other clients can update topics in
that branch of the topic tree.

Updating a topic non-exclusively

Required permissions: update_topic

To non-exclusively update topics, a client must get a non-exclusive updater from the
TopicUpdateControl feature. This updater can be used to update any topic under the following
conditions:

• The topic does not already have an active update source registered against it
• The client has the update_topic permission for the topic

Types of updater

Updater type Description

Value updater Use a value updater to update one of the following topic types: JSON,
binary. In future releases, more topic types will use the value updaters.

When a topic is updated with a value updater, the value is cached.
Subsequent updates can use the cached value to calculate a delta of
change between the two values and just send that to the Diffusion server,
thus reducing the data volume to the Diffusion server.

Diffusion | 329

Updater type Description

Updater Use an updater to update one of the following topic types: single value,
record, stateless, custom, protocol buffer, paged.

Using a value updater to stream values through topics

Required permissions: update_topic

A client uses a value updater to publish a value to a topic. Value updaters are typed and can only be
used to update topics whose data type matches the data type of the value updater.

Value updaters can be used for exclusive or non-exclusive updating, depending on how the value
updater is acquired.

When used exclusively, value updaters cache the values that are passed to them. When a value is
passed to a value updater, the value updater compared that value with the previously cached value. If
it is more efficient to do so, the value updater publishes a delta of changes between the previous value
and the new value instead of publishing the full new value.

When the client uses a value updater method to publish values, it passes in the following parameters:

Topic path
The path to the topic to be updated.

If the value updater is an exclusive updater, this topic must be in the branch of the
topic tree that the client is the active update source for and that the updater is
associated with.

Value

The value to use to update the topic. This value is of the data type that matches the
data type of the topic being updated.

Context
OPTIONAL: A context object can be passed in to the update method that provides
application state information.

Callback
The server uses the callback to return the result of the update. If the update
completes successfully, the Diffusion server calls the callback's onComplete
method. Otherwise, the Diffusion server calls the callback's onError method.

Using an updater to publish content to topics

Required permissions: update_topic

A client uses an updater to publish content to topics. Updaters can be used for exclusive or non-
exclusive updating, depending on how the updater is acquired. When the client uses an updater
method to publish content, it passes in the following parameters:

Topic path
The path to the topic to be updated.

If the updater is an exclusive updater, this topic must be in the branch of the topic
tree that the client is the active update source for and that the updater is associated
with.

Content

The information about the update can be provided as either a simple Content
object or as a more complex Update object.

Diffusion | 330

The content that is to be published to the topic. The client must use the appropriate
content type when formatting the content. If the content uses the wrong content type
for the topic, it can cause an error.

Update

The information about the update can be provided as either a simple Content
object or as a more complex Update object.

An update that contains the content that is to be published to the topic and other
information about the update, such as its type.

Use the Builder methods provided in the Unified API to build your Update objects.

Context
OPTIONAL: A context object can be passed in to the update method that provides
application state information.

Callback
The server uses the callback to return the result of the update. If the update
completes successfully, the Diffusion server calls the callback's onComplete
method. Otherwise, the Diffusion server calls the callback's onError method.

Related reference
Failover of active update sources on page 107
You can use failover of active update sources to ensure that when a server that is the active update
source for a section of the topic tree becomes unavailable, an update source on another server is
assigned to be the active update source for that section of the topic tree. Failover of active update
sources is enabled for any sections of the topic tree that have topic replication enabled.

Example: Make exclusive updates to a topic
The following examples use the Unified API to register as the update source of a topic and to update
that topic with content. A client that updates a topic using this method locks the topic and prevents
other clients from updating the topic.

JavaScript

diffusion.connect({
 host : 'diffusion.example.com',
 port : 443,
 secure : true,
 principal : 'control',
 credentials : 'password'
}).then(function(session) {
 // A session may establish an exclusive update source. Once
 active, only this session may update topics at or
 // under the registration branch.

 session.topics.registerUpdateSource('exclusive/topic', {
 onRegister : function(topic, deregister) {
 // The handler provides a deregistration function to
 remove this registration and allow other sessions to
 // update topics under the registered path.
 },
 onActive : function(topic, updater) {
 // Once active, a handler may use the provided updater to
 update any topics at or under the registered path
 updater.update('exclusive/topic/bar',
 123).then(function() {

Diffusion | 331

 // The update was successful.
 }, function(err) {
 // There was an error updating the topic
 });
 },
 onStandBy : function(topic) {
 // If there is another update source registered for the
 same topic path, any subsequent registrations will
 // be put into a standby state. The registration is still
 held by the server, and the 'onActive' function
 // will be called if the pre-existing registration is
 closed at a later point in time
 },
 onClose : function(topic, err) {
 // The 'onClose' function will be called once the
 registration is closed, either by the session being closed
 // or the 'deregister' function being called.
 }
 });
});

Apple

@import Diffusion;

@interface TopicUpdateSourceExample (PTDiffusionTopicUpdateSource)
 <PTDiffusionTopicUpdateSource>
@end

@implementation TopicUpdateSourceExample {
 PTDiffusionSession* _session;
}

-(void)startWithURL:(NSURL*)url {
 PTDiffusionCredentials *const credentials =
 [[PTDiffusionCredentials alloc]
 initWithPassword:@"password"];

 PTDiffusionSessionConfiguration *const sessionConfiguration =
 [[PTDiffusionSessionConfiguration alloc]
 initWithPrincipal:@"control"

 credentials:credentials];

 NSLog(@"Connecting...");

 [PTDiffusionSession openWithURL:url
 configuration:sessionConfiguration
 completionHandler:^(PTDiffusionSession *session,
 NSError *error)
 {
 if (!session) {
 NSLog(@"Failed to open session: %@", error);
 return;
 }

 // At this point we now have a connected session.
 NSLog(@"Connected.");

 // Set ivar to maintain a strong reference to the session.
 _session = session;

Diffusion | 332

 // Add topic.
 [self addTopicForSession:session];
 }];
}

static NSString *const _TopicPath = @"Example/Exclusively Updating";

-(void)addTopicForSession:(PTDiffusionSession *const)session {
 // Add a single value topic without an initial value.
 [session.topicControl addWithTopicPath:_TopicPath

 type:PTDiffusionTopicType_SingleValue
 value:nil
 completionHandler:^(NSError * _Nullable
 error)
 {
 if (error) {
 NSLog(@"Failed to add topic. Error: %@", error);
 } else {
 NSLog(@"Topic created.");

 // Register as an exclusive update source.
 [self registerAsUpdateSourceForSession:session];
 }
 }];
}

-(void)registerAsUpdateSourceForSession:(PTDiffusionSession
 *const)session {
 [session.topicUpdateControl registerUpdateSource:self
 forTopicPath:_TopicPath

 completionHandler:^(PTDiffusionTopicTreeRegistration *const
 registration, NSError *const error)
 {
 if (registration) {
 NSLog(@"Registered as an update source.");
 } else {
 NSLog(@"Failed to register as an update source. Error:
 %@", error);
 }
 }];
}

-(void)updateTopicWithUpdater:(PTDiffusionTopicUpdater *const)updater
 value:(const NSUInteger)value {
 // Prepare data to update topic with.
 NSString *const string =
 [NSString stringWithFormat:@"Update #%lu", (unsigned
 long)value];
 NSData *const data = [string
 dataUsingEncoding:NSUTF8StringEncoding];
 PTDiffusionContent *const content =
 [[PTDiffusionContent alloc] initWithData:data];

 // Update the topic.
 [updater updateWithTopicPath:_TopicPath
 value:content
 completionHandler:^(NSError *const error)
 {
 if (error) {
 NSLog(@"Failed to update topic. Error: %@", error);
 } else {

Diffusion | 333

 NSLog(@"Topic updated to \"%@\"", string);

 // Update topic after a short wait.
 dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)
(1.0 * NSEC_PER_SEC)),
 dispatch_get_main_queue(), ^
 {
 [self updateTopicWithUpdater:updater value:value +
 1];
 });
 }
 }];
}

@end

@implementation TopicUpdateSourceExample
 (PTDiffusionTopicUpdateSource)

-(void)diffusionTopicTreeRegistration:
(PTDiffusionTopicTreeRegistration *const)registration
 isActiveWithUpdater:(PTDiffusionTopicUpdater
 *const)updater {
 NSLog(@"Registration is active.");

 // Start updating.
 [self updateTopicWithUpdater:updater value:1];
}

@end

Java and Android

import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ScheduledFuture;
import java.util.concurrent.TimeUnit;

import com.pushtechnology.diffusion.client.Diffusion;
import
 com.pushtechnology.diffusion.client.callbacks.TopicTreeHandler;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl.AddCallback;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicUpdateControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicUpdateControl.UpdateSource;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicUpdateControl.Updater;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicUpdateControl.Updater.UpdateCallback;
import com.pushtechnology.diffusion.client.session.Session;
import
 com.pushtechnology.diffusion.client.topics.details.SingleValueTopicDetails;
import
 com.pushtechnology.diffusion.client.topics.details.TopicDetails;

/**
 * An example of using a control client as an event feed to a topic.
 * <P>
 * This uses the 'TopicControl' feature to create a topic and the

Diffusion | 334

 * 'TopicUpdateControl' feature to send updates to it.
 * <P>
 * To send updates to a topic, the client session requires the
 'update_topic'
 * permission for that branch of the topic tree.
 *
 * @author Push Technology Limited
 * @since 5.0
 */
public class ControlClientAsUpdateSource {

 private static final String TOPIC_NAME = "Feeder";

 private final Session session;
 private final TopicControl topicControl;
 private final TopicUpdateControl updateControl;
 private final UpdateCallback updateCallback;

 /**
 * Constructor.
 *
 * @param callback for updates
 */
 public ControlClientAsUpdateSource(UpdateCallback callback) {

 updateCallback = callback;

 session =

 Diffusion.sessions().principal("control").password("password")
 .open("ws://diffusion.example.com:80");
 topicControl = session.feature(TopicControl.class);
 updateControl = session.feature(TopicUpdateControl.class);
 }

 /**
 * Start the feed.
 *
 * @param provider the provider of prices
 * @param scheduler a scheduler service to schedule a periodic
 feeder task
 */
 public void start(
 final PriceProvider provider,
 final ScheduledExecutorService scheduler) {

 // Set up topic details
 final SingleValueTopicDetails.Builder builder =
 topicControl.newDetailsBuilder(
 SingleValueTopicDetails.Builder.class);

 final TopicDetails details =

 builder.metadata(Diffusion.metadata().decimal("Price")).build();

 // Declare a custom update source implementation. When the
 source is set
 // as active start a periodic task to poll the provider every
 second and
 // update the topic. When the source is closed, stop the
 scheduled task.
 final UpdateSource source = new UpdateSource.Default() {
 private ScheduledFuture<?> theFeeder;

Diffusion | 335

 @Override
 public void onActive(String topicPath, Updater updater) {
 theFeeder =
 scheduler.scheduleAtFixedRate(
 new FeederTask(provider, updater),
 1, 1, TimeUnit.SECONDS);
 }

 @Override
 public void onClose(String topicPath) {
 if (theFeeder != null) {
 theFeeder.cancel(true);
 }
 }
 };

 // Create the topic. When the callback indicates that the
 topic has been
 // created then register the topic source for the topic and
 request
 // that it is removed when the session closes.
 topicControl.addTopic(
 TOPIC_NAME,
 details,
 new AddCallback.Default() {
 @Override
 public void onTopicAdded(String topic) {
 topicControl.removeTopicsWithSession(
 topic,
 new TopicTreeHandler.Default());
 updateControl.registerUpdateSource(topic,
 source);
 }
 });

 }

 /**
 * Close the session.
 */
 public void close() {
 session.close();
 }

 /**
 * Periodic task to poll from provider and send update to server.
 */
 private final class FeederTask implements Runnable {

 private final PriceProvider priceProvider;
 private final Updater priceUpdater;

 private FeederTask(PriceProvider provider, Updater updater) {
 priceProvider = provider;
 priceUpdater = updater;
 }

 @Override
 public void run() {
 priceUpdater.update(
 TOPIC_NAME,

Diffusion | 336

 Diffusion.content().newContent(priceProvider.getPrice()),
 updateCallback);
 }

 }

 /**
 * Interface of a price provider that can periodically be polled
 for a
 * price.
 */
 public interface PriceProvider {
 /**
 * Get the current price.
 *
 * @return current price as a decimal string
 */
 String getPrice();
 }
}

.NET

using System.Threading;
using PushTechnology.ClientInterface.Client.Factories;
using PushTechnology.ClientInterface.Client.Features.Control.Topics;
using PushTechnology.ClientInterface.Client.Session;
using PushTechnology.ClientInterface.Client.Topics;

namespace Examples {
 /// <summary>
 /// An example of using a control client as an event feed to a
 topic.
 ///
 /// This uses the <see cref="ITopicControl"/> feature to create a
 topic and the <see cref="ITopicUpdateControl"/>
 /// feature to send updates to it.
 ///
 /// To send updates to a topic, the client session requires the
 <see cref="TopicPermission.UPDATE_TOPIC"/>
 /// permission for that branch of the topic tree.
 /// </summary>
 public class ControlClientAsUpdateSource {
 private const string TopicName = "Feeder";
 private readonly ISession session;
 private readonly ITopicControl topicControl;
 private readonly ITopicUpdateControl updateControl;
 private readonly ITopicUpdaterUpdateCallback updateCallback;

 /// <summary>
 /// Constructor.
 /// </summary>
 /// <param name="callback">The callback for updates.</param>
 public
 ControlClientAsUpdateSource(ITopicUpdaterUpdateCallback callback)
 {
 updateCallback = callback;

 session =
 Diffusion.Sessions.Principal("control").Password("password")
 .Open("ws://diffusion.example.com;80");

Diffusion | 337

 topicControl = session.GetTopicControlFeature();
 updateControl = session.GetTopicUpdateControlFeature();
 }

 public void Start(IPriceProvider provider) {
 // Set up topic details
 var builder =
 topicControl.CreateDetailsBuilder<ISingleValueTopicDetailsBuilder>();
 var details =
 builder.Metadata(Diffusion.Metadata.Decimal("Price")).Build();

 // Declare a custom update source implementation. When
 the source is set as active, start a periodic task
 // to poll the provider every second and update the
 topic. When the source is closed, stop the scheduled
 // task.
 var source = new UpdateSource(provider,
 updateCallback);

 // Create the topic. When the callback indicates that the
 topic has been created, register the topic
 // source for the topic.
 topicControl.AddTopicFromValue(TopicName, details, new
 AddCallback(updateControl, source));
 }

 public void Close() {
 // Remove our topic and close the session when done.
 topicControl.RemoveTopics(">" + TopicName, new
 RemoveCallback(session));
 }

 private class RemoveCallback :
 TopicControlRemoveCallbackDefault {
 private readonly ISession theSession;

 public RemoveCallback(ISession session) {
 theSession = session;
 }

 /// <summary>
 /// Notification that a call context was closed
 prematurely, typically due to a timeout or the session being
 /// closed. No further calls will be made for the
 context.
 /// </summary>
 public override void OnDiscard() {
 theSession.Close();
 }

 /// <summary>
 /// Topic(s) have been removed.
 /// </summary>
 public override void OnTopicsRemoved() {
 theSession.Close();
 }
 }

 private class AddCallback : TopicControlAddCallbackDefault {
 private readonly ITopicUpdateControl updateControl;
 private readonly UpdateSource updateSource;

Diffusion | 338

 public AddCallback(ITopicUpdateControl updater,
 UpdateSource source) {
 updateControl = updater;
 updateSource = source;
 }

 /// <summary>
 /// Topic has been added.
 /// </summary>
 /// <param name="topicPath">The full path of the topic
 that was added.</param>
 public override void OnTopicAdded(string topicPath) {
 updateControl.RegisterUpdateSource(topicPath,
 updateSource);
 }
 }

 private class UpdateSource : TopicUpdateSourceDefault {
 private readonly IPriceProvider thePriceProvider;
 private readonly ITopicUpdaterUpdateCallback
 theUpdateCallback;
 private readonly CancellationTokenSource
 cancellationToken = new CancellationTokenSource();

 public UpdateSource(IPriceProvider provider,
 ITopicUpdaterUpdateCallback callback) {
 thePriceProvider = provider;
 theUpdateCallback = callback;
 }

 /// <summary>
 /// State notification that this source is now active for
 the specified topic path, and is therefore in a
 /// valid state to send updates on topics at or below the
 registered topic path.
 /// </summary>
 /// <param name="topicPath">The registration path.</
param>
 /// <param name="updater">An updater that may be used to
 update topics at or below the registered path.</param>
 public override void OnActive(string topicPath,
 ITopicUpdater updater) {
 PeriodicTaskFactory.Start(() => {
 updater.Update(
 TopicName,
 Diffusion.Content.NewContent(thePriceProvider.Price),
 theUpdateCallback);
 }, 1000, cancelToken: cancellationToken.Token);
 }

 /// <summary>
 /// Called if the handler is closed. The handler will be
 closed if the
 /// session is closed after the handler has been
 registered, or if the
 /// handler is unregistered using <see
 cref="IRegistration.Close">close</see>.
 ///
 /// No further calls will be made for the handler.
 /// </summary>
 /// <param name="topicPath">the branch of the topic tree
 for which the handler was registered</param>
 public override void OnClose(string topicPath) {

Diffusion | 339

 cancellationToken.Cancel();
 }
 }

 public interface IPriceProvider {
 /// <summary>
 /// Get the current price as a decimal string.
 /// </summary>
 string Price {
 get;
 }
 }
 }
}

C

/**
 * Copyright © 2014, 2016 Push Technology Ltd.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied.
 * See the License for the specific language governing permissions
 and
 * limitations under the License.
 *
 * This example is written in C99. Please use an appropriate C99
 capable compiler
 *
 * @author Push Technology Limited
 * @since 5.0
 */

/*
 * This example creates a simple single-value topic and periodically
 updates
 * the data it contains.
 */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>

#include <apr.h>
#include <apr_thread_mutex.h>
#include <apr_thread_cond.h>

#include "diffusion.h"
#include "args.h"
#include "conversation.h"
#include "service/svc-update.h"

int active = 0;

Diffusion | 340

apr_pool_t *pool = NULL;
apr_thread_mutex_t *mutex = NULL;
apr_thread_cond_t *cond = NULL;

ARG_OPTS_T arg_opts[] = {
 ARG_OPTS_HELP,
 {'u', "url", "Diffusion server URL", ARG_OPTIONAL,
 ARG_HAS_VALUE, "ws://localhost:8080"},
 {'p', "principal", "Principal (username) for the connection",
 ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'c', "credentials", "Credentials (password) for the
 connection", ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'t', "topic", "Topic name to create and update",
 ARG_OPTIONAL, ARG_HAS_VALUE, "time"},
 {'s', "seconds", "Number of seconds to run for before
 exiting", ARG_OPTIONAL, ARG_HAS_VALUE, "30"},
 END_OF_ARG_OPTS
};

/*
 * Handlers for add topic feature.
 */
static int
on_topic_added(SESSION_T *session, const SVC_ADD_TOPIC_RESPONSE_T
 *response, void *context)
{
 printf("Added topic\n");
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

static int
on_topic_add_failed(SESSION_T *session, const
 SVC_ADD_TOPIC_RESPONSE_T *response, void *context)
{
 printf("Failed to add topic (%d)\n", response-
>response_code);
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

static int
on_topic_add_discard(SESSION_T *session, void *context)
{
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

/*
 * Handlers for registration of update source feature
 */
static int
on_update_source_init(SESSION_T *session,
 const CONVERSATION_ID_T *updater_id,
 const SVC_UPDATE_REGISTRATION_RESPONSE_T
 *response,
 void *context)

Diffusion | 341

{
 char *id_str = conversation_id_to_string(*updater_id);
 printf("Topic source \"%s\" in init state\n", id_str);
 free(id_str);
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

static int
on_update_source_registered(SESSION_T *session,
 const CONVERSATION_ID_T *updater_id,
 const SVC_UPDATE_REGISTRATION_RESPONSE_T
 *response,
 void *context)
{
 char *id_str = conversation_id_to_string(*updater_id);
 printf("Registered update source \"%s\"\n", id_str);
 free(id_str);
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

static int
on_update_source_deregistered(SESSION_T *session,
 const CONVERSATION_ID_T *updater_id,
 void *context)
{
 char *id_str = conversation_id_to_string(*updater_id);
 printf("Deregistered update source \"%s\"\n", id_str);
 free(id_str);
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;}

static int
on_update_source_active(SESSION_T *session,
 const CONVERSATION_ID_T *updater_id,
 const SVC_UPDATE_REGISTRATION_RESPONSE_T
 *response,
 void *context)
{
 char *id_str = conversation_id_to_string(*updater_id);
 printf("Topic source \"%s\" active\n", id_str);
 free(id_str);
 active = 1;
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

static int
on_update_source_standby(SESSION_T *session,
 const CONVERSATION_ID_T *updater_id,
 const SVC_UPDATE_REGISTRATION_RESPONSE_T
 *response,
 void *context)

Diffusion | 342

{
 char *id_str = conversation_id_to_string(*updater_id);
 printf("Topic source \"%s\" on standby\n", id_str);
 free(id_str);
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

static int
on_update_source_closed(SESSION_T *session,
 const CONVERSATION_ID_T *updater_id,
 const SVC_UPDATE_REGISTRATION_RESPONSE_T
 *response,
 void *context)
{
 char *id_str = conversation_id_to_string(*updater_id);
 printf("Topic source \"%s\" closed\n", id_str);
 free(id_str);
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);
 return HANDLER_SUCCESS;
}

/*
 * Handlers for update of data.
 */
static int
on_update_success(SESSION_T *session,
 const CONVERSATION_ID_T *updater_id,
 const SVC_UPDATE_RESPONSE_T *response,
 void *context)
{
 char *id_str = conversation_id_to_string(*updater_id);
 printf("on_update_success for updater \"%s\"\n", id_str);
 free(id_str);
 return HANDLER_SUCCESS;
}

static int
on_update_failure(SESSION_T *session,
 const CONVERSATION_ID_T *updater_id,
 const SVC_UPDATE_RESPONSE_T *response,
 void *context)
{
 char *id_str = conversation_id_to_string(*updater_id);
 printf("on_update_failure for updater \"%s\"\n", id_str);
 free(id_str);
 return HANDLER_SUCCESS;
}

/*
 * Program entry point.
 */
int
main(int argc, char** argv)
{
 /*
 * Standard command-line parsing.
 */
 const HASH_T *options = parse_cmdline(argc, argv, arg_opts);

Diffusion | 343

 if(options == NULL || hash_get(options, "help") != NULL) {
 show_usage(argc, argv, arg_opts);
 return EXIT_FAILURE;
 }

 const char *url = hash_get(options, "url");
 const char *principal = hash_get(options, "principal");
 CREDENTIALS_T *credentials = NULL;
 const char *password = hash_get(options, "credentials");
 if(password != NULL) {
 credentials = credentials_create_password(password);
 }
 const char *topic_name = hash_get(options, "topic");
 const long seconds = atol(hash_get(options, "seconds"));

 /*
 * Setup for condition variable.
 */
 apr_initialize();
 apr_pool_create(&pool, NULL);
 apr_thread_mutex_create(&mutex, APR_THREAD_MUTEX_UNNESTED,
 pool);
 apr_thread_cond_create(&cond, pool);

 /*
 * Create a session with the Diffusion server.
 */
 SESSION_T *session;
 DIFFUSION_ERROR_T error = { 0 };
 session = session_create(url, principal, credentials, NULL,
 NULL, &error);
 if(session == NULL) {
 fprintf(stderr, "TEST: Failed to create session\n");
 fprintf(stderr, "ERR : %s\n", error.message);
 return EXIT_FAILURE;
 }

 /*
 * Create a topic holding simple string content.
 */
 TOPIC_DETAILS_T *string_topic_details =
 create_topic_details_single_value(M_DATA_TYPE_STRING);
 const ADD_TOPIC_PARAMS_T add_topic_params = {
 .topic_path = topic_name,
 .details = string_topic_details,
 .on_topic_added = on_topic_added,
 .on_topic_add_failed = on_topic_add_failed,
 .on_discard = on_topic_add_discard,
 };

 apr_thread_mutex_lock(mutex);
 add_topic(session, add_topic_params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

 topic_details_free(string_topic_details);

 /*
 * Define the handlers for add_update_source()
 */
 const UPDATE_SOURCE_REGISTRATION_PARAMS_T update_reg_params =
 {
 .topic_path = topic_name,

Diffusion | 344

 .on_init = on_update_source_init,
 .on_registered = on_update_source_registered,
 .on_active = on_update_source_active,
 .on_standby = on_update_source_standby,
 .on_close = on_update_source_closed
 };

 /*
 * Register an updater.
 */
 apr_thread_mutex_lock(mutex);
 CONVERSATION_ID_T *updater_id =
 register_update_source(session, update_reg_params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

 /*
 * Define default parameters for an update source.
 */
 UPDATE_SOURCE_PARAMS_T update_source_params_base = {
 .updater_id = updater_id,
 .topic_path = topic_name,
 .on_success = on_update_success,
 .on_failure = on_update_failure
 };

 time_t end_time = time(NULL) + seconds;

 while(time(NULL) < end_time) {

 if(active) {
 /*
 * Create an update structure containing the
 current time.
 */
 BUF_T *buf = buf_create();
 const time_t time_now = time(NULL);
 buf_write_string(buf, ctime(&time_now));

 CONTENT_T *content =
 content_create(CONTENT_ENCODING_NONE, buf);

 UPDATE_T *upd =
 update_create(UPDATE_ACTION_REFRESH,

 UPDATE_TYPE_CONTENT,
 content);

 UPDATE_SOURCE_PARAMS_T update_source_params =
 update_source_params_base;
 update_source_params.update = upd;

 /*
 * Update the topic.
 */
 update(session, update_source_params);

 content_free(content);
 update_free(upd);
 buf_free(buf);
 }

 sleep(1);

Diffusion | 345

 }

 if(active) {
 UPDATE_SOURCE_DEREGISTRATION_PARAMS_T
 update_dereg_params = {
 .updater_id = updater_id,
 .on_deregistered =
 on_update_source_deregistered
 };

 apr_thread_mutex_lock(mutex);
 deregister_update_source(session,
 update_dereg_params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);
 }

 /*
 * Close session and free resources.
 */
 session_close(session, NULL);
 session_free(session);

 conversation_id_free(updater_id);
 credentials_free(credentials);

 apr_thread_mutex_destroy(mutex);
 apr_thread_cond_destroy(cond);
 apr_pool_destroy(pool);
 apr_terminate();

 return EXIT_SUCCESS;

}

Change the URL from that provided in the example to the URL of the Diffusion server.

Example: Make non-exclusive updates to a topic
The following examples use the Unified API to update a topic with content. Updating a topic this way
does not prevent other clients from updating the topic.

JavaScript

// 1. A session may update any existing topic. Update values must be
 of the same type as the topic being updated.

 // Add a topic first with a string type
 session.topics.add('foo', '').then(function() {
 // Update the topic
 return session.topics.update('foo', 'hello');
 }).then(function() {
 // Update the topic again
 return session.topics.update('foo', 'world');
 });

 // 2. If using RecordContent metadata, update values are
 constructed from the metadata

 // Create a new metadata instance
 var meta = new diffusion.metadata.RecordContent();

 meta.addRecord('record', 1, {

Diffusion | 346

 'field' : meta.integer()
 });

 // Create a builder to set values
 var builder = meta.builder();

 builder.add('record', {
 field : 123
 });

 // Update the topic with the new value
 session.topics.add('topic', '').then(function() {
 session.topics.update('topic', builder.build());
 });

Apple

@import Diffusion;

@implementation TopicUpdateExample {
 PTDiffusionSession* _session;
}

-(void)startWithURL:(NSURL*)url {

 PTDiffusionCredentials *const credentials =
 [[PTDiffusionCredentials alloc]
 initWithPassword:@"password"];

 PTDiffusionSessionConfiguration *const sessionConfiguration =
 [[PTDiffusionSessionConfiguration alloc]
 initWithPrincipal:@"control"

 credentials:credentials];

 NSLog(@"Connecting...");

 [PTDiffusionSession openWithURL:url
 configuration:sessionConfiguration
 completionHandler:^(PTDiffusionSession *session,
 NSError *error)
 {
 if (!session) {
 NSLog(@"Failed to open session: %@", error);
 return;
 }

 // At this point we now have a connected session.
 NSLog(@"Connected.");

 // Set ivar to maintain a strong reference to the session.
 _session = session;

 // Add topic.
 [self addTopicForSession:session];
 }];
}

static NSString *const _TopicPath = @"Example/Updating";

-(void)addTopicForSession:(PTDiffusionSession *const)session {
 // Add a single value topic without an initial value.

Diffusion | 347

 [session.topicControl addWithTopicPath:_TopicPath

 type:PTDiffusionTopicType_SingleValue
 value:nil
 completionHandler:^(NSError * _Nullable
 error)
 {
 if (error) {
 NSLog(@"Failed to add topic. Error: %@", error);
 } else {
 NSLog(@"Topic created.");

 // Update topic after a short wait.
 [self updateTopicForSession:session withValue:1];
 }
 }];
}

-(void)updateTopicForSession:(PTDiffusionSession *const)session
 withValue:(const NSUInteger)value {
 dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(1.0 *
 NSEC_PER_SEC)),
 dispatch_get_main_queue(), ^
 {
 // Get the non-exclusive updater.
 PTDiffusionTopicUpdater *const updater =
 session.topicUpdateControl.updater;

 // Prepare data to update topic with.
 NSString *const string =
 [NSString stringWithFormat:@"Update #%lu", (unsigned
 long)value];
 NSData *const data = [string
 dataUsingEncoding:NSUTF8StringEncoding];
 PTDiffusionContent *const content =
 [[PTDiffusionContent alloc] initWithData:data];

 // Update the topic.
 [updater updateWithTopicPath:_TopicPath
 value:content
 completionHandler:^(NSError *const error)
 {
 if (error) {
 NSLog(@"Failed to update topic. Error: %@", error);
 } else {
 NSLog(@"Topic updated to \"%@\"", string);

 // Update topic after a short wait.
 [self updateTopicForSession:session withValue:value +
 1];
 }
 }];
 });
}

@end

Java and Android

import com.pushtechnology.diffusion.client.Diffusion;
import
 com.pushtechnology.diffusion.client.callbacks.TopicTreeHandler;

Diffusion | 348

import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicControl.AddCallback;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicUpdateControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.TopicUpdateControl.Updater.UpdateCallback;
import com.pushtechnology.diffusion.client.session.Session;
import com.pushtechnology.diffusion.client.topics.details.TopicType;

/**
 * An example of using a control client to create and update a topic
 in non
 * exclusive mode (as opposed to acting as an exclusive update
 source). In this
 * mode other clients could update the same topic (on a last update
 wins basis).
 * <P>
 * This uses the 'TopicControl' feature to create a topic and the
 * 'TopicUpdateControl' feature to send updates to it.
 * <P>
 * To send updates to a topic, the client session requires the
 'update_topic'
 * permission for that branch of the topic tree.
 *
 * @author Push Technology Limited
 * @since 5.3
 */
public final class ControlClientUpdatingSingleValueTopic {

 private static final String TOPIC = "MyTopic";

 private final Session session;
 private final TopicControl topicControl;
 private final TopicUpdateControl updateControl;

 /**
 * Constructor.
 */
 public ControlClientUpdatingSingleValueTopic() {

 session =

 Diffusion.sessions().principal("control").password("password")
 .open("ws://diffusion.example.com:80");

 topicControl = session.feature(TopicControl.class);
 updateControl = session.feature(TopicUpdateControl.class);

 // Create the topic and request that it is removed when the
 session
 // closes
 topicControl.addTopic(
 TOPIC,
 TopicType.SINGLE_VALUE,
 new AddCallback.Default() {
 @Override
 public void onTopicAdded(String topicPath) {
 topicControl.removeTopicsWithSession(
 TOPIC,
 new TopicTreeHandler.Default());
 }

Diffusion | 349

 });

 }

 /**
 * Update the topic with a string value.
 *
 * @param value the update value
 * @param callback the update callback
 */
 public void update(String value, UpdateCallback callback) {
 updateControl.updater().update(TOPIC, value, callback);
 }

 /**
 * Close the session.
 */
 public void close() {
 session.close();
 }
}

.NET

using PushTechnology.ClientInterface.Client.Factories;
using PushTechnology.ClientInterface.Client.Features.Control.Topics;
using PushTechnology.ClientInterface.Client.Session;
using PushTechnology.ClientInterface.Client.Topics;

namespace Examples {
 /// <summary>
 /// An example of using a control client to create and update a
 topic in non-exclusive mode (as opposed to acting
 /// as an exclusive update source). In this mode other clients
 could update the same topic (on a 'last update wins'
 /// basis).
 ///
 /// This uses the <see cref="ITopicControl"/> feature to create a
 topic and the <see cref="ITopicUpdateControl"/>
 /// feature to send updates to it.
 ///
 /// To send updates to a topic, the client session requires the
 'update_topic' permission for that branch of the
 /// topic tree.
 /// </summary>
 public class ControlClientUpdatingTopic {
 private const string Topic = "MyTopic";
 private readonly ISession session;
 private readonly ITopicControl topicControl;
 private readonly ITopicUpdateControl updateControl;

 /// <summary>
 /// Constructor.
 /// </summary>
 public ControlClientUpdatingTopic() {
 session =
 Diffusion.Sessions.Principal("control").Password("password")
 .Open("ws://diffusion.example.com:80");

 topicControl = session.GetTopicControlFeature();
 updateControl = session.GetTopicUpdateControlFeature();

Diffusion | 350

 // Create a single-value topic.
 topicControl.AddTopicFromValue(Topic,
 TopicType.SINGLE_VALUE, new TopicControlAddCallbackDefault());
 }

 /// <summary>
 /// Update the topic with a string value.
 /// </summary>
 /// <param name="value">The update value.</param>
 /// <param name="callback">The update callback.</param>
 public void Update(string value, ITopicUpdaterUpdateCallback
 callback) {
 updateControl.Updater.Update(Topic, value, callback);
 }

 /// <summary>
 /// Close the session.
 /// </summary>
 public void Close() {
 // Remove our topic and close session when done.
 topicControl.RemoveTopics(">" + Topic, new
 RemoveCallback(session));
 }

 private class RemoveCallback :
 TopicControlRemoveCallbackDefault {
 private readonly ISession theSession;

 public RemoveCallback(ISession session) {
 theSession = session;
 }

 /// <summary>
 /// Notification that a call context was closed
 prematurely, typically due to a timeout or the session being
 /// closed. No further calls will be made for the
 context.
 /// </summary>
 public override void OnDiscard() {
 theSession.Close();
 }

 /// <summary>
 /// Topic(s) have been removed.
 /// </summary>
 public override void OnTopicsRemoved() {
 theSession.Close();
 }
 }
 }
}

Change the URL from that provided in the example to the URL of the Diffusion server.

Diffusion | 351

Managing subscriptions
A client can use the SubscriptionControl feature to subscribe other client sessions to topics that they
have not requested subscription to themselves and also to unsubscribe clients from topics. It also
enables the client to register as the handler for routing topic subscriptions.

Subscribing and unsubscribing clients

Required permissions: modify_session, select_topic permission for the topics being subscribed to

A client can subscribe client sessions that it knows about to topics that those clients have not explicitly
requested. It can also unsubscribe clients from topics.

A session identifier is required to specify the client session that is to be subscribed or unsubscribed.
Use the ClientControl feature to get the identifiers for connected client sessions.

The SubscriptionControl feature uses topic selectors to specify topics for subscription and
unsubscription. Many topics can be specified in a single operation.

The client being subscribed to topics must have read_topic permission for the topics it is being
subscribed to.

Using session properties to select clients to subscribe and unsubscribe

Required permissions: view_session, modify_session, select_topic permission for the topics being
subscribed to

When managing client subscriptions, a client can specify a filter for which client sessions it subscribes
to topics or unsubscribes from topics. The filter is a query expression on the values of session
properties.

The managing client defines a filter and sends a subscription request with this filter to the Diffusion
server. The Diffusion server evaluates the query and subscribes those currently connected client
sessions whose session properties match the filter to the topic or topics.

The filter is evaluated only once. Clients that subsequently connect or clients whose properties change
are do not cause the subscription request to be reevaluated. Even if these clients match the filter, they
are not subscribed.

Managing all subscriptions from a separate control session

You can prevent client sessions from subscribing themselves to topics and control all subscriptions
from a separate control client session that uses SubscriptionControl feature to subscribe clients to
topics.

To restrict subscription capability to control sessions, configure the following permissions:

Control session:

• Grant the modify_session permission
• Grant the select_topic permission

This can be either be granted for the default topic scope or more selectively to restrict the topic
selectors the control session can use.

Other sessions:

• Grant read_topic to the appropriate topics.
• Deny the select_topic permission by default.

Do not assign the session a role that has the select_topic permission for the default topic scope.
This prevents the session from subscribing to all topics using a wildcard selector.

Diffusion | 352

• Optionally, grant the select_topic permission to specific branches of the topic tree to which the
session can subscribe freely.

Acting as a routing subscription handler

Required permissions: view_session, modify_session, register_handler

Routing topics can be created with a server-side handler that assigns clients to real topics. However,
you can omit the server-side handler such that subscriptions to routing topics are directed at a client
acting as a routing subscription handler.

A client can register a routing subscription handler for a branch of the topic tree. Any subscription
requests to routing topics in that branch that do not have server-side handlers are passed to the client
for action.

On receipt of a routing subscription request the client can respond with a route request that specifies
the path of the actual topic that the routing topic maps to for the requesting client. This subscription
fails if the target topic does not already exist or if the requesting client does not have read_topic
permission for the routing topic or target topic.

The client can complete other actions before calling back to route. For example, it could use the
TopicControl feature to create the topic that the client is to map to.

Alternatively, the client can defer the routing subscription request in which case the requesting client
remains unsubscribed. This is similar to denying it from an authorization point of view.

The client must reply with a route or defer for all routing requests.

Related concepts
Topic selectors in the Unified API on page 60
A topic selector identifies one or more topics. You can create a topic selector object from a pattern
expression.

Topic selectors in the Classic API (deprecated) on page 67
A topic selector is a string that can be used by the Classic API to select more than one topic by
indicating that subordinate topics are to be included or by fuzzy matching on topic names or both.

Session properties on page 265
A client session has a number of properties associated with it. Properties are key-value pairs. Both the
key and the value are case sensitive.

Session filtering on page 266
Session filters enable you to query the set of connected client sessions on the Diffusion server based
on their session properties.

Example: Subscribe other clients to topics
The following examples use the SubscriptionControl feature in the Unified API to subscribe other client
sessions to topics.

Java and Android

package com.pushtechnology.diffusion.examples;

import com.pushtechnology.diffusion.client.Diffusion;
import
 com.pushtechnology.diffusion.client.features.control.topics.SubscriptionControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.SubscriptionControl.SubscriptionCallback;
import com.pushtechnology.diffusion.client.session.Session;
import com.pushtechnology.diffusion.client.session.SessionId;

Diffusion | 353

/**
 * This demonstrates using a client to subscribe and unsubscribe
 other clients
 * to topics.
 * <P>
 * This uses the 'SubscriptionControl' feature.
 *
 * @author Push Technology Limited
 * @since 5.0
 */
public class ControlClientSubscriptionControl {

 private final Session session;

 private final SubscriptionControl subscriptionControl;

 /**
 * Constructor.
 */
 public ControlClientSubscriptionControl() {

 session =

 Diffusion.sessions().principal("control").password("password")
 .open("ws://diffusion.example.com:80");

 subscriptionControl =
 session.feature(SubscriptionControl.class);
 }

 /**
 * Subscribe a client to topics.
 *
 * @param sessionId client to subscribe
 * @param topicSelector topic selector expression
 * @param callback for subscription result
 */
 public void subscribe(
 SessionId sessionId,
 String topicSelector,
 SubscriptionCallback callback) {

 // To subscribe a client to a topic, this client session
 // must have the 'modify_session' permission.
 subscriptionControl.subscribe(
 sessionId,
 topicSelector,
 callback);
 }

 /**
 * Unsubscribe a client from topics.
 *
 * @param sessionId client to unsubscribe
 * @param topicSelector topic selector expression
 * @param callback for unsubscription result
 */
 public void unsubscribe(
 SessionId sessionId,
 String topicSelector,
 SubscriptionCallback callback) {

Diffusion | 354

 // To unsubscribe a client from a topic, this client session
 // must have the 'modify_session' permission.
 subscriptionControl.unsubscribe(
 sessionId,
 topicSelector,
 callback);
 }

 /**
 * Close the session.
 */
 public void close() {
 session.close();
 }
}

.NET

using PushTechnology.ClientInterface.Client.Factories;
using PushTechnology.ClientInterface.Client.Features.Control.Topics;
using PushTechnology.ClientInterface.Client.Session;

namespace Examples {
 /// <summary>
 /// This demonstrates using a client to subscribe and unsubscribe
 other clients to topics.
 ///
 /// This uses the <see cref="ISubscriptionControl"/> feature.
 /// </summary>
 public class ControlClientSubscriptionControl {
 private readonly ISession session;
 private readonly ISubscriptionControl subscriptionControl;

 /// <summary>
 /// Constructor.
 /// </summary>
 public ControlClientSubscriptionControl() {
 session =
 Diffusion.Sessions.Principal("control").Password("password")
 .Open("ws://diffusion.example.com:80");

 subscriptionControl =
 session.GetSubscriptionControlFeature();
 }

 /// <summary>
 /// Subscribe a client to topics.
 /// </summary>
 /// <param name="sessionId">The session id of the client to
 subscribe.</param>
 /// <param name="topicSelector">The topic selector
 expression.</param>
 /// <param name="callback">The callback for the subscription
 result.</param>
 public void Subscribe(SessionId sessionId, string
 topicSelector, ISubscriptionCallback callback) {
 // To subscribe a client to a topic, this client session
 must have the MODIFY_SESSION permission.
 subscriptionControl.Subscribe(sessionId, topicSelector,
 callback);
 }

Diffusion | 355

 /// <summary>
 /// Unsubscribe a client from topics.
 /// </summary>
 /// <param name="sessionId">The session id of the client to
 unsubscribe.</param>
 /// <param name="topicSelector">The topic selector
 expression.</param>
 /// <param name="callback">The callback for the
 unsubscription result.</param>
 public void Unsubscribe(SessionId sessionId, string
 topicSelector, ISubscriptionCallback callback) {
 subscriptionControl.Unsubscribe(sessionId,
 topicSelector, callback);
 }

 /// <summary>
 /// Close the session.
 /// </summary>
 public void Close() {
 session.Close();
 }
 }
}

C

/*
 * This example waits to be notified of a client connection, and then
 * subscribes that client to a named topic.
 */

#include <stdio.h>
#include <unistd.h>

#include <apr.h>
#include <apr_thread_mutex.h>
#include <apr_thread_cond.h>

#include "diffusion.h"
#include "args.h"

ARG_OPTS_T arg_opts[] = {
 ARG_OPTS_HELP,
 {'u', "url", "Diffusion server URL", ARG_OPTIONAL,
 ARG_HAS_VALUE, "ws://localhost:8080"},
 {'p', "principal", "Principal (username) for the connection",
 ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'c', "credentials", "Credentials (password) for the
 connection", ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'t', "topic_selector", "Topic selector to subscribe/
unsubscribe clients from", ARG_OPTIONAL, ARG_HAS_VALUE, ">foo"},
 END_OF_ARG_OPTS
};
HASH_T *options = NULL;

/*
 * Callback invoked when a client has been successfully subscribed to
 * a topic.
 */
static int
on_subscription_complete(SESSION_T *session, void *context)
{

Diffusion | 356

 printf("Subscription complete\n");
 return HANDLER_SUCCESS;
}

/*
 * Callback invoked when a client session has been opened.
 */
static int
on_session_open(SESSION_T *session, const SESSION_PROPERTIES_EVENT_T
 *request, void *context)
{
 if(session_id_cmp(*session->id, request->session_id) == 0) {
 // It's our own session, ignore.
 return HANDLER_SUCCESS;
 }

 char *topic_selector = hash_get(options, "topic_selector");

 char *sid_str = session_id_to_string(&request->session_id);
 printf("Subscribing session %s to topic selector %s\n",
 sid_str, topic_selector);
 free(sid_str);

 /*
 * Subscribe the client session to the topic.
 */
 SUBSCRIPTION_CONTROL_PARAMS_T subscribe_params = {
 .session_id = request->session_id,
 .topic_selector = topic_selector,
 .on_complete = on_subscription_complete
 };
 subscribe_client(session, subscribe_params);

 return HANDLER_SUCCESS;
}

int
main(int argc, char **argv)
{
 /*
 * Standard command-line parsing.
 */
 options = parse_cmdline(argc, argv, arg_opts);
 if(options == NULL || hash_get(options, "help") != NULL) {
 show_usage(argc, argv, arg_opts);
 return EXIT_FAILURE;
 }

 const char *url = hash_get(options, "url");
 const char *principal = hash_get(options, "principal");
 CREDENTIALS_T *credentials = NULL;
 const char *password = hash_get(options, "credentials");
 if(password != NULL) {
 credentials = credentials_create_password(password);
 }

 /*
 * Create a session with Diffusion.
 */
 DIFFUSION_ERROR_T error = { 0 };
 SESSION_T *session = session_create(url, principal,
 credentials, NULL, NULL, &error);
 if(session == NULL) {

Diffusion | 357

 fprintf(stderr, "Failed to create session: %s\n",
 error.message);
 return EXIT_FAILURE;
 }

 /*
 * Register a session properties listener, so we are notified
 * of new client connections.
 * In the callback, we will subscribe the client to topics
 * according to the topic_selector argument.
 */
 SET_T *required_properties = set_new_string(1);
 set_add(required_properties,
 PROPERTIES_SELECTOR_ALL_FIXED_PROPERTIES);
 SESSION_PROPERTIES_REGISTRATION_PARAMS_T params = {
 .on_session_open = on_session_open,
 .required_properties = required_properties
 };
 session_properties_listener_register(session, params);
 set_free(required_properties);

 /*
 * Pretend to do some work.
 */
 sleep(10);

 /*
 * Close session and tidy up.
 */
 session_close(session, NULL);
 session_free(session);

 return EXIT_SUCCESS;
}

Change the URL from that provided in the example to the URL of the Diffusion server.

Example: Receive notifications when a client subscribes to a routing topic
The following examples use the SubscriptionControl feature in the Unified API to listen for
notifications of when a client subscribes to a routing topic.

Java and Android

package com.pushtechnology.diffusion.examples;

import com.pushtechnology.diffusion.client.Diffusion;
import
 com.pushtechnology.diffusion.client.features.control.topics.SubscriptionControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.SubscriptionControl.RoutingSubscriptionRequest;
import
 com.pushtechnology.diffusion.client.features.control.topics.SubscriptionControl.SubscriptionCallback;
import com.pushtechnology.diffusion.client.session.Session;

/**
 * This demonstrates using a control client to be notified of
 subscription
 * requests to routing topics.
 * <P>
 * This uses the 'SubscriptionControl' feature.
 *
 * @author Push Technology Limited

Diffusion | 358

 * @since 5.0
 */
public class ControlClientSubscriptionControlRouting {

 private final Session session;

 /**
 * Constructor.
 *
 * @param routingCallback for routing subscription requests
 */
 public ControlClientSubscriptionControlRouting(
 final SubscriptionCallback routingCallback) {

 session =

 Diffusion.sessions().principal("control").password("password")
 .open("ws://diffusion.example.com:80");

 final SubscriptionControl subscriptionControl =
 session.feature(SubscriptionControl.class);

 // Sets up a handler so that all subscriptions to topic a/b
 are routed
 // to routing/target/topic
 // To do this, the client session requires the
 'view_session',
 // 'modify_session', and 'register_handler' permissions.
 subscriptionControl.addRoutingSubscriptionHandler(
 "a/b",
 new
 SubscriptionControl.RoutingSubscriptionRequest.Handler
 .Default() {
 @Override
 public void onSubscriptionRequest(
 final RoutingSubscriptionRequest request) {

 request.route(
 "routing/target/topic",
 routingCallback);
 }

 });
 }

 /**
 * Close the session.
 */
 public void close() {
 session.close();
 }
}

.NET

using PushTechnology.ClientInterface.Client.Factories;
using PushTechnology.ClientInterface.Client.Features.Control.Topics;
using PushTechnology.ClientInterface.Client.Session;

namespace Examples {
 /// <summary>

Diffusion | 359

 /// This demonstrates using a control client to be notified of
 subscription requests to routing topics.
 ///
 /// This uses the <see cref="ISubscriptionControl"/> feature.
 /// </summary>
 public class ControlClientSubscriptionControlRouting {
 private readonly ISession session;

 /// <summary>
 /// Constructor.
 /// </summary>
 /// <param name="routingCallback">The callback for routing
 subscription requests.</param>
 public
 ControlClientSubscriptionControlRouting(ISubscriptionCallback
 routingCallback) {
 session =
 Diffusion.Sessions.Principal("control").Password("password")
 .Open("ws://diffusion.example.com:80");

 var subscriptionControl =
 session.GetSubscriptionControlFeature();

 // Sets up a handler so that all subscriptions to topic
 'a/b' are routed to the routing/target topic.
 // To do this, the client session requires the
 VIEW_SESSION, MODIFY_SESSION and REGISTER_HANDLER
 // permissions.
 subscriptionControl.AddRoutingSubscriptionHandler("a/b",
 new SubscriptionHandler(routingCallback));
 }

 /// <summary>
 /// Close the session.
 /// </summary>
 public void Close() {
 session.Close();
 }

 private class SubscriptionHandler :
 RoutingSubscriptionRequestHandlerDefault {
 private readonly ISubscriptionCallback
 theRoutingCallback;

 public SubscriptionHandler(ISubscriptionCallback
 callback) {
 theRoutingCallback = callback;
 }

 /// <summary>
 /// A request to subscribe to a specific routing topic.
 /// </summary>
 /// <param name="request"></param>
 public override void
 OnSubscriptionRequest(IRoutingSubscriptionRequest request) {
 request.Route("routing/target/topic",
 theRoutingCallback);
 }
 }
 }
}

Change the URL from that provided in the example to the URL of the Diffusion server.

Diffusion | 360

Messaging to topic paths
A client can use the Messaging feature to send individual messages to a handler that has registered to
receive messages on a topic path.

Sending messages to clients

Required permissions: send_to_message_handler

A client can send a message to a topic path, regardless of whether a topic is bound to that topic path.
The messages are delivered to a handler that has registered to receive messages on that topic path.

The body of the message that is sent is represented as bytes. Any of the builder features can be used to
build a message as content, JSON, or binary. With messaging you can also send an empty message.

When sending a message certain additional options can also be specified:

Headers
A set of string values that can be sent along with the content.

Priority
Use this to specify the priority used when queuing the message for the client at the
Diffusion server.

If it is a publisher that has registered to receive a message on a topic, the message is mapped to a delta
TopicMessage.

Listen for messages on a topic path

A client can specify a listener that receives messages sent to the client on a topic path.

Example: Send a message to a topic path
The following examples use the Unified API to send a message to a topic path. The message is received
by a handler that has registered to receive messages on that topic path.

JavaScript

var diffusion = require('diffusion');

// Connect to the server. Change these options to suit your own
 environment.
// Node.js will not accept self-signed certificates by default. If
 you have
// one of these, set the environment variable
 NODE_TLS_REJECT_UNAUTHORIZED=0
// before running this example.
diffusion.connect({
 host : 'diffusion.example.com',
 port : 443,
 secure : true,
 principal : 'control',
 credentials : 'password'
}).then(function(session) {
 // 1. Messages can be sent & received between sessions.

 // Create a stream of received messages for a specific path
 session.messages.listen('foo').on('message', function(msg) {
 console.log('Received message: ' + msg.content);
 });

Diffusion | 361

 // Send a message to another session. It is the application's
 responsibility to find the SessionID of the intended
 // recipient.
 session.messages.send('foo', 'Hello world', 'another-session-
id');

 // 2. Messages can also be sent without a recipient, in which
 case they will be dispatched to any Message Handlers
 // that have been registered for the same path. If multiple
 handlers are registered to the same path, any given
 // message will only be dispatched to one handler.

 // Register the handler to receive messages at or below the given
 path.
 session.messages.addHandler('foo', {
 onActive : function() {
 console.log('Handler registered');
 },
 onClose : function() {
 console.log('Handler closed');
 },
 onMessage : function(msg) {
 console.log('Received message:' + msg.content + ' from
 Session: ' + msg.session);
 if (msg.properties) {
 console.log('with properties:', msg.properties);
 }
 }
 }).then(function() {
 console.log('Registered handler');
 }, function(e) {
 console.log('Failed to register handler: ', e);
 });

 // Send a message at a lower path, without an explicit recipient
 - this will be received by the Handler.
 session.messages.send('foo/bar', 'Another message');
});

Apple

@import Diffusion;

@implementation MessagingSendExample {
 PTDiffusionSession* _session;
 NSUInteger _nextValue;
}

-(void)startWithURL:(NSURL*)url {
 NSLog(@"Connecting...");

 [PTDiffusionSession openWithURL:url
 completionHandler:^(PTDiffusionSession *session,
 NSError *error)
 {
 if (!session) {
 NSLog(@"Failed to open session: %@", error);
 return;
 }

 // At this point we now have a connected session.
 NSLog(@"Connected.");

Diffusion | 362

 // Set ivar to maintain a strong reference to the session.
 _session = session;

 // Create a timer to send a message once a second.
 NSTimer *const timer = [NSTimer timerWithTimeInterval:1.0
 target:self

 selector:@selector(sendMessage:)

 userInfo:session
 repeats:YES];
 [[NSRunLoop currentRunLoop] addTimer:timer
 forMode:NSDefaultRunLoopMode];
 }];
}

-(void)sendMessage:(NSTimer *const)timer {
 PTDiffusionSession *const session = timer.userInfo;

 const NSUInteger value = _nextValue++;
 NSData *const data = [[NSString stringWithFormat:@"%lu",
 (long)value] dataUsingEncoding:NSUTF8StringEncoding];
 PTDiffusionContent *const content = [[PTDiffusionContent alloc]
 initWithData:data];

 NSLog(@"Sending %lu...", (long)value);
 [session.messaging sendWithTopicPath:@"foo/bar"
 value:content
 options:[PTDiffusionSendOptions new]
 completionHandler:^(NSError *const error)
 {
 if (error) {
 NSLog(@"Failed to send. Error: %@", error);
 } else {
 NSLog(@"Sent");
 }
 }];
}

@end

Java and Android

package com.pushtechnology.diffusion.examples;

import java.util.List;

import com.pushtechnology.diffusion.client.Diffusion;
import com.pushtechnology.diffusion.client.features.Messaging;
import
 com.pushtechnology.diffusion.client.features.Messaging.SendCallback;
import
 com.pushtechnology.diffusion.client.features.Messaging.SendContextCallback;
import com.pushtechnology.diffusion.client.session.Session;
import com.pushtechnology.diffusion.datatype.json.JSON;

/**
 * This is a simple example of a client that uses the 'Messaging'
 feature to
 * send messages to a topic path.
 * <P>

Diffusion | 363

 * To send a message on a topic path, the client session requires the
 * 'send_to_message_handler' permission.
 *
 * @author Push Technology Limited
 * @since 5.0
 */
public final class ClientSendingMessages {

 private final Session session;
 private final Messaging messaging;

 /**
 * Constructs a message sending application.
 */
 public ClientSendingMessages() {
 session =

 Diffusion.sessions().principal("client").password("password")
 .open("ws://diffusion.example.com:80");
 messaging = session.feature(Messaging.class);
 }

 /**
 * Sends a simple string message to a specified topic path.
 * <P>
 * There will be no context with the message so callback will be
 directed to
 * the no context callback.
 *
 * @param topicPath the topic path
 * @param message the message to send
 * @param callback notifies message sent
 */
 public void send(String topicPath, String message, SendCallback
 callback) {
 messaging.send(topicPath, message, callback);
 }

 /**
 * Sends a JSON object to a specified topic path.
 * <P>
 *
 * @param topicPath the topic path
 * @param message the JSON object to send
 * @param callback notifies message sent
 */
 public void send(String topicPath, JSON message, SendCallback
 callback) {
 messaging.send(topicPath, message, callback);
 }

 /**
 * Sends a simple string message to a specified topic path with
 context string.
 * <P>
 * Callback will be directed to the contextual callback with the
 string
 * provided.
 *
 * @param topicPath the topic path
 * @param message the message to send
 * @param context the context string to return with the callback
 * @param callback notifies message sent

Diffusion | 364

 */
 public void send(
 String topicPath,
 String message,
 String context,
 SendContextCallback<String> callback) {

 messaging.send(topicPath, message, context, callback);
 }

 /**
 * Sends a string message to a specified topic path with headers.
 * <P>
 * There will be no context with the message so callback will be
 directed to
 * the no context callback.
 *
 * @param topicPath the topic path
 * @param message the message to send
 * @param headers the headers to send with the message
 * @param callback notifies message sent
 */
 public void sendWithHeaders(
 String topicPath,
 String message,
 List<String> headers,
 SendCallback callback) {

 messaging.send(
 topicPath,
 Diffusion.content().newContent(message),
 messaging.sendOptionsBuilder().headers(headers).build(),
 callback);
 }

 /**
 * Close the session.
 */
 public void close() {
 session.close();
 }

}

.NET

using System.Collections.Generic;
using PushTechnology.ClientInterface.Client.Factories;
using PushTechnology.ClientInterface.Client.Features;
using PushTechnology.ClientInterface.Client.Session;

namespace Examples {
 /// <summary>
 /// This is a simple example of a client that uses the
 'Messaging' feature to send messages on a topic path.
 ///
 /// To send messages on a topic path, the client session requires
 the
 /// <see cref="TopicPermission.SEND_TO_MESSAGE_HANDLER"/>
 permission.
 /// </summary>
 public class ClientSendingMessages {

Diffusion | 365

 private readonly ISession session;
 private readonly IMessaging messaging;

 /// <summary>
 /// Constructs a message sending application.
 /// </summary>
 public ClientSendingMessages() {
 session =
 Diffusion.Sessions.Principal("client").Password("password")
 .Open("ws://diffusion.example.com:80");

 messaging = session.GetMessagingFeature();
 }

 /// <summary>
 /// Sends a simple string message to a specified topic path.
 ///
 /// There will be no context with the message so callback
 will be directed to the 'no context' callback.
 /// </summary>
 /// <param name="topicPath">The topic path.</param>
 /// <param name="message">The message to send.</param>
 /// <param name="callback">Notifies that the message was
 sent.</param>
 public void Send(string topicPath, string message,
 ISendCallback callback) {
 messaging.Send(topicPath,
 Diffusion.Content.NewContent(message), callback);
 }

 /// <summary>
 /// Sends a simple string message to a specified topic path
 with context string.
 ///
 /// The callback will be directed to the contextual callback
 with the string provided.
 /// </summary>
 /// <param name="topicPath"></param>
 /// <param name="message"></param>
 /// <param name="context"></param>
 /// <param name="callback"></param>
 public void Send(string topicPath, string message, string
 context, ISendContextCallback<string> callback) {
 messaging.Send(topicPath,
 Diffusion.Content.NewContent(message), context, callback);
 }

 /// <summary>
 /// Sends a string message to a specified topic with headers.
 ///
 /// There will be no context with the message so callback
 will be directed to the 'no context' callback.
 /// </summary>
 /// <param name="topicPath">The topic path.</param>
 /// <param name="message">The message to send.</param>
 /// <param name="headers">The headers to send with the
 message.</param>
 /// <param name="callback">Notifies that the message was
 sent.</param>
 public void SendWithHeaders(string topicPath, string
 message, List<string> headers, ISendCallback callback) {
 messaging.Send(topicPath,
 Diffusion.Content.NewContent(message),

Diffusion | 366

 messaging.CreateSendOptionsBuilder().SetHeaders(headers).Build(),
 callback);
 }

 /// <summary>
 /// Close the session.
 /// </summary>
 public void Close() {
 session.Close();
 }
 }
}

C

/*
 * This example shows how a message can be sent from a client to a
 * message handler via a topic path.
 *
 * See msg-handler.c for an example of how to receive these messages
 * in a control client.
 */

#include <stdio.h>
#include <unistd.h>

#include <apr.h>
#include <apr_thread_mutex.h>
#include <apr_thread_cond.h>

#include "diffusion.h"
#include "args.h"

apr_pool_t *pool = NULL;
apr_thread_mutex_t *mutex = NULL;
apr_thread_cond_t *cond = NULL;

ARG_OPTS_T arg_opts[] = {
 ARG_OPTS_HELP,
 {'u', "url", "Diffusion server URL", ARG_OPTIONAL,
 ARG_HAS_VALUE, "ws://localhost:8080"},
 {'p', "principal", "Principal (username) for the connection",
 ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'c', "credentials", "Credentials (password) for the
 connection", ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'t', "topic", "Topic name", ARG_REQUIRED, ARG_HAS_VALUE,
 "echo"},
 {'d', "data", "Data to send", ARG_REQUIRED, ARG_HAS_VALUE,
 NULL},
 END_OF_ARG_OPTS
};

/*
 * Callback invoked when/if a message is sent on the topic that the
 * client is writing to.
 */
static int
on_send(SESSION_T *session, void *context)
{
 printf("on_send() successful. Context=\"%s\".\n", (char
 *)context);

Diffusion | 367

 /*
 * Allow main thread to continue.
 */
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);

 return HANDLER_SUCCESS;
}

int
main(int argc, char **argv)
{
 /*
 * Standard command-line parsing.
 */
 HASH_T *options = parse_cmdline(argc, argv, arg_opts);
 if(options == NULL || hash_get(options, "help") != NULL) {
 show_usage(argc, argv, arg_opts);
 return EXIT_FAILURE;
 }

 char *url = hash_get(options, "url");
 const char *principal = hash_get(options, "principal");
 CREDENTIALS_T *credentials = NULL;
 const char *password = hash_get(options, "credentials");
 if(password != NULL) {
 credentials = credentials_create_password(password);
 }
 char *topic = hash_get(options, "topic");

 /*
 * Setup for condition variable.
 */
 apr_initialize();
 apr_pool_create(&pool, NULL);
 apr_thread_mutex_create(&mutex, APR_THREAD_MUTEX_UNNESTED,
 pool);
 apr_thread_cond_create(&cond, pool);

 /*
 * Create a session with Diffusion.
 */
 SESSION_T *session = NULL;
 DIFFUSION_ERROR_T error = { 0 };
 session = session_create(url, principal, credentials, NULL,
 NULL, &error);
 if(session == NULL) {
 fprintf(stderr, "TEST: Failed to create session\n");
 fprintf(stderr, "ERR : %s\n", error.message);
 return EXIT_FAILURE;
 }

 /*
 * Create a payload.
 */
 char *data = hash_get(options, "data");
 BUF_T *payload = buf_create();
 buf_write_bytes(payload, data, strlen(data));

 /*
 * Build up a list of some headers to send with the message.

Diffusion | 368

 */
 LIST_T *headers = list_create();
 list_append_last(headers, "apple");
 list_append_last(headers, "train");

 /*
 * Parameters for send_msg() call.
 */
 SEND_MSG_PARAMS_T params = {
 .topic_path = topic,
 .payload = *payload,
 .headers = headers,
 .priority = CLIENT_SEND_PRIORITY_NORMAL,
 .on_send = on_send,
 .context = "FOO"
 };

 /*
 * Send the message and wait for the callback to acknowledge
 * delivery.
 */
 apr_thread_mutex_lock(mutex);
 send_msg(session, params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

 /*
 * Politely close the client connection and tidy up.
 */
 session_close(session, NULL);
 session_free(session);

 apr_thread_mutex_destroy(mutex);
 apr_thread_cond_destroy(cond);
 apr_pool_destroy(pool);
 apr_terminate();

 return EXIT_SUCCESS;
}

Change the URL from that provided in the example to the URL of the Diffusion server.

Example: Send a request message to the Push Notification Bridge
The following examples use the Unified API to send a request message on a topic path to communicate
with the Push Notification Bridge. The request message is in JSON and can be used to subscribe or
unsubscribe from receiving push notifications when specific topics are updated.

Apple

/**
 * Compose a URI understood by the Push Notification Bridge from an
 APNs device token.
 * @param deviceID APNS device token.
 * @return string in format expected by the push notification bridge.
 */
-(NSString*)formatAsURI:(NSData*)deviceID {
 return [NSString stringWithFormat:@"apns://%@", [deviceID
 base64EncodedStringWithOptions:0]];
}

/**

Diffusion | 369

 * Compose and send a subscription request to the Push Notification
 bridge
 * @param paths topic paths within the subscription request
 */
- (void)doPnSubscribe:(NSArray<NSString*> *)paths deviceToken:
(NSData*)deviceToken {
 // Compose the JSON request from Obj-C literals
 NSString *const correlation = [[NSUUID UUID] UUIDString];
 PTDiffusionTopicSelector *const selector =
 [PTDiffusionTopicSelector topicSelectorWithAnyExpression:paths];
 NSDictionary *const request =
 @{@"request": @{
 @"correlation": correlation,
 @"content": @{
 @"pnsub": @{
 @"destination": [self formatAsURI:deviceToken],
 @"topic": selector.description}
 }
 }};
 NSData *const requestData = [NSJSONSerialization
 dataWithJSONObject:request options:0 error:nil];

 // Send a message to `SERVICE_TOPIC`
 [_session.messaging sendWithTopicPath:SERVICE_TOPIC
 value:[[PTDiffusionContent alloc]
 initWithData:requestData]
 completionHandler:^(NSError * _Nullable
 error)
 {
 if(error != nil) {
 NSLog(@"Send to topic %@ failed:
 %@", SERVICE_TOPIC, error);
 }
 }];
}

Android

import static java.util.UUID.randomUUID;

import java.io.PrintStream;

import org.json.JSONObject;
import org.json.JSONTokener;

import com.pushtechnology.diffusion.client.Diffusion;
import com.pushtechnology.diffusion.client.content.Content;
import com.pushtechnology.diffusion.client.features.Messaging;
import
 com.pushtechnology.diffusion.client.features.Messaging.MessageStream;
import
 com.pushtechnology.diffusion.client.features.Messaging.SendCallback;
import com.pushtechnology.diffusion.client.session.Session;
import com.pushtechnology.diffusion.client.types.ReceiveContext;

/**
 * An example of a client using the 'Messaging' feature to request
 the Push Notification Bridge
 * subscribe to a topic and relay updates to a GCM registration ID.
 *
 * @author Push Technology Limited

Diffusion | 370

 * @since 5.9
 */
public class ClientSendingPushNotificationSubscription {

 private static final PrintStream OUT = System.out;

 private final String pushServiceTopicPath;
 private final Session session;
 private final Messaging messaging;
 private final MessageStream messageStream = new
 MessageStream.Default() {
 @Override
 public void onMessageReceived(String topicPath, Content
 content, ReceiveContext context) {
 final JSONObject response = (JSONObject) new
 JSONTokener(content.asString()).nextValue();
 final String correlation =
 response.getJSONObject("response").getString("correlation");

 OUT.printf("Received response with correlation '%s': %s",
 correlation, response);
 } };

 /**
 * Constructs message sending application.
 * @param pushServiceTopicPath topic path on which the Push
 Notification Bridgre is taking requests.
 */
 public ClientSendingPushNotificationSubscription(String
 pushServiceTopicPath) {
 this.pushServiceTopicPath = pushServiceTopicPath;
 this.session =

 Diffusion.sessions().principal("client").password("password")
 .open("ws://diffusion.example.com:80");
 this.messaging = session.feature(Messaging.class);
 messaging.addMessageStream(pushServiceTopicPath,
 messageStream);
 }

 /**
 * Close the session.
 */
 public void close() {
 messaging.removeMessageStream(messageStream);
 session.close();
 }

 /**
 * Compose & send a subscription request to the Push Notification
 Bridge.
 *
 * @param subscribedTopic topic to which the bridge subscribes.
 * @param gcmRegistrationID GCM registration ID to which the
 bridge relays updates.
 */
 public void requestPNSubscription(String gcmRegistrationID,
 String subscribedTopic) {
 // Compose the request
 final String gcmDestination = "gcm://" + gcmRegistrationID;
 final String correlation = randomUUID().toString();

Diffusion | 371

 final JSONObject request =
 buildSubscriptionRequest(gcmDestination, subscribedTopic,
 correlation);

 // Send the request
 messaging.send(pushServiceTopicPath, request.toString(), new
 SendCallback.Default());
 }

 /**
 * Compose a subscription request.
 * <P>
 * @param destination The {@code gcm://} or {@code apns://}
 destination for any push notifications.
 * @param topic Diffusion topic subscribed-to by the Push
 Notification Bridge.
 * @param correlation value embedded in the response by the
 bridge relating it back to the request.
 * @return a complete request
 */
 private static JSONObject buildSubscriptionRequest(String
 destination, String topic, String correlation) {
 final JSONObject subObject = new JSONObject();
 subObject.put("destination", destination);
 subObject.put("topic", topic);

 final JSONObject contentObj = new JSONObject();
 contentObj.put("pnsub", subObject);

 final JSONObject requestObj = new JSONObject();
 requestObj.put("correlation", correlation);
 requestObj.put("content", contentObj);

 final JSONObject rootObject = new JSONObject();
 rootObject.put("request", requestObj);
 return rootObject;
 }
}

Related concepts
Push notification networks on page 120
Consider whether your solution will interact with push notification networks.

Push Notification Bridge persistence plugin on page 499
The Push Notification Bridge stores subscription information in memory. To persist this information
past the end of the bridge process, implement a persistence plugin.

Push Notification Bridge on page 649

Diffusion | 372

The Push Notification Bridge is a Diffusion client that subscribes to topics on behalf of other Diffusion
clients and uses a push notification network to relay topic updates to the device where the client
application is located.

Messaging to clients
A client can use the MessagingControl feature to send individual messages to any known client on any
topic path. It can also register a handler for messages sent from clients.

Sending messages to clients

Required permissions: view_session, send_to_session

A client can send a message to any known client session on any topic path, regardless of whether a
topic is bound to that topic path. The messages are delivered to other clients through the Messaging
feature or through the topic listener mechanism.

The client requires the session identifier of the client session it is sending to. Use the ClientControl
feature to get the identifiers for connected client sessions. A client can also send messages back to
clients from which it receives messages through a message handler.

The body of the message that is sent is represented as bytes. Any of the builder features can be used to
build a message as content, JSON, or binary. With messaging you can also send an empty message.

When sending a message certain additional options can also be specified:

Headers
A set of string values that can be sent along with the content.

Priority
Use this to specify the priority used when queuing the message for the client at the
Diffusion server.

Filtering message recipients using session properties

Required permissions: view_session

When sending a message, a client can specify a filter for the recipients of that message. The filter is a
query expression on the values of session properties.

The client defines a filter and sends a message on a topic path with the filter associated. The Diffusion
server evaluates the query and sends the message on to connected client sessions whose session
properties match the filter.

Note: Sending messages to a set of clients defined by a filter is not intended for high
throughput or data. If you have a lot of data to send or want to send data to a lot of clients,
use the pub-sub capabilities of Diffusion. Subscribe the set of clients to a topic and publish the
data as updates through that topic.

Registering message handlers

Required permissions: register_handler

A client can add a message handler for any branch of the topic tree. This handler receives messages
sent from clients on any topic in that branch unless overridden by a handler registered for a more
specific branch.

Each client session can register only a single handler for any branch in the topic tree. To change the
handler for a particular branch, the previous handler must be closed.

Diffusion | 373

A message received by a message handler comprises content and message context which can include
headers. The content can be empty. The client interprets the content of messages. If a topic is bound
to the topic path that the message is sent on, message content is not required to match the content
definition of that topic.

Requesting session properties with messages

Required permissions: register_handler,view_session

When registering a message handler, a client can specify session properties that it is interested in
receiving with the handled messages.

Messages received by this message handler include the current values of the requested session
properties for the client session that sent the message.

The message handler can request both fixed properties and user-defined properties of the session.

Related concepts
Session properties on page 265
A client session has a number of properties associated with it. Properties are key-value pairs. Both the
key and the value are case sensitive.

Session filtering on page 266
Session filters enable you to query the set of connected client sessions on the Diffusion server based
on their session properties.

Example: Handle messages and send messages to sessions
The following examples use the MessagingControl feature in the Unified API to handle messages sent
to topic paths and to send messages to one or more clients.

JavaScript

var diffusion = require('diffusion');

// Connect to the server. Change these options to suit your own
 environment.
// Node.js will not accept self-signed certificates by default. If
 you have
// one of these, set the environment variable
 NODE_TLS_REJECT_UNAUTHORIZED=0
// before running this example.
diffusion.connect({
 host : 'diffusion.example.com',
 port : 443,
 secure : true,
 principal : 'control',
 credentials : 'password'
}).then(function(session) {
 // 1. Messages can be sent & received between sessions.

 // Create a stream of received messages for a specific path
 session.messages.listen('foo').on('message', function(msg) {
 console.log('Received message: ' + msg.content);
 });

 // Send a message to another session. It is the application's
 responsibility to find the SessionID of the intended
 // recipient.
 session.messages.send('foo', 'Hello world', 'another-session-
id');

Diffusion | 374

 // 2. Messages can also be sent without a recipient, in which
 case they will be dispatched to any Message Handlers
 // that have been registered for the same path. If multiple
 handlers are registered to the same path, any given
 // message will only be dispatched to one handler.

 // Register the handler to receive messages at or below the given
 path.
 session.messages.addHandler('foo', {
 onActive : function() {
 console.log('Handler registered');
 },
 onClose : function() {
 console.log('Handler closed');
 },
 onMessage : function(msg) {
 console.log('Received message:' + msg.content + ' from
 Session: ' + msg.session);
 if (msg.properties) {
 console.log('with properties:', msg.properties);
 }
 }
 }).then(function() {
 console.log('Registered handler');
 }, function(e) {
 console.log('Failed to register handler: ', e);
 });

 // Send a message at a lower path, without an explicit recipient
 - this will be received by the Handler.
 session.messages.send('foo/bar', 'Another message');
});

Java and Android

import org.json.JSONException;
import org.json.JSONObject;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.pushtechnology.diffusion.client.Diffusion;
import com.pushtechnology.diffusion.client.content.Content;
import com.pushtechnology.diffusion.client.features.Messaging;
import
 com.pushtechnology.diffusion.client.features.control.topics.MessagingControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.MessagingControl.MessageHandler;
import
 com.pushtechnology.diffusion.client.features.control.topics.MessagingControl.SendCallback;
import com.pushtechnology.diffusion.client.session.Session;
import com.pushtechnology.diffusion.client.session.SessionId;
import com.pushtechnology.diffusion.client.types.ReceiveContext;
import com.pushtechnology.diffusion.datatype.json.JSON;

/**
 * This is an example of a control client using the
 'MessagingControl' feature
 * to receive messages from clients and also send messages to
 clients.
 * <P>

Diffusion | 375

 * It is a trivial example that simply responds to all messages on a
 particular
 * branch of the topic tree by echoing them back to the client
 exactly as they
 * are complete with headers.
 *
 * @author Push Technology Limited
 * @since 5.0
 */
public class ControlClientReceivingMessages {

 private final Session echoingSession;
 private final Session sendingSession;
 private final MessagingControl echoingSessionMessagingControl;
 private final MessagingControl sendingSessionMessagingControl;
 private final SendCallback sendCallback;

 private static final Logger LOG =

 LoggerFactory.getLogger(ControlClientReceivingMessages.class);

 /**
 * Constructor.
 *
 * @param callback for result of sends
 */
 public ControlClientReceivingMessages(SendCallback callback) {

 sendCallback = callback;

 echoingSession =

 Diffusion.sessions().principal("control").password("password")
 .open("ws://diffusion.example.com:80");

 sendingSession =

 Diffusion.sessions().principal("control").password("password")
 .open("ws://diffusion.example.com:80");

 echoingSessionMessagingControl =
 echoingSession.feature(MessagingControl.class);
 sendingSessionMessagingControl =
 sendingSession.feature(MessagingControl.class);

 // Register to receive all messages sent by clients on the
 "foo" branch
 // To do this, the client session must have the
 'register_handler' permission.
 echoingSessionMessagingControl.addMessageHandler("foo", new
 EchoHandler());
 }

 /**
 * Close the session.
 */
 public void close() {
 echoingSession.close();
 sendingSession.close();
 }

 /**

Diffusion | 376

 * Handler that echoes messages back to the originating client
 complete with
 * original headers.
 */
 private class EchoHandler extends MessageHandler.Default {
 @Override
 public void onMessage(
 SessionId sessionId,
 String topicPath,
 Content content,
 ReceiveContext context) {

 try {
 final JSONObject jsonObject = new
 JSONObject(content.asString());
 final String value = (String)
 jsonObject.get("hello");
 LOG.info("JSON content with key: 'hello' and value:
 '{}'", value);
 }
 catch (JSONException e) {
 //Non-JSON message so just carry on and echo the
 message
 }

 // To send a message to a client, this client session
 must have
 // the 'view_session' and 'send_to_session' permissions.
 echoingSessionMessagingControl.send(
 sessionId,
 topicPath,
 content,
 echoingSessionMessagingControl.sendOptionsBuilder()
 .headers(context.getHeaderList())
 .build(),
 sendCallback);

 }
 }

 /**
 * Add a message stream to observe echoed messages.
 *
 * @param stream stream to be added
 */
 public void
 addSendingSessionMessageStream(Messaging.MessageStream stream) {

 sendingSession.feature(Messaging.class).addMessageStream("foo",
 stream);
 }

 /**
 * Sends messages "hello:world" and "{"hello":"world"}".
 */
 public void sendHelloWorld() {
 final Content helloWorldContent =
 Diffusion.content().newContent("hello:world");
 final JSON helloWorldJson =
 Diffusion.dataTypes().json().fromJsonString("{\"hello\":\"world
\"}");

Diffusion | 377

 //To do this, the client session must have the 'view_session'
 and 'send_to_session' permissions.

 sendingSessionMessagingControl.send(echoingSession.getSessionId(),
 "foo", helloWorldContent, sendCallback);

 sendingSessionMessagingControl.send(echoingSession.getSessionId(),
 "foo", helloWorldJson, sendCallback);
 }

}

.NET

using System.Linq;
using PushTechnology.ClientInterface.Client.Content;
using PushTechnology.ClientInterface.Client.Factories;
using PushTechnology.ClientInterface.Client.Features;
using PushTechnology.ClientInterface.Client.Features.Control.Topics;
using PushTechnology.ClientInterface.Client.Session;
using PushTechnology.ClientInterface.Client.Types;

namespace Examples {
 /// <summary>
 /// This is an example of a control client using the <see
 cref="IMessagingControl"/> feature to receive messages
 /// from clients and also send messages to clients.
 ///
 /// It is a trivial example that simply responds to all messages
 on a particular branch of the topic tree by
 /// echoing them back to the client exactly as they are, complete
 with headers.
 /// </summary>
 public class ControlClientReceivingMessages {
 private readonly ISession session;

 /// <summary>
 /// Constructor.
 /// </summary>
 /// <param name="callback">The callback to receive the result
 of message sending.</param>
 public ControlClientReceivingMessages(ISendCallback
 callback) {
 session =
 Diffusion.Sessions.Principal("control").Password("password")
 .Open("ws://diffusion.example.com:80");

 var messagingControl =
 session.GetMessagingControlFeature();

 // Register to receive all messages sent by clients on
 the "foo" branch.
 // To do this, the client session must have the
 REGISTER_HANDLER permission.
 messagingControl.AddMessageHandler("foo", new
 EchoHandler(messagingControl, callback));
 }

 /// <summary>
 /// Close the session.
 /// </summary>
 public void Close() {

Diffusion | 378

 session.Close();
 }

 private class EchoHandler : MessageHandlerDefault {
 private readonly IMessagingControl theMessagingControl;
 private readonly ISendCallback theSendCallback;

 public EchoHandler(IMessagingControl messagingControl,
 ISendCallback sendCallback) {
 theMessagingControl = messagingControl;
 theSendCallback = sendCallback;
 }

 /// <summary>
 /// Receives content sent from a session via a topic.
 /// </summary>
 /// <param name="sessionId">Identifies the client session
 that sent the content.</param>
 /// <param name="topicPath">The path of the topic that
 the content was sent on.</param>
 /// <param name="content">The content sent by the
 client.</param>
 /// <param name="context">The context associated with the
 content.</param>
 public override void OnMessage(SessionId sessionId,
 string topicPath, IContent content,
 IReceiveContext context) {
 theMessagingControl.Send(sessionId, topicPath,
 content,

 theMessagingControl.CreateSendOptionsBuilder().SetHeaders(context.HeadersList.ToList()).Build(),
 theSendCallback);
 }
 }

 private class MessageHandlerDefault :
 TopicTreeHandlerDefault, IMessageHandler {
 /// <summary>
 /// Receives content sent from a session via a topic.
 /// </summary>
 /// <param name="sessionId">Identifies the client session
 that sent the content.</param>
 /// <param name="topicPath">The path of the topic that
 the content was sent on.</param>
 /// <param name="content">The content sent by the
 client.</param>
 /// <param name="context">The context associated with the
 content.</param>
 public virtual void OnMessage(SessionId sessionId,
 string topicPath, IContent content,
 IReceiveContext context) {
 }
 }
 }
}

C – Receive

/*
 * This example shows how to receive messages, rather than topic
 * updates, as part of MessagingControl.
 *

Diffusion | 379

 * You may register a handler against an endpoint, which will
 * become the only destination for messages to that endpoint (where
 * the control client which is considered "active" is determined by
 * the server).
 *
 * See send-msg.c for an example of how to send messages to an
 * endpoint from a client.
 */

#include <stdio.h>
#include <unistd.h>

#include "diffusion.h"
#include "conversation.h"
#include "args.h"

ARG_OPTS_T arg_opts[] = {
 ARG_OPTS_HELP,
 {'u', "url", "Diffusion server URL", ARG_OPTIONAL,
 ARG_HAS_VALUE, "ws://localhost:8080"},
 {'p', "principal", "Principal (username) for the connection",
 ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'c', "credentials", "Credentials (password) for the
 connection", ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'t', "topic", "Topic name", ARG_REQUIRED, ARG_HAS_VALUE,
 "echo"},
 END_OF_ARG_OPTS
};

/*
 * Function to be called when the message receiver has been
 registered.
 */
int
on_registered(SESSION_T *session, void *context)
{
 printf("on_registered()\n");
 return HANDLER_SUCCESS;
}

/*
 * Function called on receipt of a message from a client.
 *
 * We print the following information:
 * 1. The topic path on which the message was received.
 * 2. A hexdump of the message content.
 * 3. The headers associated with the message.
 * 4. The session properties that were requested when the handler
 was
 * registered.
 * 5. The user context, as a string.
 */
int
on_msg(SESSION_T *session, const SVC_SEND_RECEIVER_CLIENT_REQUEST_T
 *request, void *context)
{
 printf("Received message on topic path %s\n", request-
>topic_path);
 hexdump_buf(request->content->data);
 printf("Headers:\n");
 if(request->send_options.headers->first == NULL) {
 printf(" No headers\n");
 }

Diffusion | 380

 else {
 for(LIST_NODE_T *node = request-
>send_options.headers->first;
 node != NULL;
 node = node->next) {
 printf(" Header: %s\n", (char *)node->data);
 }
 }

 printf("Session properties:\n");
 char **keys = hash_keys(request->session_properties);
 if(keys == NULL || *keys == NULL) {
 printf(" No properties\n");
 }
 else {
 for(char **k = keys; *k != NULL; k++) {
 char *v = hash_get(request-
>session_properties, *k);
 printf(" %s=%s\n", *k, v);
 }
 }
 free(keys);

 if(context != NULL) {
 printf("Context: %s\n", (char *)context);
 }

 return HANDLER_SUCCESS;
}

int
main(int argc, char **argv)
{
 /*
 * Standard command-line parsing.
 */
 HASH_T *options = parse_cmdline(argc, argv, arg_opts);
 if(options == NULL || hash_get(options, "help") != NULL) {
 show_usage(argc, argv, arg_opts);
 return EXIT_FAILURE;
 }

 char *url = hash_get(options, "url");
 const char *principal = hash_get(options, "principal");
 CREDENTIALS_T *credentials = NULL;
 const char *password = hash_get(options, "credentials");
 if(password != NULL) {
 credentials = credentials_create_password(password);
 }
 char *topic = hash_get(options, "topic");

 /*
 * Create a session with Diffusion.
 */
 SESSION_T *session = NULL;
 DIFFUSION_ERROR_T error = { 0 };
 session = session_create(url, principal, credentials, NULL,
 NULL, &error);
 if(session == NULL) {
 fprintf(stderr, "TEST: Failed to create session\n");
 fprintf(stderr, "ERR : %s\n", error.message);
 return EXIT_FAILURE;
 }

Diffusion | 381

 char *session_id = session_id_to_string(session->id);
 printf("Session created, id=%s\n", session_id);
 free(session_id);

 /*
 * Register a message handler, and for each message ask for
 * the $Principal property to be provided.
 */
 LIST_T *requested_properties = list_create();
 list_append_last(requested_properties, "$Principal");

 MSG_RECEIVER_REGISTRATION_PARAMS_T params = {
 .on_registered = on_registered,
 .topic_path = topic,
 .on_message = on_msg,
 .session_properties = requested_properties
 };
 list_free(requested_properties, free);

 register_msg_handler(session, params);

 /*
 * Accept messages for a while, then deregister.
 */
 sleep(30);

 deregister_msg_handler(session, params);

 /*
 * Close session and clean up.
 */
 session_close(session, NULL);
 session_free(session);

 list_free(requested_properties, NULL);

 return EXIT_SUCCESS;
}

C – Send

/*
 * This example shows how a message can be sent to another client via
 * a topic endpoint. The session ID of the target client must be
 * known.
 *
 * See msg-listener.c for an example of how to receive these messages
 * in a client.
 */

#include <stdio.h>
#include <unistd.h>

#include <apr.h>
#include <apr_thread_mutex.h>
#include <apr_thread_cond.h>

#include "diffusion.h"
#include "args.h"

apr_pool_t *pool = NULL;

Diffusion | 382

apr_thread_mutex_t *mutex = NULL;
apr_thread_cond_t *cond = NULL;

ARG_OPTS_T arg_opts[] = {
 ARG_OPTS_HELP,
 {'u', "url", "Diffusion server URL", ARG_OPTIONAL,
 ARG_HAS_VALUE, "ws://localhost:8080"},
 {'p', "principal", "Principal (username) for the connection",
 ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'c', "credentials", "Credentials (password) for the
 connection", ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'t', "topic", "Topic name", ARG_REQUIRED, ARG_HAS_VALUE,
 "echo"},
 {'s', "session_id", "Session id", ARG_REQUIRED,
 ARG_HAS_VALUE, NULL},
 {'d', "data", "Data to send", ARG_REQUIRED, ARG_HAS_VALUE,
 NULL},
 END_OF_ARG_OPTS
};

/*
 * Callback invoked when/if a message is published on the topic that
 the
 * client is writing to.
 */
static int
on_send(SESSION_T *session, void *context)
{
 printf("on_send() successful. Context=\"%s\".\n", (char
 *)context);

 /*
 * Allow main thread to continue.
 */
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);

 return HANDLER_SUCCESS;
}

int
main(int argc, char **argv)
{
 /*
 * Standard command-line parsing.
 */
 HASH_T *options = parse_cmdline(argc, argv, arg_opts);
 if(options == NULL || hash_get(options, "help") != NULL) {
 show_usage(argc, argv, arg_opts);
 return EXIT_FAILURE;
 }

 char *url = hash_get(options, "url");

 const char *principal = hash_get(options, "principal");
 CREDENTIALS_T *credentials = NULL;

 const char *password = hash_get(options, "credentials");
 if(password != NULL) {
 credentials = credentials_create_password(password);
 }

Diffusion | 383

 char *topic = hash_get(options, "topic");
 char *session_id_str = hash_get(options, "session_id");

 /*
 * Setup for condition variable.
 */
 apr_initialize();
 apr_pool_create(&pool, NULL);
 apr_thread_mutex_create(&mutex, APR_THREAD_MUTEX_UNNESTED,
 pool);
 apr_thread_cond_create(&cond, pool);

 /*
 * Create a session with Diffusion.
 */
 SESSION_T *session = NULL;
 DIFFUSION_ERROR_T error = { 0 };
 session = session_create(url, principal, credentials, NULL,
 NULL, &error);
 if(session == NULL) {
 fprintf(stderr, "TEST: Failed to create session\n");
 fprintf(stderr, "ERR : %s\n", error.message);
 return EXIT_FAILURE;
 }

 /*
 * Create a payload.
 */
 char *data = hash_get(options, "data");
 BUF_T *payload = buf_create();
 buf_write_bytes(payload, data, strlen(data));
 CONTENT_T *content = content_create(CONTENT_ENCODING_NONE,
 payload);
 buf_free(payload);

 /*
 * Build up some headers to send with the message.
 */
 LIST_T *headers = list_create();
 list_append_last(headers, "apple");
 list_append_last(headers, "train");

 /*
 * Parameters for send_msg_to_session() call.
 */
 SESSION_ID_T *session_id =
 session_id_create_from_string(session_id_str);

 SEND_MSG_TO_SESSION_PARAMS_T params = {
 .topic_path = topic,
 .session_id = *session_id,
 .content = *content,
 .options.headers = headers,
 .options.priority = CLIENT_SEND_PRIORITY_NORMAL,
 .on_send = on_send,
 .context = "FOO"
 };

 /*
 * Send the message and wait for the callback to acknowledge
 * delivery.
 */
 apr_thread_mutex_lock(mutex);

Diffusion | 384

 send_msg_to_session(session, params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

 /*
 * Politely close the client connection and clean up.
 */
 session_id_free(session_id);
 session_close(session, NULL);
 session_free(session);

 apr_thread_mutex_destroy(mutex);
 apr_thread_cond_destroy(cond);
 apr_pool_destroy(pool);
 apr_terminate();

 return EXIT_SUCCESS;
}

Change the URL from that provided in the example to the URL of the Diffusion server.

Example: Use session property filters with messaging
The following examples use the MessagingControl feature in the Unified API to request session
properties with messages sent to topic paths and to send messages to one or more clients depending
on the values of their session properties.

JavaScript

var diffusion = require('../../js-uci-client/src/diffusion');

// Connect to the server. Change these options to suit your own
 environment.
// Node.js will not accept self-signed certificates by default. If
 you have
// one of these, set the environment variable
 NODE_TLS_REJECT_UNAUTHORIZED=0
// before running this example.
diffusion.connect({
 host : 'diffusion.example.com',
 port : 443,
 secure : true,
 principal : 'control',
 credentials : 'password'
}).then(function(session) {

 // Create a listener for a stream of messages on a specific path.
 session.messages.listen('foo').on('message', function(msg) {
 console.log('Received message: ' + msg.content);
 });

 // Send a message to another session listening on 'foo' by way of
 // session properties.
 session.messages.send('foo', 'Hello world', '$Principal is
 "control"');
});

Java and Android

package com.pushtechnology.diffusion.examples;

import com.pushtechnology.diffusion.client.Diffusion;

Diffusion | 385

import com.pushtechnology.diffusion.client.content.Content;
import
 com.pushtechnology.diffusion.client.features.control.topics.MessagingControl;
import
 com.pushtechnology.diffusion.client.features.control.topics.MessagingControl.MessageHandler;
import
 com.pushtechnology.diffusion.client.features.control.topics.MessagingControl.SendToFilterCallback;
import com.pushtechnology.diffusion.client.session.Session;
import com.pushtechnology.diffusion.client.session.SessionId;
import com.pushtechnology.diffusion.client.types.ReceiveContext;

/**
 * This is an example of a control client using the
 'MessagingControl' feature
 * to send messages to clients using message filters. It also
 demonstrates the
 * ability to register a message handler with an interest in session
 property
 * values.
 *
 * @author Push Technology Limited
 * @since 5.5
 */
public final class ControlClientUsingFiltersAndProperties {

 private final Session session;
 private final MessagingControl messagingControl;
 private final SendToFilterCallback sendToFilterCallback;

 /**
 * Constructor.
 *
 * @param callback for result of sends
 */
 public
 ControlClientUsingFiltersAndProperties(SendToFilterCallback
 callback) {

 sendToFilterCallback = callback;

 session =

 Diffusion.sessions().principal("control").password("password")
 .open("ws://diffusion.example.com:80");
 messagingControl = session.feature(MessagingControl.class);

 // Register to receive all messages sent by clients on the
 "foo" branch
 // and include the "JobTitle" session property value with
 each message.
 // To do this, the client session must have the
 'register_handler'
 // permission.
 messagingControl.addMessageHandler(
 "foo", new BroadcastHandler(), "JobTitle");
 }

 /**
 * Close the session.
 */
 public void close() {
 session.close();
 }

Diffusion | 386

 /**
 * Handler that will pass any message to all sessions that have a
 "JobTitle"
 * property set to "Staff" if, and only if it comes from a
 session that has
 * a "JobTitle" set to "Manager".
 */
 private class BroadcastHandler extends MessageHandler.Default {
 @Override
 public void onMessage(
 SessionId sessionId,
 String topicPath,
 Content content,
 ReceiveContext context) {

 if
 ("Manager".equals(context.getSessionProperties().get("JobTitle"))) {
 messagingControl.sendToFilter(
 "JobTitle is 'Staff'",
 topicPath,
 content,
 messagingControl.sendOptionsBuilder()
 .headers(context.getHeaderList())
 .build(),
 sendToFilterCallback);
 }

 }
 }

}

.NET

using System.Linq;
using PushTechnology.ClientInterface.Client.Content;
using PushTechnology.ClientInterface.Client.Factories;
using PushTechnology.ClientInterface.Client.Features;
using PushTechnology.ClientInterface.Client.Features.Control.Topics;
using PushTechnology.ClientInterface.Client.Session;
using PushTechnology.ClientInterface.Client.Types;

namespace Examples {
 /// <summary>
 /// This is an example of a control client using the
 'MessagingControl' feature to send messages to clients using
 /// message filters. It also demonstrates the ability to register
 a message handler with an interest in session
 /// property values.
 /// </summary>
 public class ControlClientUsingFiltersAndProperties {
 private readonly ISession theSession;
 private readonly IMessagingControl theMessagingControl;
 private readonly ISendToFilterCallback
 theSendToFilterCallback;

 public
 ControlClientUsingFiltersAndProperties(ISendToFilterCallback
 callback) {
 theSendToFilterCallback = callback;

Diffusion | 387

 theSession =
 Diffusion.Sessions.Principal("control").Password("password")
 .Open("ws://diffusion.example.com:80");

 theMessagingControl =
 theSession.GetMessagingControlFeature();

 // Register and receive all messages sent by clients on
 the "foo" branch and include the "JobTitle" session
 // property value with each message. To do this, the
 client session must have the "register_handler"
 // permission.
 theMessagingControl.AddMessageHandler(
 "foo",
 new BroadcastHandler(theMessagingControl,
 theSendToFilterCallback),
 "JobTitle");
 }

 public void Close() {
 theSession.Close();
 }

 private class BroadcastHandler : IMessageHandler {
 private readonly IMessagingControl theMessagingControl;
 private readonly ISendToFilterCallback
 theSendToFilterCallback;

 /// <summary>
 /// Constructor.
 /// </summary>
 /// <param name="messagingControl">The messaging control
 object.</param>
 /// <param name="callback">The filter callback.</param>
 public BroadcastHandler(IMessagingControl
 messagingControl, ISendToFilterCallback callback) {
 theMessagingControl = messagingControl;
 theSendToFilterCallback = callback;
 }

 /// <summary>
 /// Called when the handler has been successfully
 registered with the server.
 ///
 /// A session can register a single handler of each type
 for a given branch of the topic tree. If there is
 /// already a handler registered for the topic path the
 operation will fail, <c>registeredHandler</c> will
 /// be closed, and the session error handler will be
 notified. To change the handler, first close the
 /// previous handler.
 /// </summary>
 /// <param name="topicPath">The path that the handler is
 active for.</param>
 /// <param name="registeredHandler">Allows the handler to
 be closed.</param>
 public void OnActive(string topicPath,
 IRegisteredHandler registeredHandler) {
 }

 /// <summary>
 /// Called if the handler is closed. This happens if the
 call to register the handler fails, or the handler

Diffusion | 388

 /// is unregistered.
 /// </summary>
 /// <param name="topicPath">The branch of the topic tree
 for which the handler was registered.</param>
 public void OnClose(string topicPath) {
 }

 /// <summary>
 /// Receives content sent from a session via a topic.
 /// </summary>
 /// <param name="sessionId">Identifies the client session
 that sent the content.</param>
 /// <param name="topicPath">The path of the topic that
 the content was sent on.</param>
 /// <param name="content">The content sent by the
 client.</param>
 /// <param name="context">The context associated with the
 content.</param>
 public void OnMessage(SessionId sessionId, string
 topicPath, IContent content, IReceiveContext context) {
 if
 (!"Manager".Equals(context.SessionProperties["JobTitle"]))
 return;

 theMessagingControl.SendToFilter("JobTitle is
 'Staff'", topicPath, content,

 theMessagingControl.CreateSendOptionsBuilder().SetHeaders(context.HeadersList.ToList()).Build(),
 theSendToFilterCallback);
 }
 }
 }
}

C

/*
 * This example shows how a message can be sent to another client via
 * a topic endpoint using a filter expression.
 *
 * See msg-listener.c for an example of how to receive these messages
 * in a client.
 */

#include <stdio.h>
#include <unistd.h>

#include <apr.h>
#include <apr_thread_mutex.h>
#include <apr_thread_cond.h>

#include "diffusion.h"
#include "args.h"

apr_pool_t *pool = NULL;
apr_thread_mutex_t *mutex = NULL;
apr_thread_cond_t *cond = NULL;

ARG_OPTS_T arg_opts[] = {
 ARG_OPTS_HELP,
 {'u', "url", "Diffusion server URL", ARG_OPTIONAL,
 ARG_HAS_VALUE, "ws://localhost:8080"},

Diffusion | 389

 {'p', "principal", "Principal (username) for the connection",
 ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'c', "credentials", "Credentials (password) for the
 connection", ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'t', "topic", "Topic name", ARG_REQUIRED, ARG_HAS_VALUE,
 "echo"},
 {'f', "filter", "Filter", ARG_REQUIRED, ARG_HAS_VALUE, NULL},
 {'d', "data", "Data to send", ARG_REQUIRED, ARG_HAS_VALUE,
 NULL},
 END_OF_ARG_OPTS
};

/*
 * Callback invoked when/if a message is published on the topic that
 the
 * client is writing to.
 */
static int
on_send(SESSION_T *session, const SVC_SEND_MSG_TO_FILTER_RESPONSE_T
 *response, void *context)
{
 printf("on_send() successful. Context=\"%s\".\n", (char
 *)context);
 printf("Sent message to %d clients\n", response->sent_count);

 if(response->error_reports != NULL && response-
>error_reports->first != NULL) {
 LIST_NODE_T *node = response->error_reports->first;
 while(node != NULL) {
 ERROR_REPORT_T *err = (ERROR_REPORT_T *)node-
>data;
 printf("Error: %s at line %d, column %d\n",
 err->message, err->line, err->column);
 node = node->next;
 }
 }
 else {
 printf("No errors reported\n");
 }

 /*
 * Allow main thread to continue.
 */
 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);

 return HANDLER_SUCCESS;
}

int
main(int argc, char **argv)
{
 /*
 * Standard command-line parsing.
 */
 HASH_T *options = parse_cmdline(argc, argv, arg_opts);
 if(options == NULL || hash_get(options, "help") != NULL) {
 show_usage(argc, argv, arg_opts);
 return EXIT_FAILURE;
 }

 char *url = hash_get(options, "url");

Diffusion | 390

 const char *principal = hash_get(options, "principal");
 CREDENTIALS_T *credentials = NULL;

 const char *password = hash_get(options, "credentials");
 if(password != NULL) {
 credentials = credentials_create_password(password);
 }

 char *topic = hash_get(options, "topic");
 char *filter = hash_get(options, "filter");

 /*
 * Setup for condition variable.
 */
 apr_initialize();
 apr_pool_create(&pool, NULL);
 apr_thread_mutex_create(&mutex, APR_THREAD_MUTEX_UNNESTED,
 pool);
 apr_thread_cond_create(&cond, pool);

 /*
 * Create a session with Diffusion.
 */
 SESSION_T *session = NULL;
 DIFFUSION_ERROR_T error = { 0 };
 session = session_create(url, principal, credentials, NULL,
 NULL, &error);
 if(session == NULL) {
 fprintf(stderr, "TEST: Failed to create session\n");
 fprintf(stderr, "ERR : %s\n", error.message);
 return EXIT_FAILURE;
 }

 /*
 * Create a payload.
 */
 char *data = hash_get(options, "data");
 BUF_T *payload = buf_create();
 buf_write_bytes(payload, data, strlen(data));
 CONTENT_T *content = content_create(CONTENT_ENCODING_NONE,
 payload);
 buf_free(payload);

 /*
 * Build up some headers to send with the message.
 */
 LIST_T *headers = list_create();
 list_append_last(headers, "apple");
 list_append_last(headers, "train");

 /*
 * Parameters for send_msg_to_session() call.
 */
 SEND_MSG_TO_FILTER_PARAMS_T params = {
 .topic_path = topic,
 .filter = filter,
 .content = *content,
 .options.headers = headers,
 .options.priority = CLIENT_SEND_PRIORITY_NORMAL,
 .on_send = on_send,
 .context = "FOO"
 };

Diffusion | 391

 /*
 * Send the message and wait for the callback to acknowledge
 delivery.
 */
 apr_thread_mutex_lock(mutex);
 send_msg_to_filter(session, params);
 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

 /*
 * Close session and clean up.
 */
 session_close(session, NULL);
 session_free(session);

 apr_thread_mutex_destroy(mutex);
 apr_thread_cond_destroy(cond);
 apr_pool_destroy(pool);
 apr_terminate();

 return EXIT_SUCCESS;
}

Change the URL from that provided in the example to the URL of the Diffusion server.

Authenticating clients
A client can use the AuthenticationControl feature to authenticate other client sessions.

Registering a control authentication handler

Required permissions: authenticate, register_handler

A client can register an authentication handler that can be called when a client connects to the
Diffusion server or changes the principal and credentials it is connected with.

The authentication handler can decide whether a client's authentication request is allowed or denied,
or the authentication handler can abstain from the decision. In which case the next configured
authentication handler is called.

If the authentication handler allows a client's authentication request, it can assign roles to that client's
session.

For more information about authentication and role-based security, see Authentication on page 137.

Related concepts
Configuring authentication handlers on page 550
Authentication handlers and the order that the Diffusion server calls them in are configured in the
Server.xml configuration file.

Example: Register an authentication handler
The following examples use the Diffusion Unified API to register a control authentication handler with
the Diffusion server. The examples also include a simple or empty authentication handler.

The name by which the control authentication handler is registered must be configured in the
Server.xml configuration file of the Diffusion server for the control authentication handler to be
called to handle authentication requests.

Diffusion | 392

Java and Android

package com.pushtechnology.diffusion.examples;

import java.nio.charset.Charset;
import java.util.Arrays;
import java.util.EnumSet;

import com.pushtechnology.diffusion.client.Diffusion;
import com.pushtechnology.diffusion.client.details.SessionDetails;
import
 com.pushtechnology.diffusion.client.details.SessionDetails.DetailType;
import com.pushtechnology.diffusion.client.features.ServerHandler;
import
 com.pushtechnology.diffusion.client.features.control.clients.AuthenticationControl;
import
 com.pushtechnology.diffusion.client.features.control.clients.AuthenticationControl.ControlAuthenticationHandler;
import com.pushtechnology.diffusion.client.session.Session;
import com.pushtechnology.diffusion.client.types.Credentials;

/**
 * This demonstrates the use of a control client to authenticate
 client
 * connections.
 * <P>
 * This uses the 'AuthenticationControl' feature.
 *
 * @author Push Technology Limited
 * @since 5.0
 */
public class ControlClientIdentityChecks {

 private final Session session;

 /**
 * Constructor.
 */
 public ControlClientIdentityChecks() {

 session =

 Diffusion.sessions().principal("control").password("password")
 .open("ws://diffusion.example.com:80");

 final AuthenticationControl authenticationControl =
 session.feature(AuthenticationControl.class);

 // To register the authentication handler, this client
 session must
 // have the 'authenticate' and 'register_handler'
 permissions.
 authenticationControl.setAuthenticationHandler(
 "example-handler",
 EnumSet.allOf(DetailType.class),
 new Handler());
 }

 /**
 * Authentication handler.
 */
 private static class Handler extends ServerHandler.Default
 implements ControlAuthenticationHandler {
 @Override

Diffusion | 393

 public void authenticate(
 final String principal,
 final Credentials credentials,
 final SessionDetails sessionDetails,
 final Callback callback) {

 final byte[] passwordBytes =
 "password".getBytes(Charset.forName("UTF-8"));

 if ("admin".equals(principal) &&
 credentials.getType() ==
 Credentials.Type.PLAIN_PASSWORD &&
 Arrays.equals(credentials.toBytes(), passwordBytes))
 {
 callback.allow();
 }
 else {
 callback.deny();
 }
 }
 }

 /**
 * Close the session.
 */
 public void close() {
 session.close();
 }
}

.NET

using System;
using System.Linq;
using System.Threading;
using PushTechnology.ClientInterface.Client.Details;
using PushTechnology.ClientInterface.Client.Factories;

namespace Examples {
 /// <summary>
 /// This is a control client which registers an authentication
 handler with a server.
 /// </summary>
 public class ControlAuthenticationClient {
 /// <summary>
 /// Main entry point.
 /// </summary>
 public static void Run() {
 var session =
 Diffusion.Sessions.Principal("auth").Password("auth_secret")
 .Open("ws://diffusion.example.com:80");

 session.GetAuthenticationControlFeature().SetAuthenticationHandler("control-
client-auth-handler-example",

 Enum.GetValues(typeof(DetailType)).OfType<DetailType>().ToList(),
 new ExampleControlAuthenticationHandler());

 while (true) {
 Thread.Sleep(60000);
 }

Diffusion | 394

 }
 }
}

C

/*
 * Diffusion can be configured to delegate authentication requests to
 * an external handler. This program provides an authentication
 * handler to demonstrate this feature. A detailed description of
 * security and authentication handlers can be found in the Diffusion
 * user manual.
 *
 * Authentication handlers are registered with a name, which is
 typically specified in
 * Server.xml
 *
 * Two handler names are provided by default;
 * before-system-handler and after-system-handler, and additional
 * handlers may be specified for Diffusion through the Server.xml
 file
 * and an accompanying Java class that implements the
 * AuthenticationHandler interface.
 *
 * This control authentication handler connects to Diffusion and
 attempts
 * to register itself with a user-supplied name, which should match
 the name
 * configured in Server.xml.
 *
 * The default behavior is to install as the "before-system-handler",
 * which means that it will intercept authentication requests before
 * Diffusion has a chance to act on them.
 *
 * It will:
 *
 * Deny all anonymous connections
 * Allow connections where the principal and credentials (i.e.,
 username and password) match some hardcoded values
 * Abstain from all other decisions, thereby letting Diffusion
 and other authentication handlers decide what to do.
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include "diffusion.h"
#include "args.h"
#include "conversation.h"

struct user_credentials_s {
 const char *username;
 const char *password;
};

/*
 * Username/password pairs that this handler accepts.
 */
static const struct user_credentials_s USERS[] = {
 { "fish", "chips" },

Diffusion | 395

 { "ham", "eggs" },
 { NULL, NULL }
};

ARG_OPTS_T arg_opts[] = {
 ARG_OPTS_HELP,
 {'u', "url", "Diffusion server URL", ARG_OPTIONAL,
 ARG_HAS_VALUE, "ws://localhost:8080"},
 {'n', "name", "Name under which to register the
 authentication handler", ARG_OPTIONAL, ARG_HAS_VALUE, "before-
system-handler"},
 {'p', "principal", "Principal (username) for the connection",
 ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'c', "credentials", "Credentials (password) for the
 connection", ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 END_OF_ARG_OPTS
};

/*
 * When the authentication service has been registered, this function
 will be
 * called.
 */
static int
on_registration(SESSION_T *session, void *context)
{
 printf("Registered authentication handler\n");
 return HANDLER_SUCCESS;
}

/*
 * When the authentication service has be deregistered, this function
 will be
 * called.
 */
static int
on_deregistration(SESSION_T *session, void *context)
{
 printf("Deregistered authentication handler\n");
 return HANDLER_SUCCESS;
}

/*
 * This is the function that is called when authentication has been
 delegated
 * from Diffusion.
 *
 * The response may return one of three values via the response
 parameter:
 * ALLOW: The user is authenticated.
 * ALLOW_WITH_RESULT: The user is authenticated, and additional roles
 are
 * to be applied to the user.
 * DENY: The user is NOT authenticated.
 * ABSTAIN: Allow another handler to make the decision.
 *
 * The handler should return HANDLER_SUCCESS in all cases, unless an
 actual
 * error occurs during the authentication process (in which case,
 * HANDLER_FAILURE is appropriate).
 */
static int
on_authentication(SESSION_T *session,

Diffusion | 396

 const SVC_AUTHENTICATION_REQUEST_T *request,
 SVC_AUTHENTICATION_RESPONSE_T *response,
 void *context)
{
 // No credentials, or not password type. We're not an
 authority for
 // this type of authentication so abstain in case some other
 registered
 // authentication handler can deal with the request.
 if(request->credentials == NULL) {
 printf("No credentials specified, abstaining\n");
 response->value = AUTHENTICATION_ABSTAIN;
 return HANDLER_SUCCESS;
 }
 if(request->credentials->type != PLAIN_PASSWORD) {
 printf("Credentials are not PLAIN_PASSWORD,
 abstaining\n");
 response->value = AUTHENTICATION_ABSTAIN;
 return HANDLER_SUCCESS;
 }

 printf("principal = %s\n", request->principal);
 printf("credentials = %*s\n",
 (int)request->credentials->data->len,
 request->credentials->data->data);

 if(request->principal == NULL || strlen(request->principal)
 == 0) {
 printf("Denying anonymous connection (no
 principal)\n");
 response->value = AUTHENTICATION_DENY; // Deny anon
 connections
 return HANDLER_SUCCESS;
 }

 char *password = malloc(request->credentials->data->len + 1);
 memmove(password, request->credentials->data->data, request-
>credentials->data->len);
 password[request->credentials->data->len] = '\0';

 int auth_decided = 0;
 int i = 0;
 while(USERS[i].username != NULL) {

 printf("Checking username %s vs %s\n", request-
>principal, USERS[i].username);
 printf(" and password %s vs %s\n", password,
 USERS[i].password);

 if(strcmp(USERS[i].username, request->principal) == 0
 &&
 strcmp(USERS[i].password, password) == 0) {

 puts("Allowed");
 response->value = AUTHENTICATION_ALLOW;
 auth_decided = 1;
 break;
 }
 i++;

 }

 free(password);

Diffusion | 397

 if(auth_decided == 0) {
 puts("Abstained");
 response->value = AUTHENTICATION_ABSTAIN;
 }

 return HANDLER_SUCCESS;
}

int
main(int argc, char** argv)
{
 HASH_T *options = parse_cmdline(argc, argv, arg_opts);
 if (options == NULL || hash_get(options, "help") != NULL) {
 show_usage(argc, argv, arg_opts);
 return EXIT_FAILURE;
 }

 char *url = hash_get(options, "url");
 char *name = hash_get(options, "name");
 char *principal = hash_get(options, "principal");
 char *credentials = hash_get(options, "credentials");

 /*
 * Create a session with Diffusion.
 */
 puts("Creating session");
 DIFFUSION_ERROR_T error = { 0 };
 SESSION_T *session = session_create(url,
 principal,
 credentials != NULL ?
 credentials_create_password(credentials) : NULL,
 NULL, NULL,
 &error);
 if (session == NULL) {
 fprintf(stderr, "TEST: Failed to create session\n");
 fprintf(stderr, "ERR : %s\n", error.message);
 return EXIT_FAILURE;
 }

 /*
 * Provide a set (via a hash map containing keys and NULL
 * values) to indicate what information about the connecting
 * client that we'd like Diffusion to send us.
 */
 HASH_T *detail_set = hash_new(5);
 char buf[2];
 sprintf(buf, "%d", SESSION_DETAIL_SUMMARY);
 hash_add(detail_set, strdup(buf), NULL);
 sprintf(buf, "%d", SESSION_DETAIL_LOCATION);
 hash_add(detail_set, strdup(buf), NULL);
 sprintf(buf, "%d", SESSION_DETAIL_CONNECTOR_NAME);
 hash_add(detail_set, strdup(buf), NULL);

 /*
 * Register the authentication handler.
 */
 AUTHENTICATION_REGISTRATION_PARAMS_T auth_registration_params
 = {
 .name = name,
 .detail_set = detail_set,
 .on_registration = on_registration,

Diffusion | 398

 .authentication_handlers.on_authentication =
 on_authentication
 };

 puts("Sending registration request");
 SVC_AUTHENTICATION_REGISTER_REQUEST_T *reg_request =
 authentication_register(session,
 auth_registration_params);

 /*
 * Wait a while before moving on to deregistration.
 */
 sleep(30);

 AUTHENTICATION_DEREGISTRATION_PARAMS_T
 auth_deregistration_params = {
 .on_deregistration = on_deregistration,
 .original_request = reg_request
 };

 /*
 * Deregister the authentication handler.
 */
 printf("Deregistering authentication handler\n");
 authentication_deregister(session,
 auth_deregistration_params);

 session_close(session, NULL);
 session_free(session);

 return EXIT_SUCCESS;
}

Change the URL from that provided in the example to the URL of the Diffusion server.

Related concepts
Configuring authentication handlers on page 550
Authentication handlers and the order that the Diffusion server calls them in are configured in the
Server.xml configuration file.

Developing a control authentication handler
Implement the ControlAuthenticationHandler interface to create a control authentication
handler.

About this task

A control authentication handler can be implemented in any language where the Diffusion Unified API
includes the AuthenticationControl feature.

For more information, see .

This example demonstrates how to implement a control authentication handler in Java.

Note: Where c.p.d is used in package names, it indicates
com.pushtechnology.diffusion.

Diffusion | 399

Procedure

1. Edit the etc/Server.xml configuration file to include a name that the control authentication
handler can register with.
Include the control-authentication-handler element in the list of authentication
handlers. The order of the list defines the order in which the authentication handlers are called.
The value of the handler-name attribute is the name that your control authentication handler
registers as. For example:

<security>
 <authentication-handlers>
 <-- Include a local authentication handler that can
 authenticate the control client -->
 <authentication-handler class="com.example.LocalHandler" />

 <-- Register your control authentication handler -->
 <control-authentication-handler handler-name="before-system-
handler" />

 </authentication-handlers>
</security>

The client that registers your control authentication handler must first authenticate with the
Diffusion server. Configure a local authentication handler that allows the client to connect.

2. Start the Diffusion server.

• On UNIX®-based systems, run the diffusion.sh command in the
diffusion_installation_dir/bin directory.

• On Windows systems, run the diffusion.bat command in the
diffusion_installation_dir\bin directory.

3. Create a Java class that implements ControlAuthenticationHandler.

package com.example.client;

import com.pushtechnology.diffusion.client.details.SessionDetails;
import
 com.pushtechnology.diffusion.client.features.control.clients.AuthenticationControl.ControlAuthenticationHandler;
import com.pushtechnology.diffusion.client.types.Credentials;

public class ExampleControlAuthenticationHandler implements
 ControlAuthenticationHandler{

 public void authenticate(String principal, Credentials
 credentials,
 SessionDetails sessionDetails, Callback callback) {

 // Logic to make the authentication decision.

 // Authentication decision
 callback.abstain();

 // callback.deny();
 // callback.allow();

 }

 @Override
 public void onActive(RegisteredHandler handler) {

 }

Diffusion | 400

 @Override
 public void onClose() {

 }

}

a) Ensure that you import Credentials from the c.p.d.client.types package, not the
c.p.d.api package.

b) Implement the authenticate method.
c) Use the allow, deny, or abstain method on the Callback object to respond with the

authentication decision.
d) You can override the onActive and onClose to include actions the control authentication

handler performs when the client opens its connection to the Diffusion server and when the
client closes its session with the Diffusion server.
For example, when the client session becomes active, the control authentication handler uses
the onActive method to open a connection to a database. When the client session is closed,
the control authentication handler uses the onClose method to close the connection to the
database.

4. Create a simple client that registers your control authentication handler with the Diffusion server.

package com.example.client;

import com.example.client.ExampleControlAuthenticationHandler;
import com.pushtechnology.diffusion.client.Diffusion;
import
 com.pushtechnology.diffusion.client.details.SessionDetails.DetailType;
import
 com.pushtechnology.diffusion.client.features.control.clients.AuthenticationControl;
import com.pushtechnology.diffusion.client.session.Session;
import com.pushtechnology.diffusion.client.session.SessionFactory;

import java.util.EnumSet;

public class ExampleControlClient {

 public static void main(String[] args) {

 final Session session;

 // Create the client session
 SessionFactory sf = Diffusion.sessions();
 session = sf.principal("ControlClient1")
 .passwordCredentials("Passw0rd")
 .open("ws://diffusion.example.com:80");

 // Get the AuthenticationControl feature
 AuthenticationControl authControl =
 session.feature(AuthenticationControl.class);

 // Use the AuthenticationControl feature to register your
 control authentication
 // handler with the name that you configured in Server.xml

 authControl.setAuthenticationHandler("before-system-
handler",
 EnumSet.allOf(DetailType.class), new
 ExampleControlAuthenticationHandler());

Diffusion | 401

 }
}

a) Create a session.
Change the URL from that provided in the example to the URL of the Diffusion server.

b) Use the session to get the AuthenticationControl feature.
c) Use the AuthenticationControl feature to register your control authentication handler,

ExampleControlAuthenticationHandler, using the name that you configured in the
etc/Server.xml configuration file, before-system-handler.

5. Start your client.
It connects to the Diffusion server and registers the control authentication handler with the name
before-system-handler.

Results
When a client authenticates, the Diffusion server forwards the authentication request to the
authentication handler you have registered. Your authentication handler can ALLOW, DENY, or
ABSTAIN from the authentication decision. If your authentication handler returns an ALLOW or DENY
decision, this decision is used as the response to the authenticating client. If your authentication
handler returns an ABSTAIN decision, the Diffusion server forwards the authentication request to the
next authentication handler. For more information, see Authentication on page 137.

Related concepts
User-written authentication handlers on page 140
You can implement authentication handlers that authenticate clients that connect to the Diffusion
server or perform an action that requires authentication.

Authentication on page 137
You can implement and register handlers to authenticate clients when the clients try to perform
operations that require authentication.

Related tasks
Developing a local authentication handler on page 495
Implement the AuthenticationHandler interface to create a local authentication handler.

Developing a composite authentication handler on page 497
Extend the CompositeAuthenticationHandler class to combine the decisions from multiple
authentication handlers.

Developing a composite control authentication handler on page 401
Extend the CompositeControlAuthenticationHandler class to combine the decisions from
multiple control authentication handlers.

Developing a composite control authentication handler
Extend the CompositeControlAuthenticationHandler class to combine the decisions from
multiple control authentication handlers.

About this task

Using a composite control authentication handler reduces the number of messages that are sent
between the Diffusion server and the client to perform authentication.

This example describes how to use a composite control authentication handler as part of a client
remote from the Diffusion server.

Diffusion | 402

Procedure

1. Edit the etc/Server.xml configuration file to point to your composite control authentication
handler.
Include the control-authentication-handler element in the list of authentication
handlers. The order of the list defines the order in which the authentication handlers are called.
The value of the handler-name attribute is the name that your composite control authentication
handler registers as. For example:

<security>
 <authentication-handlers>
 <-- Include a local authentication handler that can
 authenticate the control client -->
 <authentication-handler class="com.example.LocalHandler" />

 <-- Register your composite control authentication handler -->
 <control-authentication-handler handler-name="example-
composite-control-authentication-handler" />

 </authentication-handlers>
</security>

The client that registers your control authentication handler must first authenticate with the
Diffusion server. Configure a local authentication handler that allows the client to connect.

2. Start the Diffusion server.

• On UNIX-based systems, run the diffusion.sh command in the
diffusion_installation_dir/bin directory.

• On Windows systems, run the diffusion.bat command in the
diffusion_installation_dir\bin directory.

3. Create the individual control authentication handlers that your composite control authentication
handler calls.
You can follow steps in the task Developing a control authentication handler on page 398.
In this example, the individual control authentication handlers are referred to as HandlerOne,
HandlerTwo, and HandlerThree.

4. Extend the CompositeControlAuthenticationHandler class.

package com.example.client;

import com.example.client.HandlerOne;
import com.example.client.HandlerTwo;
import com.example.client.HandlerThree;

import
 com.pushtechnology.diffusion.client.features.control.clients.CompositeControlAuthenticationHandler;

public class ExampleHandler extends
 CompositeControlAuthenticationHandler {

 public ExampleHandler() {
 super(new HandlerOne(), new HandlerTwo(), new
 HandlerThree());
 }

}

a) Import your individual control authentication handlers.

Diffusion | 403

b) Create a no-argument constructor that calls the super class constructor with a list of your
individual handlers.

5. Create a simple client that registers your composite control authentication handler with the
Diffusion server.
You can follow steps in the task Developing a control authentication handler on page 398.
Ensure that you register your composite control authentication handler, ExampleHandler,
using the name that you configured in the etc/Server.xml configuration file, example-
composite-control-authentication-handler.

6. Start your client.
It connects to the Diffusion server and registers the composite control authentication handler.

Results

When the client session starts, the composite control authentication handler calls the onActive
methods of the individual control authentication handlers in the order in which they are passed in to
the composite handler.

When the composite control authentication handler is called, it calls the individual control
authentication handlers that are passed to it as parameters in the order they are passed in.

• If an individual handler responds with ALLOW, the composite handler responds with that decision
to the Diffusion server and a list of any roles to assign to the authenticated principal.

• If an individual handler responds with DENY, the composite handler responds with that decision to
the Diffusion server.

• If an individual handler responds with ABSTAIN, the composite handler calls the next individual
handler in the list.

• If all individual handlers respond with ABSTAIN, the composite handler responds to the Diffusion
server with an ABSTAIN decision.

When the client session closes, the composite control authentication handler calls the onClose
methods of the individual control authentication handlers in the order in which they are passed in to
the composite handler.

Related concepts
User-written authentication handlers on page 140
You can implement authentication handlers that authenticate clients that connect to the Diffusion
server or perform an action that requires authentication.

Authentication on page 137
You can implement and register handlers to authenticate clients when the clients try to perform
operations that require authentication.

Related tasks
Developing a local authentication handler on page 495
Implement the AuthenticationHandler interface to create a local authentication handler.

Developing a composite authentication handler on page 497
Extend the CompositeAuthenticationHandler class to combine the decisions from multiple
authentication handlers.

Developing a control authentication handler on page 398

Diffusion | 404

Implement the ControlAuthenticationHandler interface to create a control authentication
handler.

Updating the system authentication store
A client can use the SystemAuthenticationControl feature to update the system authentication store.
The information in the system authentication store is used by the system authentication handler to
authenticate users and assign roles to them.

Querying the store

Required permissions: view_security

The client can get a snapshot of the current information in the system authentication store. This
information is returned as an object model.

Updating the store

Required permissions: modify_security

The client can use a command script to update the system authentication store. The command script
is a string that contains a command on each line. These commands are applied to the current state of
the system authentication store.

The update is transactional. Unless all of the commands in the script can be applied, none of them are.

Using a script builder

You can use a script builder to create the command script used to update the system authentication
store. Use the script builder to create commands for the following actions:

• Set the authentication decision for anonymous principals
• Add principals to the store
• Delete principals from the store
• Change the password of a principal
• Assign roles to principals

Related reference
System authentication handler on page 142
Diffusion provides an authentication handler that uses principal, credential, and roles information
stored in the Diffusion server to make its authentication decision.

DSL syntax: system authentication store
The scripts that you can use with the SystemAuthenticationControl feature to update the system
authentication store are formatted according to a domain-specific language (DSL). You can use the
script builders provided in the APIs to create a script to update the system authentication store.
However, if you want to create the script by some other method, ensure that it conforms to the DSL.

The following sections each describe the syntax for a single line of the file.

Adding a principal

Railroad diagram

Diffusion | 405

Backus-Naur form
add principal " principal_name " " password " [[" role " [" role "]]]

Example

add principal "user6" "passw0rd"
add principal "user13" "passw0rd" ["CLIENT" "TOPIC_CONTROL"]

The password is passed in as plain text, but is stored in the system authentication store as a secure
hash.

Removing a principal

Railroad diagram

Backus-Naur form
remove principal " principal_name "

Example

remove principal "user25"

Assigning roles to a principal

Railroad diagram

Backus-Naur form
assign roles " principal_name " [" role " [, " role "]]

Example

assign roles "agent77" ["CLIENT", "CLIENT_CONTROL"]

When you use this command to assign roles to a principal, it overwrites any existing roles assigned to
that principal. Ensure that all the roles you want the principal to have are listed in the command.

Setting the password for a principal

Railroad diagram

Diffusion | 406

Backus-Naur form
set password " principal_name " " password "

Example

set password "user1" "passw0rd"

The password is passed in as plain text, but is stored in the system authentication store as a secure
hash.

Verifying the password for a principal

Railroad diagram

Backus-Naur form
verify password " principal_name " " password "

Example

verify password "user1" "passw0rd"

The password is passed in as plain text, but is stored in the system authentication store as a secure
hash.

Allowing anonymous connections

Railroad diagram

Backus-Naur form
allow anonymous connections [[" role " [, " role "]]]

Example

allow anonymous connections ["CLIENT"]

Denying anonymous connections

Railroad diagram

Backus-Naur form
deny anonymous connections

Diffusion | 407

Example

deny anonymous connections

Abstaining from providing a decision about anonymous connections

Railroad diagram

Backus-Naur form
abstain anonymous connections

Example

abstain anonymous connections

Example: Update the system authentication store
The following examples use the SystemAuthenticationControl feature in the Unified API to update the
system authentication store.

JavaScript

Note: Only steps 4 and 5 deal with the system authentication store.

// Session security allows you to change the principal that a session
 is authenticated as. It also allows users to
// query and update server-side security and authentication stores,
 which control users, roles and permissions.
// This enables you to manage the capabilities that any logged in
 user will have access to.

// Connect to Diffusion with control client credentials
diffusion.connect({
 host : 'diffusion.example.com',
 port : 443,
 secure : true,
 principal : 'control',
 credentials : 'password'
}).then(function(session) {

 // 1. A session change their principal by re-authenticating
 session.security.changePrincipal('admin',
 'password').then(function() {
 console.log('Authenticated as admin');
 });

 // 2. The security configuration provides details about roles and
 their assigned permissions
 session.security.getSecurityConfiguration().then(function(config)
 {
 console.log('Roles for anonymous sessions: ',
 config.anonymous);
 console.log('Roles for named sessions: ', config.named);
 console.log('Available roles: ', config.roles);
 }, function(error) {
 console.log('Unable to fetch security configuration', error);
 });

Diffusion | 408

 // 3. Changes to the security configuration are done with a
 SecurityScriptBuilder
 var securityScriptBuilder =
 session.security.securityScriptBuilder();

 // Set the permissions for a particular role - global and topic-
scoped
 // Each method on a script builder returns a new builder
 var setPermissionScript =
 securityScriptBuilder.setGlobalPermissions('SUPERUSER',
 ['REGISTER_HANDLER'])

 .setTopicPermissions('SUPERUSER', '/foo', ['UPDATE_TOPIC'])
 .build();

 // Update the server-side store with the generated script

 session.security.updateSecurityStore(setPermissionScript).then(function()
 {
 console.log('Security configuration updated successfully');
 }, function(error) {
 console.log('Failed to update security configuration: ',
 error);
 });

 // 4. The system authentication configuration lists all users &
 roles

 session.security.getSystemAuthenticationConfiguration().then(function(config)
 {
 console.log('System principals: ', config.principals);
 console.log('Anonymous sessions: ', config.anonymous);
 }, function(error) {
 console.log('Unable to fetch system authentication
 configuration', error);
 });

 // 5. Changes to the system authentication config are done with a
 SystemAuthenticationScriptBuilder
 var authenticationScriptBuilder =
 session.security.authenticationScriptBuilder();

 // Add a new user and set password & roles.
 var addUserScript =
 authenticationScriptBuilder.addPrincipal('Superman',
 'correcthorsebatterystapler')

 .assignRoles('Superman', ['SUPERUSER'])
 .build();

 // Update the system authentication store

 session.security.updateAuthenticationStore(addUserScript).then(function()
 {
 console.log('Updated system authentication config');
 }, function(error) {
 console.log('Failed to update system authentication: ',
 error);
 });
});

Diffusion | 409

Java and Android

package com.pushtechnology.diffusion.examples;

import java.util.HashSet;
import java.util.Set;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.pushtechnology.diffusion.client.Diffusion;
import com.pushtechnology.diffusion.client.callbacks.ErrorReason;
import
 com.pushtechnology.diffusion.client.features.control.clients.SystemAuthenticationControl;
import
 com.pushtechnology.diffusion.client.features.control.clients.SystemAuthenticationControl.ConfigurationCallback;
import
 com.pushtechnology.diffusion.client.features.control.clients.SystemAuthenticationControl.ScriptBuilder;
import
 com.pushtechnology.diffusion.client.features.control.clients.SystemAuthenticationControl.SystemAuthenticationConfiguration;
import
 com.pushtechnology.diffusion.client.features.control.clients.SystemAuthenticationControl.SystemPrincipal;
import
 com.pushtechnology.diffusion.client.features.control.clients.SecurityStoreFeature.UpdateStoreCallback;
import com.pushtechnology.diffusion.client.session.Session;

/**
 * An example of using a control client to alter the system
 authentication
 * configuration.
 * <P>
 * This uses the {@link SystemAuthenticationControl} feature only.
 *
 * @author Push Technology Limited
 * @since 5.2
 */
public class ControlClientChangingSystemAuthentication {

 private static final Logger LOG =
 LoggerFactory.getLogger(
 ControlClientChangingSystemAuthentication.class);

 private final SystemAuthenticationControl
 systemAuthenticationControl;

 /**
 * Constructor.
 */
 public ControlClientChangingSystemAuthentication() {

 final Session session = Diffusion.sessions()
 // Authenticate with a user that has the VIEW_SECURITY
 and
 // MODIFY_SECURITY permissions.
 .principal("admin").password("password")
 // Use a secure channel because we're transferring
 sensitive
 // information.
 .open("wss://diffusion.example.com:80");

 systemAuthenticationControl =
 session.feature(SystemAuthenticationControl.class);
 }

Diffusion | 410

 /**
 * For all system users, update the assigned roles to replace the
 * "SUPERUSER" role and with "ADMINISTRATOR".
 *
 * @param callback result callback
 */
 public void changeSuperUsersToAdministrators(UpdateStoreCallback
 callback) {

 systemAuthenticationControl.getSystemAuthentication(
 new ChangeSuperUsersToAdministrators(callback));
 }

 private final class ChangeSuperUsersToAdministrators
 implements ConfigurationCallback {

 private final UpdateStoreCallback callback;

 ChangeSuperUsersToAdministrators(UpdateStoreCallback
 callback) {
 this.callback = callback;
 }

 @Override
 public void onReply(SystemAuthenticationConfiguration
 configuration) {

 ScriptBuilder builder =
 systemAuthenticationControl.scriptBuilder();

 // For all system users ...
 for (SystemPrincipal principal :
 configuration.getPrincipals()) {

 final Set<String> assignedRoles =
 principal.getAssignedRoles();

 // ... that have the SUPERUSER assigned role ...
 if (assignedRoles.contains("SUPERUSER")) {
 final Set<String> newRoles = new
 HashSet<>(assignedRoles);
 newRoles.remove("SUPERUSER");
 newRoles.add("ADMINISTRATOR");

 // ... add a command to the script that updates
 the user's
 // assigned roles, replacing SUPERUSER with
 "ADMINISTRATOR".
 builder =
 builder.assignRoles(principal.getName(),
 newRoles);
 }
 }

 final String script = builder.script();

 LOG.info(
 "Sending the following script to the server:\n{}",
 script);

 systemAuthenticationControl.updateStore(
 script,

Diffusion | 411

 callback);
 }

 @Override
 public void onError(ErrorReason errorReason) {
 // This might fail if the session lacks the required
 permissions.
 callback.onError(errorReason);
 }
 }

 /**
 * Close the session.
 */
 public void close() {
 systemAuthenticationControl.getSession().close();
 }
}

.NET

C

/*
 * This examples demonstrates how to interact with the system
 * authentication store.
 */

#include <stdio.h>

#include <apr.h>
#include <apr_thread_mutex.h>
#include <apr_thread_cond.h>

#include "diffusion.h"
#include "args.h"
#include "service/svc-system-auth-control.h"

apr_pool_t *pool = NULL;
apr_thread_mutex_t *mutex = NULL;
apr_thread_cond_t *cond = NULL;

ARG_OPTS_T arg_opts[] = {
 ARG_OPTS_HELP,
 {'u', "url", "Diffusion server URL", ARG_OPTIONAL,
 ARG_HAS_VALUE, "ws://localhost:8080"},
 {'p', "principal", "Principal (username) for the connection",
 ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 {'c', "credentials", "Credentials (password) for the
 connection", ARG_OPTIONAL, ARG_HAS_VALUE, NULL},
 END_OF_ARG_OPTS
};

/*
 * This callback is invoked when the system authentication store is

Diffusion | 412

 * received, and prints the contents of the store.
 */
int
on_get_system_authentication_store(SESSION_T *session,
 const
 SYSTEM_AUTHENTICATION_STORE_T store,
 void *context)
{
 puts("on_get_system_authentication_store()");

 printf("Got %ld principals\n", store.system_principals-
>size);

 char **names = get_principal_names(store);
 for(char **name = names; *name != NULL; name++) {
 printf("Principal: %s\n", *name);

 char **roles = get_roles_for_principal(store, *name);
 for(char **role = roles; *role != NULL; role++) {
 printf(" |- Role: %s\n", *role);
 }
 free(roles);
 }
 free(names);

 switch(store.anonymous_connection_action) {
 case ANONYMOUS_CONNECTION_ACTION_ALLOW:
 puts("Allow anonymous connections");
 break;
 case ANONYMOUS_CONNECTION_ACTION_DENY:
 puts("Deny anonymous connections");
 break;
 case ANONYMOUS_CONNECTION_ACTION_ABSTAIN:
 puts("Abstain from making anonymous connection
 decision");
 break;
 }

 puts("Anonymous connection roles:");
 char **roles = get_anonymous_roles(store);
 for(char **role = roles; *role != NULL; role++) {
 printf(" |- Role: %s\n", *role);
 }
 free(roles);

 apr_thread_mutex_lock(mutex);
 apr_thread_cond_broadcast(cond);
 apr_thread_mutex_unlock(mutex);

 return HANDLER_SUCCESS;
}

int
main(int argc, char **argv)
{
 /*
 * Standard command-line parsing.
 */
 const HASH_T *options = parse_cmdline(argc, argv, arg_opts);
 if(options == NULL || hash_get(options, "help") != NULL) {
 show_usage(argc, argv, arg_opts);
 return EXIT_FAILURE;
 }

Diffusion | 413

 const char *url = hash_get(options, "url");
 const char *principal = hash_get(options, "principal");
 CREDENTIALS_T *credentials = NULL;
 const char *password = hash_get(options, "credentials");
 if(password != NULL) {
 credentials = credentials_create_password(password);
 }

 /*
 * Setup for condition variable
 */
 apr_initialize();
 apr_pool_create(&pool, NULL);
 apr_thread_mutex_create(&mutex, APR_THREAD_MUTEX_UNNESTED,
 pool);
 apr_thread_cond_create(&cond, pool);

 /*
 * Create a session with Diffusion.
 */
 SESSION_T *session;
 DIFFUSION_ERROR_T error = { 0 };
 session = session_create(url, principal, credentials, NULL,
 NULL, &error);
 if(session == NULL) {
 fprintf(stderr, "TEST: Failed to create session\n");
 fprintf(stderr, "ERR : %s\n", error.message);
 return EXIT_FAILURE;
 }

 /*
 * Request the system authentication store.
 */
 const GET_SYSTEM_AUTHENTICATION_STORE_PARAMS_T params = {
 .on_get = on_get_system_authentication_store
 };

 apr_thread_mutex_lock(mutex);

 get_system_authentication_store(session, params);

 apr_thread_cond_wait(cond, mutex);
 apr_thread_mutex_unlock(mutex);

 /*
 * Close the session and tidy up.
 */
 session_close(session, NULL);
 session_free(session);

 apr_thread_mutex_destroy(mutex);
 apr_thread_cond_destroy(cond);
 apr_pool_destroy(pool);
 apr_terminate();

 return EXIT_SUCCESS;
}

Change the URL from that provided in the example to the URL of the Diffusion server.

Diffusion | 414

Updating the security store
A client can use the SecurityControl feature to update the security store. The information in the
security store is used by the Diffusion server to define the permissions assigned to roles and the roles
assigned to anonymous sessions and named sessions.

Querying the store

Required permissions: view_security

The client can get a snapshot of the current information in the security store. This information is
returned as an object model.

Updating the store

Required permissions: modify_security

The client can use a command script to update the security store. The command script is a string that
contains a command on each line. These commands are applied to the current state of the security
store.

The update is transactional. Unless all of the commands in the script can be applied, none of them are.

Using a script builder

You can use a script builder to create the command script used to update the security store. Use the
script builder to create commands for the following actions:

• Set the global permissions assigned to a named role
• Set the default topic permissions assigned to a named role
• Set the topic permissions associated with a specific topic path assigned to a named role

This can include explicitly setting a role to have no permissions at a topic path.
• Remove the topic permissions associated with a specific topic path assigned to a named role
• Set the roles included in a named role
• Set the roles assigned to sessions authenticated with a named principal
• Set the roles assigned to anonymous sessions

DSL syntax: security store
The scripts that you can use with the SecurityControl feature to update the security store are
formatted according to a domain-specific language (DSL). You can use the script builders provided
in the APIs to create a script to update the security store. However, if you want to create the script by
some other method, ensure that it conforms to the DSL.

The following sections each describe the syntax for a single line of the script file.

Assigning global permissions to a role

Railroad diagram

Backus-Naur form

Diffusion | 415

set " role_name " permissions [[global_permission [, global_permission]]]

Example

set "ADMINISTRATOR" permissions [CONTROL_SERVER, VIEW_SERVER,
 VIEW_SECURITY, MODIFY_SECURITY]
set "CLIENT_CONTROL" permissions [VIEW_SESSION, MODIFY_SESSION,
 REGISTER_HANDLER]

Assigning default topic permissions to a role

Railroad diagram

Backus-Naur form
set " role_name " default topic permissions [[topic_permission [, topic_permission]]]

Example

set "CLIENT" default topic permissions [READ_TOPIC ,
 SEND_TO_MESSAGE_HANDLER]

Assigning topic permissions associated with a specific topic path to a role

Railroad diagram

Backus-Naur form
set " role_name " topic " topic_path " permissions [[topic_permission [, topic_permission]
]]

Example

set "CLIENT" topic "foo/bar" permissions [READ_TOPIC,
 SEND_TO_MESSAGE_HANDLER]
set "ADMINISTRATOR" topic "foo" permissions [MODIFY_TOPIC]
set "CLIENT_CONTROL" topic "foo" permissions []

Removing all topic permissions associated with a specific topic path to a role

Railroad diagram

Backus-Naur form
remove " role_name " permissions for topic " topic_path "

Example

remove "CLIENT" permissions for topic "foo/bar"

developerguide/client/security/securitycontrol/railroad_assign_topic.png
developerguide/client/security/securitycontrol/railroad_assign_topic.png

Diffusion | 416

Including roles within another role

Railroad diagram

Backus-Naur form
set " role_name " includes [[" role_name " [, " role_name "]]]

Example

set "ADMINISTRATOR" includes ["CLIENT_CONTROL" , "TOPIC_CONTROL"]
set "CLIENT_CONTROL" includes ["CLIENT"]

Assigning roles to a named session

Railroad diagram

Backus-Naur form
set roles for named sessions [[" role_name " [, " role_name "]]]

Example

set roles for named sessions ["CLIENT"]

Assigning roles to an anonymous session

Railroad diagram

Backus-Naur form
set roles for anonymous sessions [[" role_name " [, " role_name "]]]

Example

set roles for anonymous sessions ["CLIENT"]

Example: Update the security store
The following examples use the SecurityControl feature in the Unified API to update the security store.

JavaScript

Diffusion | 417

Note: Only steps 2 and 3 deal with the security store.

// Session security allows you to change the principal that a session
 is authenticated as. It also allows users to
// query and update server-side security and authentication stores,
 which control users, roles and permissions.
// This enables you to manage the capabilities that any logged in
 user will have access to.

// Connect to Diffusion with control client credentials
diffusion.connect({
 host : 'diffusion.example.com',
 port : 443,
 secure : true,
 principal : 'control',
 credentials : 'password'
}).then(function(session) {

 // 1. A session change their principal by re-authenticating
 session.security.changePrincipal('admin',
 'password').then(function() {
 console.log('Authenticated as admin');
 });

 // 2. The security configuration provides details about roles and
 their assigned permissions
 session.security.getSecurityConfiguration().then(function(config)
 {
 console.log('Roles for anonymous sessions: ',
 config.anonymous);
 console.log('Roles for named sessions: ', config.named);
 console.log('Available roles: ', config.roles);
 }, function(error) {
 console.log('Unable to fetch security configuration', error);
 });

 // 3. Changes to the security configuration are done with a
 SecurityScriptBuilder
 var securityScriptBuilder =
 session.security.securityScriptBuilder();

 // Set the permissions for a particular role - global and topic-
scoped
 // Each method on a script builder returns a new builder
 var setPermissionScript =
 securityScriptBuilder.setGlobalPermissions('SUPERUSER',
 ['REGISTER_HANDLER'])

 .setTopicPermissions('SUPERUSER', '/foo', ['UPDATE_TOPIC'])
 .build();

 // Update the server-side store with the generated script

 session.security.updateSecurityStore(setPermissionScript).then(function()
 {
 console.log('Security configuration updated successfully');
 }, function(error) {
 console.log('Failed to update security configuration: ',
 error);
 });

Diffusion | 418

 // 4. The system authentication configuration lists all users &
 roles

 session.security.getSystemAuthenticationConfiguration().then(function(config)
 {
 console.log('System principals: ', config.principals);
 console.log('Anonymous sessions: ', config.anonymous);
 }, function(error) {
 console.log('Unable to fetch system authentication
 configuration', error);
 });

 // 5. Changes to the system authentication config are done with a
 SystemAuthenticationScriptBuilder
 var authenticationScriptBuilder =
 session.security.authenticationScriptBuilder();

 // Add a new user and set password & roles.
 var addUserScript =
 authenticationScriptBuilder.addPrincipal('Superman',
 'correcthorsebatterystapler')

 .assignRoles('Superman', ['SUPERUSER'])
 .build();

 // Update the system authentication store

 session.security.updateAuthenticationStore(addUserScript).then(function()
 {
 console.log('Updated system authentication config');
 }, function(error) {
 console.log('Failed to update system authentication: ',
 error);
 });
});

Java and Android

package com.pushtechnology.diffusion.examples;

import java.util.Collections;
import java.util.Map;
import java.util.Set;
import java.util.TreeSet;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.pushtechnology.diffusion.client.Diffusion;
import com.pushtechnology.diffusion.client.callbacks.ErrorReason;
import
 com.pushtechnology.diffusion.client.features.control.clients.SecurityControl;
import
 com.pushtechnology.diffusion.client.features.control.clients.SecurityControl.ConfigurationCallback;
import
 com.pushtechnology.diffusion.client.features.control.clients.SecurityControl.Role;
import
 com.pushtechnology.diffusion.client.features.control.clients.SecurityControl.ScriptBuilder;
import
 com.pushtechnology.diffusion.client.features.control.clients.SecurityControl.SecurityConfiguration;
import
 com.pushtechnology.diffusion.client.features.control.clients.SecurityStoreFeature.UpdateStoreCallback;

Diffusion | 419

import com.pushtechnology.diffusion.client.session.Session;
import com.pushtechnology.diffusion.client.types.GlobalPermission;
import com.pushtechnology.diffusion.client.types.TopicPermission;

/**
 * An example of using a control client to alter the security
 configuration.
 * <P>
 * This uses the {@link SecurityControl} feature only.
 *
 * @author Push Technology Limited
 * @since 5.3
 */
public class ControlClientChangingSecurity {

 private static final Logger LOG =
 LoggerFactory.getLogger(
 ControlClientChangingSecurity.class);

 private final SecurityControl securityControl;

 /**
 * Constructor.
 */
 public ControlClientChangingSecurity() {

 final Session session = Diffusion.sessions()
 // Authenticate with a user that has the VIEW_SECURITY
 and
 // MODIFY_SECURITY permissions.
 .principal("admin").password("password")
 // Use a secure channel because we're transferring
 sensitive
 // information.
 .open("wss://diffusion.example.com:80");

 securityControl = session.feature(SecurityControl.class);
 }

 /**
 * This will update the security store to ensure that all roles
 start with a
 * capital letter (note that this does not address changing the
 use of the
 * roles in the system authentication store).
 *
 * @param callback result callback
 */
 public void capitalizeRoles(UpdateStoreCallback callback) {
 securityControl.getSecurity(new CapitalizeRoles(callback));
 }

 private final class CapitalizeRoles implements
 ConfigurationCallback {

 private final UpdateStoreCallback callback;

 CapitalizeRoles(UpdateStoreCallback callback) {
 this.callback = callback;
 }

 @Override
 public void onReply(SecurityConfiguration configuration) {

Diffusion | 420

 ScriptBuilder builder =
 securityControl.scriptBuilder();

 builder = builder.setRolesForAnonymousSessions(

 capitalize(configuration.getRolesForAnonymousSessions()));

 builder = builder.setRolesForNamedSessions(

 capitalize(configuration.getRolesForNamedSessions()));

 for (Role role : configuration.getRoles()) {

 final String oldName = role.getName();
 final String newName = capitalize(oldName);

 // Only if new name is different
 if (!oldName.equals(newName)) {

 // Global Permissions
 final Set<GlobalPermission> globalPermissions =
 role.getGlobalPermissions();
 if (!globalPermissions.isEmpty()) {
 // Remove global permissions for old role
 builder =
 builder.setGlobalPermissions(
 oldName,

 Collections.<GlobalPermission>emptySet());
 // Set global permissions for new role
 builder =
 builder.setGlobalPermissions(
 newName,
 role.getGlobalPermissions());
 }

 final Set<TopicPermission>
 defaultTopicPermissions =
 role.getDefaultTopicPermissions();
 if (!defaultTopicPermissions.isEmpty()) {
 // Remove default topic permissions for old
 role
 builder =
 builder.setDefaultTopicPermissions(
 oldName,

 Collections.<TopicPermission>emptySet());
 // Set default topic permissions for new role
 builder =
 builder.setDefaultTopicPermissions(
 newName,
 role.getDefaultTopicPermissions());
 }

 final Map<String, Set<TopicPermission>>
 topicPermissions =
 role.getTopicPermissions();

 if (!topicPermissions.isEmpty()) {
 for (Map.Entry<String, Set<TopicPermission>>
 entry : topicPermissions
 .entrySet()) {

Diffusion | 421

 final String topicPath = entry.getKey();
 // Remove old topic permissions
 builder =
 builder.removeTopicPermissions(
 oldName,
 topicPath);
 // Set new topic permissions
 builder =
 builder.setTopicPermissions(
 newName,
 topicPath,
 entry.getValue());
 }
 }

 }

 final Set<String> oldIncludedRoles =
 role.getIncludedRoles();
 if (!oldIncludedRoles.isEmpty()) {

 if (!oldName.equals(newName)) {
 // Remove old included roles
 builder =
 builder.setRoleIncludes(
 oldName,
 Collections.<String>emptySet());
 }

 // This is done even if role name did not change
 as it is
 // possible that roles included may have
 final Set<String> newIncludedRoles =
 capitalize(oldIncludedRoles);
 builder =
 builder.setRoleIncludes(
 newName,
 newIncludedRoles);

 }

 }

 final String script = builder.script();

 LOG.info(
 "Sending the following script to the server:\n{}",
 script);

 securityControl.updateStore(
 script,
 callback);
 }

 private Set<String> capitalize(Set<String> roles) {
 final Set<String> newSet = new TreeSet<>();
 for (String role : roles) {
 newSet.add(capitalize(role));
 }
 return newSet;
 }

Diffusion | 422

 private String capitalize(String role) {
 return Character.toUpperCase(role.charAt(0)) +
 role.substring(1);
 }

 @Override
 public void onError(ErrorReason errorReason) {
 // This might fail if the session lacks the required
 permissions.
 callback.onError(errorReason);
 }
 }

 /**
 * Close the session.
 */
 public void close() {
 securityControl.getSession().close();
 }
}

.NET

using System.Collections.Generic;
using System.Linq;
using PushTechnology.ClientInterface.Client.Callbacks;
using PushTechnology.ClientInterface.Client.Factories;
using
 PushTechnology.ClientInterface.Client.Features.Control.Clients.SecurityControl;
using PushTechnology.ClientInterface.Client.Types;

namespace Examples {
 /// <summary>
 /// An example of using a control client to alter the security
 configuration.
 ///
 /// This uses the <see cref="ISecurityControl"/> feature only.
 /// </summary>
 public class ControlClientChangingSecurity {
 private readonly ISecurityControl securityControl;

 public ControlClientChangingSecurity() {
 // Authenticate with a user that has the VIEW_SECURITY
 and MODIFY_SECURITY permissions.
 var session =
 Diffusion.Sessions.Principal("admin").Password("password")
 // Use a secure channel because we're transferring
 sensitive information.
 .Open("wss://diffusion.example.com:8443");

 securityControl = session.GetSecurityControlFeature();
 }

 public void DoCapitalizeRoles(IUpdateStoreCallback
 callback) {
 securityControl.GetSecurity(new
 CapitalizeRoles(securityControl, callback));
 }

 private class CapitalizeRoles : IConfigurationCallback {
 private readonly ISecurityControl theSecurityControl;
 private readonly IUpdateStoreCallback theCallback;

Diffusion | 423

 /// <summary>
 /// Constructor.
 /// </summary>
 /// <param name="securityControl">The security control
 object.</param>
 /// <param name="callback">The callback object.</param>
 public CapitalizeRoles(ISecurityControl securityControl,
 IUpdateStoreCallback callback) {
 theSecurityControl = securityControl;
 theCallback = callback;
 }

 /// <summary>
 /// Notification of a contextual error related to this
 callback. This is analogous to an exception being
 /// raised. Situations in which <code>OnError</code> is
 called include the session being closed, a
 /// communication timeout, or a problem with the provided
 parameters. No further calls will be made to this
 /// callback.
 /// </summary>
 /// <param name="errorReason">errorReason a value
 representing the error; this can be one of constants
 /// defined in <see cref="ErrorReason" />, or a feature-
specific reason.</param>
 public void OnError(ErrorReason errorReason) {
 // This might fail if the session lacks the required
 permissions.
 theCallback.OnError(errorReason);
 }

 /// <summary>
 /// This is called to return the requested security
 configuration.
 /// </summary>
 /// <param name="configuration">The snapshot of
 information from the security store.</param>
 public void OnReply(ISecurityConfiguration
 configuration) {
 var builder = theSecurityControl.ScriptBuilder();

 builder = builder.SetRolesForAnonymousSessions(

 Capitalize(configuration.RolesForAnonymousSessions));

 builder = builder.SetRolesForNamedSessions(

 Capitalize(configuration.RolesForNamedSessions));

 foreach (var role in configuration.Roles) {
 var oldName = role.Name;
 var newName = Capitalize(oldName);

 // Only if new name is different
 if (!oldName.Equals(newName)) {
 // Global permissions
 var globalPermissions =
 role.GlobalPermissions;

 if (globalPermissions.Count > 0) {
 // Remove global permissions for old role

Diffusion | 424

 builder =
 builder.SetGlobalPermissions(oldName, new
 List<GlobalPermission>());

 // Set global permissions for new role
 builder =
 builder.SetGlobalPermissions(newName,
 new
 List<GlobalPermission>(role.GlobalPermissions));
 }

 var defaultTopicPermissions =
 role.DefaultTopicPermissions;

 if (defaultTopicPermissions.Count > 0) {
 // Remove default topic permissions for
 old role
 builder =
 builder.SetDefaultTopicPermissions(oldName, new
 List<TopicPermission>());

 // Set default topic permissions for new
 role
 builder =
 builder.SetDefaultTopicPermissions(newName,
 new
 List<TopicPermission>(role.DefaultTopicPermissions));
 }

 var topicPermissions = role.TopicPermissions;

 if (topicPermissions.Count > 0) {
 foreach (var entry in topicPermissions)
 {
 var topicPath = entry.Key;

 // Remove old topic permissions
 builder =
 builder.RemoveTopicPermissions(oldName, topicPath);

 // Set new topic permissions
 builder =
 builder.SetTopicPermissions(newName, topicPath, entry.Value);
 }
 }
 }

 var oldIncludedRoles = role.IncludedRoles;

 if (oldIncludedRoles.Count > 0) {
 // Remove old included roles
 builder = builder.SetRoleIncludes(oldName,
 new List<string>());
 }

 // This is done even if role name did not change
 as it is possible that roles included may have
 var newIncludedRoles =
 Capitalize(oldIncludedRoles);

 builder = builder.SetRoleIncludes(newName,
 newIncludedRoles);
 }

Diffusion | 425

 }

 private static List<string>
 Capitalize(IEnumerable<string> roles) {
 return roles.Select(Capitalize).ToList();
 }

 private static string Capitalize(string role) {
 return char.ToUpper(role[0]) +
 role.Substring(1);
 }
 }
 }
}

Change the URL from that provided in the example to the URL of the Diffusion server.

Managing clients
A client with the appropriate permissions can receive notifications and information about other client
sessions. A client with the appropriate permissions can also manage these client sessions.

Session properties

Each client session has a number of properties associated with it. Properties are keys and values. Both
the key and the value are case sensitive. These session properties can be used by other clients to select
sets of client session to perform actions on.

For more information, see Session properties on page 265.

Receiving notifications of client session events and their session properties

Required permissions: view_session

To receive notifications when any client session opens, closes, or is updated, register a listener to
listen for these events:

JavaScript

// Register a listener for session properties
session.clients.setSessionPropertiesListener(diffusion.clients.PropertyKeys.ALL_FIXED_PROPERTIES)
 .then(function() {

 var listener =
 session.clients.getSessionPropertiesListener();
 listener
 .on('onSessionOpen', function(event) {
 // The action to take on a client session open
 notification
 })
 .on('onSessionUpdate', function(event) {
 // The action to take on a client session update
 notification
 })
 .on('onSessionClose', function(event) {
 // The action to take on a client session close
 notification
 });
 }, function(err) {
 console.log('An error has occurred:', err);

Diffusion | 426

 });

Java and Android

ClientControl clientControl = session.feature(ClientControl.class);

clientControl.setSessionPropertiesListener(
 new ClientControl.SessionPropertiesListener.Default() {
 @Override
 public void onSessionOpen(){
 // The action to take on a client session open
 notification
 }
 @Override
 public void onSessionEvent(){
 // The action to take on a client session update
 notification
 }
 @Override
 public void onSessionClose(){
 // The action to take on a client session close
 notification
 }
 },
 // The session properties to receive
 "$Country", "$Department");

.NET

var _clientControl = session.GetClientControlFeature();

// Set up a listener to receive notification of all sessions
_clientControl.SetSessionPropertiesListener(propertyListener,
 "$Country", "Department");

C

/*
* Register a session properties listener.
*
* Requests all "fixed" properties, i.e. those defined by
* Diffusion rather than user-defined properties.
*/
SET_T *required_properties = set_new_string(5);
set_add(required_properties,
 PROPERTIES_SELECTOR_ALL_FIXED_PROPERTIES);

// Set the parameters to callbacks previously defined
SESSION_PROPERTIES_REGISTRATION_PARAMS_T params = {
 .on_registered = on_registered,
 .on_registration_error = on_registration_error,
 .on_session_open = on_session_open,
 .on_session_close = on_session_close,
 .on_session_update = on_session_update,
 .on_session_error = on_session_error,
 .required_properties = required_properties
};
session_properties_listener_register(session, params);

When registering this listener, specify which session properties to receive for each client session:

Diffusion | 427

JavaScript

// Receive all fixed properties
session.clients.setSessionPropertiesListener(diffusion.clients.PropertyKeys.ALL_FIXED_PROPERTIES,
 listener)
 .then(function() {

 });
// OR
// Receive all user-defined properties
session.clients.setSessionPropertiesListener(diffusion.clients.PropertyKeys.ALL_USER_PROPERTIES,
 listener)
 .then(function() {

 });
// OR
// Receive all properties
session.clients.setSessionPropertiesListener([diffusion.clients.PropertyKeys.ALL_FIXED_PROPERTIES,
 diffusion.clients.PropertyKeys.ALL_USER_PROPERTIES], listener)
 .then(function() {

 });

Java and Android

// Define individual session properties to receive
clientControl.setSessionPropertiesListener(
 new ClientControl.SessionPropertiesListener.Default() {
 // Define callbacks
 },
 "$Country", "$Department");
// OR
// Receive all fixed properties
clientControl.setSessionPropertiesListener(
 new ClientControl.SessionPropertiesListener.Default() {
 // Define callbacks
 },
 Session.ALL_FIXED_PROPERTIES);
// OR
// Receive all user-defined properties
clientControl.setSessionPropertiesListener(
 new ClientControl.SessionPropertiesListener.Default() {
 // Define callbacks
 },
 Session.ALL_USER_PROPERTIES);

.NET

// Define individual session properties to receive
_clientControl.SetSessionPropertiesListener(propertiesListener,
 "$Country", "Department");
// OR
// Receive all fixed properties
_clientControl.SetSessionPropertiesListener(propertiesListener,
 SessionControlConstants.AllFixedProperties);
// OR
// Receive all user-defined properties
_clientControl.SetSessionPropertiesListener(propertiesListener,
 SessionControlConstants.AllUserProperties);

Diffusion | 428

C

// Receive all fixed properties
SET_T *required_properties = set_new_string(5);
set_add(required_properties,
 PROPERTIES_SELECTOR_ALL_FIXED_PROPERTIES);

SESSION_PROPERTIES_REGISTRATION_PARAMS_T params = {
 //Other parameters
 .required_properties = required_properties
};
// OR
// Receive all user-defined properties
SET_T *required_properties = set_new_string(5);
set_add(required_properties,
 PROPERTIES_SELECTOR_ALL_USER_PROPERTIES);

SESSION_PROPERTIES_REGISTRATION_PARAMS_T params = {
 //Other parameters
 .required_properties = required_properties
};
// OR
// Receive all properties
SET_T *required_properties = set_new_string(5);
set_add(required_properties,
 PROPERTIES_SELECTOR_ALL_FIXED_PROPERTIES);
set_add(required_properties,
 PROPERTIES_SELECTOR_ALL_USER_PROPERTIES);

SESSION_PROPERTIES_REGISTRATION_PARAMS_T params = {
 //Other parameters
 .required_properties = required_properties
};

When the listening client first registers a listener, it receives a notification for every client session that
is currently open. When subsequent client sessions open, the listening client receives a notification for
those clients.

When the listening client is notified of a session event, it receives the requested session properties as a
map of keys and values.

When the listening client is notified of a session closing, it also receives the reason that the session was
closed. If the client session becomes disconnected from the Diffusion server, the listener might not
receive notification of session close immediately. If reconnection is configured for the client, when the
client disconnects, its session goes into reconnecting state for the configured time (the default is 60
seconds) before going into a closed state.

Getting details of specific clients

Required permissions: view_session

A client can make an asynchronous request the session properties of any client session from the
Diffusion server, providing the requesting client knows the session ID of the target client.

JavaScript

// Get fixed session properties
 session.clients.getSessionProperties(sessionID,
 diffusion.clients.PropertyKeys.ALL_FIXED_PROPERTIES)
 .then(function{

 });

Diffusion | 429

Java and Android

// Get fixed session properties
ClientControl clientControl = session.feature(ClientControl.class);
clientControl.getSessionProperties(sessionID,
 Session.ALL_FIXED_PROPERTIES, sessionPropertiesCallback);

.NET

var _clientControl = session.GetClientControlFeature();
_clientControl.GetSessionProperties(sessionID,
 SessionControlConstants.AllFixedProperties, sessionPropertiesCallback
);

C

 GET_SESSION_PROPERTIES_PARAMS_T params = {
 .session_id = session_id,
 .required_properties = properties,
 .on_session_properties = on_session_properties
 };

 get_session_properties(session, params);

Closing client sessions

Required permissions: view_session, modify_session

A client can close any client session, providing the requesting client knows the session ID of the target
client.

Java and Android

ClientControl clientControl = session.feature(ClientControl.class);
clientControl.close(sessionID,callback);

.NET

var _clientControl = session.GetClientControlFeature();
_clientControl.Close(sessionID, callback);

Related concepts
Session properties on page 265
A client session has a number of properties associated with it. Properties are key-value pairs. Both the
key and the value are case sensitive.

Session filtering on page 266
Session filters enable you to query the set of connected client sessions on the Diffusion server based
on their session properties.

Handling client queues
Each client session has a queue on the Diffusion server. Messages to be sent to the client are queued
here. You can monitor the state of these queues and set client queue behavior.

Receiving notifications of client queue events

Required permissions: view_session, register_handler

Diffusion | 430

A client can register a handler that is notified when outbound client queues at the Diffusion server
reach pre-configured thresholds.

Java and Android

ClientControl clientControl = session.feature(ClientControl.class);
clientControl.setQueueEventHandler(
 new ClientControl. QueueEventHandler.Default {

 @Override
 public void onUpperThresholdCrossed(
 final SessionId client,
 final MessageQueuePolicy policy) {

 // The action to perform when the queue upper threshold
 is crossed.
 }

 @Override
 public void onLowerThresholdCrossed(
 final SessionId client,
 final MessageQueuePolicy policy) {

 // The action to perform when the queue lower threshold
 is crossed.
 }
 }
);

Handling client queue events

Required permissions: view_session, modify_session

A client can respond to a client queue getting full by setting conflation on for the client. Conflation
must be configured at the Diffusion server to have an effect.

A client is also able to set throttling on for specific clients, which also sets conflation. Using throttling
without conflation can result in client queues overflowing.

Always use throttling and conflation in conjunction with a well-designed conflation strategy
configured at the Diffusion server. For more information, see Conflation on page 92 and Configuring
conflation on page 546.

Java and Android

ClientControl clientControl = session.feature(ClientControl.class);
clientControl.setThrottled(client, MESSAGE_INTERVAL, 1000,
 clientCallback);

.NET

var clientControl = session.GetClientControlFeature();
clientControl.SetThrottled(client, ThrottlerType.MESSAGE_INTERVAL,
 10, theClientCallback);

Diffusion | 431

DEPRECATED: Classic API
The Classic API is our legacy API and will be deprecated in a forthcoming version of Diffusion.

Clients that use the APIs documented in this section are still supported for version 5.9, but for all future
development use the new Unified API.

DEPRECATED: Java Client Classic API
The client Classic API provides the ability to connect to a Diffusion server as an external client from
within any Java application.

For full API documentation, see Java Classic API documentation

How to use the Java client API

There is a single class called ExternalClientConnection which can be instantiated with the
required connection details and used to make an actual connection.

The connection class is of the generic type ServerConnection and as such, once a
connection is made, any notifications or messages from the server are passed through the
ServerConnectionListener interface.

The topic or topics to subscribe to can be specified when connecting or at any time after connection.

The ServerConnectionListener specified will receive all messages for all topics. However,
any number of additional topic listeners can be specified and messages for different topics routed to
different listeners as required.

The API permits the following types of connection to be specified by using the ServerDetails (see
connection package) specified when configuring the connection object:

Table 32: Connection types

TCP For a standard connection over TCP/IP. This must connect to a standard
client connector.

SSL For a secure TCP/IP connection over SSL. This must connect to a client
connector with SSL enabled

HTTP For a connection using HTTP

HTTP/SSL For a connection using HTTP over SSL.

By specifying more than one ServerDetails, fallback connections can be specified. If the first
connection does not succeed, the second is tried, and so on.

For a detailed description of the API see the issued API documentation (in docs directory).

Authorization credentials

If authorization credentials are required by the Diffusion server, these are set at the
ConnectionDetails level and used for all ServerDetails. Credentials can be set in a
ServerDetails by creating a Credentials object and using setCredentials before
connecting.

Credentials can also be sent to the server after connection using the method sendCredentials
in ExternalClientConnection. In this case the credentials can be rejected by the server,
in which case this is notified on the serverRejectedCredentials method of each
ServerConnectionListener.

http://docs.pushtechnology.com/docs/5.9.4/java/index.html

Diffusion | 432

Certificates

Diffusion Java clients use certificates to validate the security of their connection to the Diffusion
server. The client validates the certificate sent by the Diffusion server against the set of certificates
trusted by the .

If the certificate sent by the Diffusion server cannot be validated against any certificates in the set
trusted by the , you must set up a trust store for the client and add the appropriate certificates to that
trust store.

Diffusion is authenticated using the certificates provided by your certificate authority for the domain
you host the Diffusion server on.

1. Obtain the appropriate intermediate certificate from the certificate authority.
2. Use keytool to create a trust store for your client that includes this certificate.

For more information, see https://docs.oracle.com/cd/E19509-01/820-3503/ggfka/index.html
3. Use system properties to add the trust store to your client.

For example:

System.setProperty("javax.net.ssl.trustStore", "truststore_name");

Or at the command line:

-Djavax.net.ssl.keyStore=path_to_truststore

Reconnection

If a client unexpectedly loses connection, it can try to reconnect using the reconnect method.
If the server has specified reconnection timeout (keep-alive) for the connector, the client
can pick up the same session as before and receive all messages that were queued for it whilst
disconnected. The topic state (that is, which topics the client is subscribed to) is also re-established
on reconnection. If unable to reconnect, a new connection is established with the same topic
set as used on the original connection. Successful reconnection or connection is notified on
the normal serverConnected method and you can determine which has occurred using the
ServerConnection.isReconnected() method.

There is no guarantee that messages in transit at the time of the disconnection will be redelivered.
However, all messages marked as requiring acknowledgment by the server are delivered.

Failover

The Java client supports autofailover. For more information, see Client failover on page 795.

Special features

Paged topic data handling
Where paged topic data is in use at the server there are features within the client API
which simplify the handling of messages to and from such a topic.

Service topic data handling
Where service topic data is in use at the server there are features within the client API
which simplify the handling of messages to and from such a topic.

https://docs.oracle.com/cd/E19509-01/820-3503/ggfka/index.html

Diffusion | 433

Example: Simple client class

The following example shows a simple client class which sends a message containing “Hello” to
the server and logs all messages it receives, until it receives a message from the server (Publisher)
asking it to stop. It tries to connect through TCP first but if that fails it tries HTTP.

public class ClientApplication implements ServerConnectionListener
 {

 private static final Logger LOG =
 LoggerFactory.getLogger(ClientApplication.class);

 private ExternalClientConnection theConnection;

 public ClientApplication() throws APIException {
 // Create Connection
 theConnection=
 new ExternalClientConnection(
 this,
 "ws://diffusion.example.com:80",
 "http://diffusion.example.com:80");
 // Connect, subscribing to a single topic
 theConnection.connect("MyTopic");
 // Send a message
 TopicMessage message =
 theConnection.createDeltaMessage("MyTopic");
 message.put("Hello");
 theConnection.send(message);
 }

 public void messageFromServer(
 ServerConnection serverConnection,
 TopicMessage message) {
 LOG.info("Message Received : {}",message);
 try {
 if (message.asString().equals("STOP")) {
 theConnection.close();
 }
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }

 public void serverConnected(ServerConnection serverConnection)
{
 LOG.info("Connected to Server : {}",serverConnection);

 }

 public void serverTopicStatusChanged(
 ServerConnection serverConnection,
 String topicName,
 TopicStatus status) {
 LOG.info(
 "Topic {} at {} status changed to {}",
 topicName,serverConnection,status);
 }

 public void serverRejectedCredentials(
 ServerConnection serverConnection,
 Credentials credentials) {

Diffusion | 434

 LOG.info("Server Rejected Credentials :
 {}",serverConnection);

 }

 public void serverDisconnected(ServerConnection
 serverConnection) {
 LOG.info("Disconnected from Server :
 {}",serverConnection);
 }

}

DEPRECATED: .NET Classic API
The .NET API comprises a number of packages.

For full API documentation, see .NET Classic API documentation

.NET Client Classic API
The ExternalClient API provides the ability to connect to a Diffusion server as an external client from
within any .NET application.

There is a single class called ExternalClient which can be instantiated with the required
connection details and used to make an actual connection.

The topic or topics to subscribe to can be specified when connecting or at any time after connection.

When a connection object is instantiated, subscribe to the InboundMessageReceived delegate,
which receives all messages for all topics.

The API permits the following types of connection to be specified by using the ServerDetails
specified when configuring the connection object:

Table 33: Types of connection that can be specified from the .NET client

TCP For a standard connection over DPT. This
connects to the External Client Connector.

TCPSSL For a secure TCP/IP connection over DPTS. This
connects to the External Client Connector.

HTTP For a connection using HTTP protocol

HTTPSSL For a secure connection using HTTP protocol

WEBSOCKET For a connection using WebSocket protocol

WEBSOCKETSSL For a secure connection using WebSocket
protocol

For a detailed description of the API, see the issued documentation (in docs directory).

The following example shows a simple client class which sends a message containing 'Hello' to the
server until it receives a message from the server (Publisher) asking it to stop.

 public class ClientApplication : IServerConnectionListener,
 ITopicListener
 {
 #region Fields

http://docs.pushtechnology.com/docs/5.9.4/dotnet/externalclient/html/index.html

Diffusion | 435

 private readonly
 PushTechnology.DiffusionExternalClient.ExternalClient theClient;

 #endregion // Fields

 #region Constructor

 public ClientApplication()
 {
 var connectionDetails =
 ConnectionFactory.CreateConnectionDetails("ws://
diffusion.example.com:80", "http://diffusion.example.com:80");

 connectionDetails.Topics = new TopicSet("MyTopic");

 theClient = new
 PushTechnology.DiffusionExternalClient.ExternalClient(connectionDetails);

 // Add a topic listener – we are listening to all messages for
 this example, but individual topics can
 // also be used as selectors
 theClient.AddGlobalTopicListener(this);

 // Now connect – this is an asynchronous process, so we have to
 wait until ServerConnected is invoked
 theClient.Connect();
 }

 #endregion // Constructor

 #region Implementation of IServerConnectionListener

 /// <summary>
 /// Notification of connection.
 ///
 /// This is called when a connection to a server is established.
 /// </summary>
 /// <param name="connector">The server connector.</param>
 public void ServerConnected(IDiffusionClientConnector connector)
 {
 Console.WriteLine("Connected to server: " + connector);

 // Send a message as we are now connected
 ITopicMessage message = theClient.CreateDeltaMessage("MyTopic");

 // Populate the message
 message.Put("Hello");

 // Send the message to the Diffusion server
 theClient.SendMessage(message);
 }

 /// <summary>
 /// Notification that the status for a topic that was subscribed to
 has changed.
 /// </summary>
 /// <param name="connector">The connector.</param>
 /// <param name="topicName">The name of the topic on which the
 status has changed.</param>
 /// <param name="statusType">The topic status change type.</param>
 public void ServerTopicStatusChanged(IDiffusionClientConnector
 connector, string topicName, TopicStatusChangeType statusType)
 {

Diffusion | 436

 Console.WriteLine(
 string.Format("Topic status for '{0}' changed to '{1}'.",
 topicName, statusType));
 }

 /// <summary>
 /// Notification of rejected credentials from the server.
 /// </summary>
 /// <param name="connector"></param>
 /// <param name="credentials"></param>
 public void ServerRejectedCredentials(IDiffusionClientConnector
 connector, V4Credentials credentials)
 {
 Console.WriteLine("Server rejected credentials.");
 }

 /// <summary>
 /// Notification of disconnection.
 ///
 /// The reason for the disconnection can be established by checking
 the state of the connection
 /// using IDiffusionClientConnector.State.
 /// </summary>
 /// <param name="connector">The server connector.</param>
 /// <param name="args">The arguments which can be interrogated for
 the state and details of a server closure.</param>
 public void ServerDisconnected(IDiffusionClientConnector
 connector, ServerClosedEventArgs args)
 {
 Console.WriteLine("Disconnected from server.");
 }

 #endregion

 #region Implementation of ITopicListener

 /// <summary>
 /// Handles a message received from an IMessageSource.
 ///
 /// This handles an incoming message from a specified source.
 /// </summary>
 /// <param name="source">The message source.</param>
 /// <param name="message">The message.</param>
 public bool HandleTopicMessage(IMessageSource source,
 ITopicMessage message)
 {
 if (message.AsString().Equals("STOP"))
 {
 theClient.Disconnect();
 }

 return false;
 }

 #endregion
 }

Connection events
Events that are invoked when a connection to the Diffusion server is established, fails, or is lost are
invoked synchronously.

The following connection events are invoked synchronously by the .NET client library:

Diffusion | 437

• DiffusionServerConnected is invoked when the client library successfully establishes a
connection to the Diffusion server

• DiffusionServerConnectionFailed is invoked when the client library is unable to
establish a connection to the Diffusion server

• DiffusionServerDisconnected is invoked when an established connection to the Diffusion
server is lost

Because these events are invoked synchronously, do not perform any long-running or blocking
operations on these event threads. If you want to make another connection attempt after one of these
events is invoked, create another thread to perform this task.

DEPRECATED: JavaScript Classic API
The JavaScript API provides web developers with a simple means of connecting to and interacting
with a Diffusion server from within a web browser. The API takes care to select the most appropriate
underlying transport from those available.

For the list of supported web browsers, see Browser support on page 55.

Using the JavaScript Classic API
The JavaScript client library is located in the clients/js directory of the Diffusion installation. Two
versions are provided, an uncompressed file, and a minimized file with the extension min.js.

For full API documentation, see JavaScript Classic API documentation

To enable the Diffusion client for production use, host the diffusion-js-classic.js client
library on a dedicated web server and load the client library into your web page:

<script type="text/javascript" src="library_location/diffusion-js-
classic.js"></script>

Dependent transport files

The JavaScript client depends on other files located in the same directory: clients/js/
diffusion-flash.swf and clients/js/diffusion-silverlight.xap. These files
provide Flash and Silverlight transport capabilities, respectively. Removing these files prevents the
JavaScript client from using these transports.

You can configure the JavaScript client to point to specific versions of both the Flash and the
Silverlight transports. This is available through the connection details.

var connectionDetails = new DiffusionClientConnectionDetails();

connectionDetails.libPath = "/lib/js/diffusion";
connectionDetails.libFlashPath = "diffusion-flash.swf";
connectionDetails.libSilverlightPath = "diffusion-silverlight.xap";

Connection details

The DiffusionClientConnectionDetails object has over 20 attributes that change the way
that the client behaves. Any attributes that are not set are provided with default values when used.

You can provide an anonymous object instead of instantiating a new
DiffusionClientConnectionDetails object.

http://docs.pushtechnology.com/docs/5.9.4/js-classic/index.html

Diffusion | 438

Connecting

A Diffusion client is a singleton with global scope. It can be called from anywhere. To connect to
Diffusion, call the connect method. The method takes two parameters, first is the connection details
and the optional second object is the client credentials. The following example is using an anonymous
connection object:

DiffusionClient.connect({
 debug : true,
 onCallbackFunction : function(isConnected) {
 console.log("Diffusion client is connected: " + isConnected);
 }
})

If the client connection fails, the JavaScript client attempts to connect through other protocols. This is
called protocol cascading.

Credentials

Credentials can either be supplied on the connect method or set separately using the
DiffusionClient.setCredentials(...) method. These credentials are used for all
transports that are used to connect to Diffusion. The DiffusionClientCredentials object is a
simple one of username and password attributes.

// Connect with supplied credentials
DiffusionClient.connect({...}, {
 username : "foo",
 password : "bar"
});

// Connect, and send credentials later
DiffusionClient.connect({
 onCallbackFunction : function() {
 DiffusionClient.sendCredentials({
 username : "foo",
 password : "bar"
 });
 }
});

If authentication of the client connection fails, the JavaScript client attempts to protocol
cascade and to connect through a different protocol with the same credentials. Use the
onConnectionRejectFunction to close the client connection and prevent this from happening.

Events

The connection details have attributes that are listeners for certain events. If these are set in the
connection object, they are called when these events happen.

Table 34: JavaScript functions called on events

Function Description

onDataFunction This function is responsible for handling
messages from Diffusion. This function is called
with an argument of WebClientMessage. This
function is called even if there is a topic listener
in place for a topic.

Diffusion | 439

Function Description

onBeforeUnloadFunction This function is called when the user closes the
browser or navigates away from the page.

onCallbackFunction This function is called when Diffusion has
connected, or exhausted all transports and
cannot connect. This function is called with a
boolean argument.

onInvalidClientFunction This function is called when an invalid
Diffusion operation is called, for instance if
Diffusion.subscribe is called before
Diffusion.connect

onCascadeFunction This function is called when the client cascades
transports. The function is called with an
argument of the {String} transport name or NONE
if all transport are exhausted.

onPingFunction This function is called with an argument of
PingMessage when the ping response has
been returned from the server.

onAbortFunction This function is called when the Diffusion
server terminates the client connection (or the
connection has been banned).

onLostConnectionFunction This function is called when the client loses
connection with the Diffusion server

onConnectionRejectFunction This function is called when the client connection
is rejected by the Diffusion server because of
incorrect credentials. Use this function to close
the connection when the authentication fails
and prevent the client attempting to connect
over a different protocol with the same incorrect
credentials.

onMessageNotAcknowledgedFunction This function is called when a message that is
requested as Acknowledge did not respond in
time.

onServerRejectedCredentialsFunction This function is called after a
DiffusionClient.sendCredentials and
the server rejected the credentials.

onTopicStatusFunction This function is called if the status of a subscribed
topic changes.

Receiving messages

The onDataFunction with a class called WebClientMessage contains only one message even if
the messages sent from the Diffusion server are batched. If this is the case, this method is repeatedly
called until all of the messages are exhausted. The WebClientMessage class wraps the message
sent from the Diffusion server with utility methods like isInitialTopicLoad() and getTopic.
See the jsdoc for the full list of utility methods.

Diffusion | 440

Sending messages

There are two ways of sending messages to the Diffusion server:

• The DiffusionClient.send(topic, message) method
• The sendTopicMessage method

If user headers are required, it is best to use the TopicMessage class. The following example shows
how to send a message using the TopicMessage class.

var topicMessage = new TopicMessage("Echo", "This is a message");
topicMessage.addUserHeader("Header1");
topicMessage.addUserHeader("Header2");

DiffusionClient.sendTopicMessage(topicMessage);

Subscribing and unsubscribing

To subscribe and unsubscribe use the DiffusionClient.subscribe(topic) and
DiffusionClient.unsubscribe(topic) methods respectively. The parameter can be a topic,
a topic selector, or a comma-delimited list of topics

Topic listeners

During the lifetime of the connection, it might be required to have modular components that are
notified about topic messages. These are topic listeners. A topic listener calls a supplied function with
a WebClientMessage object when the topic of the message matches the pattern supplied. It is also
worth noting that the onDataMessage function is called as well as the topic listener function. You
can have many topic listeners on the same topic pattern if required. For example, if you want to be
notified about a particular topic, you can use the following example code:

DiffusionClient.addTopicListener("^Logs$", onDataTradeEvent);

Note:

The characters ^ $ are regular expression characters. For more information, see Regular
expression. The preceding code example means that the listener is only interest in receiving
the message event if the topic is Logs. If the following example code is used, any topic name
that has Logs in it matches.

var listenerRef = DiffusionClient.addTopicListener("Logs",
 onLogEvent, this);

Retain the listener reference if you want to remove the topic listener at a later date.

Failover

The JavaScript client does not support autofailover. You can still implement this using the
onLostConnectionFunction.

Special Features
Paged topic data handling

Where paged topic data is in use at the server there are features within the client API which simplify the
handling of messages to and from such a topic.

http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression

Diffusion | 441

Reconnecting with the JavaScript Classic API
The JavaScript Classic API supports reconnection. If you have reconnection enabled and you lose your
connection to a server, you can reestablish it, using the same client ID and with the client subscriptions
preserved.

The JavaScript API listens for pings from the server and raises an event if the connection to the server
is lost.

To enable the liveness monitor, set the enableLivenessMonitor parameter to true inside the
client connections details. For example:

var connectionDetails = { ...
 enableLivenessMonitor : true,
... };

DiffusionClient.connect(connectionDetails);

The Diffusion server sends out pings at regular intervals. The length of this interval is configured at the
server by using the system-ping-frequency element in the Connectors.xml configuration
file.

The liveness monitor in the ActionScript client library listens for the pings from the server and uses
them to estimate the ping interval. The liveness monitor takes an average of the time between the
pings it receives to estimate the ping interval. It revises this estimation each time it receives a ping,
until it has received ten pings. After ten pings the liveness monitor has obtained the estimated ping
interval that it uses for the rest of the client session.

If the liveness monitor does not receive a ping within a time interval equal to twice the length of the
estimated ping interval, it considers the connection lost and raises a connection lost event.

Connection lost events can be raised by the liveness monitor or triggered by other events, such as an
unexpectedly closed connection.

You can implement an event listener in your client that listens for a connection lost event and reacts to
it by using the reconnect() method to reestablish the connection.

Reconnection example

To reconnect after you lose connection, you must use the reconnect() method. You cannot
reconnect an aborted client.

The following code shows how to setup an event listener for connection events, if the connection
has been lost how to reconnect and how to tell if you have successfully reconnected the client.

var connectionDetails = {
 onCallbackFunction : function(isConnected, isReconnect) {
 if(!isConnected && isReconnect) {
 DiffusionClient.reconnect();
 }
 },
 onLostConnectionFunction : function() {
 DiffusionClient.reconnect();
 }
};

DiffusionClient.connect(connectionDetails);

For more information, see JavaScript Classic API documentation.

http://docs.pushtechnology.com/docs/5.9.4/js-classic/index.html

Diffusion | 442

Service topic data in JavaScript Classic API
The JavaScript API provides a basic interface for using service topics.

The API consists of a service topic handler to process responses and using the generic
DiffusionClient.command(...) method to send service requests.

The common sequence to follow is:

1. Add a topic listener, to capture the service topic load message
2. Subscribe to the service topic
3. With the ITL from the service topic create a service topic handler
4. Remove the topic listener
5. Send command messages to the service
6. Process any response in the function passed to the handler

To create a handler using the
DiffusionClient.createServiceTopicHandler(TopicMessage, function) you
must pass in the ITL of the service topic and the function that is called when a service response is
received. This function will be called with a CommandMessage as an argument.

To make service requests you must use the
DiffusionClient.command(string,string,TopicMessage) method to send command
messages. The first string is the command to send. The second string is a correlation ID for the
response. The TopicMessage is the message sent to the client with the correct topic and any additional
headers or payload you want to send in the request.

Use an ordinary topic listener to get the ITL to create the service topic handler. This listener is not
required for any subsequent message processing and you are encouraged to remove it after you have
the ITL.

You must generate a unique value for the correlation ID.

Paged topic data in JavaScript Classic API
The JavaScript API provides an interface for using paged topics.

The API contains the following classes:

PagedTopicHandler

Provides methods that enable you to change and navigate the page view.

PagedTopicListener

Provides callbacks for when an action is performed on a page or the topic.

PageStatus

Contains values that describe the status of a page or topic.

For more information, see JavaScript Classic API documentation.

Handler methods

The following example code shows some of the handler methods wrapped in functions you can
use to add buttons to a client's user interface.

// Get the next page in the topic
function next() {
 handler.next();
}

// Get the previous page in the topic
function prior() {
 handler.prior();

http://docs.pushtechnology.com/docs/5.9.4/js-classic/index.html

Diffusion | 443

}

// Get the first page in the topic
function first() {
 handler.first();
}

// Get the last page in the topic
function last() {
 handler.last();
}

// Close the paged view of the topic
function pagedclose() {
 handler.close();
}

Listener methods

The following example code creates a PagedTopicHandler and implements the listener
methods add, page, ready, statusChanged, and update.

var connectionDetails = {
 onDataFunction : function() {
 },
 onCallbackFunction : function() {
 // Creates the handler for a topic
 DiffusionClient.createPagedTopicHandler(topic, {
 ready : function(handler) {
 // Add here the code you want to run when the handler
 // is created.

 // For example, open a view that is 20 lines long and
 // contains the first page of data:
 handler.open(20, 1);
 },
 page : function(handler, status, lines) {
 // Add here the code you want to run when the page is
 // loaded.

 },
 update : function(handler, status, index, line) {
 // Add here the code you want to run when a line on
 // the current page is updated.

 // For example, refresh the page.
 handler.refresh();
 },
 statusChanged : function(handler, status) {
 // Add here the code you want to run when the status
 // of the current page changes.

 // For example, check whether the page is dirty and
 // refresh the page if this is true.
 if (status.isDirty){
 handler.refresh();
 }
 },
 add : function(handler, status, lines) {
 // Add here the code you want to run when a line is
 // added to the current page.

Diffusion | 444

 }
 });
 },
 debug : true
};

DEPRECATED: ActionScript Classic API
The ActionScript Classic API is bundled in a library called clients/flex/diffusion-flex.swc.

This can be embedded into a Flex/Flash or Air application. Full asdoc is issued with the product so
the sections below provide a brief outline of the uses for the classes and examples of their use. The
ActionScript library is based on the event model. There are many different types of events that a
DiffusionClient dispatches. These must be registered before notification happens.

For full API documentation, see Flex Classic API documentation

Diffusion also provides a debug-friendly version of the library: diffusion-flex-
debug-version.swc, where version is the Diffusion version number, for example 5.9.4. This version
is larger, but you can embed it into you application to receive additional information from any stack
traces.

Using the ActionScript Classic API
DiffusionClient (com.pushtechnology.diffusion.DiffusionClient) is the main class that
is used. This class enables the user to set all of the connection and topic information.

DiffusionClient

Connection example

import com.pushtechnology.diffusion.ServerDetails;
import com.pushtechnology.diffusion.ConnectionDetails;
import com.pushtechnology.diffusion.DiffusionClient;
import
 com.pushtechnology.diffusion.events.DiffusionConnectionEvent;
import com.pushtechnology.diffusion.events.DiffusionTraceEvent;
import com.pushtechnology.diffusion.events.DiffusionMessageEvent;
import
 com.pushtechnology.diffusion.events.DiffusionExceptionEvent;
import com.pushtechnology.diffusion.events.DiffusionPingEvent;

// Get a new DiffusionClient
var theClient:DiffusionClient = new DiffusionClient();

// Set everything to enable the cascading
var serverDetails:ServerDetails = new ServerDetails("https://
diffusion.example.com:443");
var connectionDetails:ConnectionDetails = new
 ConnectionDetails(serverDetails, "Trade");
connectionDetails.setCascade(true);

// Add the listeners
theClient.addEventListener(DiffusionConnectionEvent.CONNECTION,
 onConnection);
theClient.addEventListener(DiffusionMessageEvent.MESSAGE,
 onMessages);
theClient.addEventListener(DiffusionTraceEvent.TRACE, onTrace);

http://docs.pushtechnology.com/docs/5.9.4/flex/index.html

Diffusion | 445

theClient.addEventListener(DiffusionExceptionEvent.EXCEPTION,
 onException);
theClient.addEventListener(DiffusionPingEvent.PING, onPing);

// Connect
theClient.connect(connectionDetails);

Setting credentials

If credentials are required by the Diffusion server then use the setCredentials method on the
DiffusionClient class. The DiffusionClientCredentials class takes a constructor
argument of username and password. Please bear in mind, that these are only tokens and can contain
any information that the AuthorisationHandler requires. However, if you set the username as an
empty string (that is, an anonymous user) the password is not stored and you cannot retrieve it with
getCredentials.

var credentials:DiffusionClientCredentials = new
 DiffusionClientCredentials(username, password);
theClient.setCredentials(credentials);

Connection event

The connection event contains information about the success of the connection attempt. Below is a
coding example of the possibilities for the connect event.

public function onConnection(event:DiffusionConnectionEvent) : void {
 if (event.wasConnectionRejected()) {
 theClientIDBox.text = "Connection Rejected by Diffusion Server";
 } else if (event.wasClientAborted()) {
 theClientIDBox.text = "Connection aborted";
 } else if (event.isConnected()) {
 theClientIDBox.text = event.getClientID();
 theConnectedTransportLabel.text = theClient.getTransportMode();
 } else {
 theClientIDBox.text = "Connection failed " +
 event.getErrorMessage();
 }
}

You can receive a connection event after you have successfully connected, which might be because of
a lost connection, or in the case of client aborted the Diffusion server has deliberately closed the client
connection. This normally means that a publisher has aborted the connection and the client must not
try and connect again.

onMessage event

When messages arrive from the Diffusion server on a subscribed topic, the
DiffusionMessageEvent is dispatched. Contained in the event is a TopicMessage object
TopicMessage (com.pushtechnology.diffusion.TopicMessage). This class contains helper methods
that surround the message itself, like getTopic() and isInitialTopicLoad. For more information, see the
API documentation.

public function onMessages(event:DiffusionMessageEvent) : void {
 var message:TopicMessage = event.getTopicMessage();
 ...

Diffusion | 446

Subscriptions

Once the client has connected, you can issue subscribe and unsubscribe commands. The subscribe
and unsubscribe methods take a string format, that can be a topic selection pattern, a list of topics
that are comma delimited or a single topic.

Send

Once connected a client can send messages to the Diffusion server on a particular topic. To do this, use
the send method.

theClient.send("Fred","Hello publisher that looks after Fred");

In the example above, the publisher that looks after topic Fred receives a
messageFromClient notification. If a message with user headers or encoding
is required, you must use the sendTopicMessage method. A TopicMessage
(com.pushtechnology.diffusion.TopicMessage) allows for the setting of user headers and
message encoding

Ping

The client can ping the Diffusion server. To receive the Ping response, the listener is added to the
client.

theClient.addEventListener(DiffusionPingEvent.PING, onPing);

The resulting ping event has two attributes in it, firstly the time taken to do a round trip from the
client to the Diffusion server and back again. The second attribute is how many items are currently
in the client queue at the server. This information enables the client to get some vital connection
information. It is down to the implementation of the client to specify the ping frequency, if at all
required.

Topic listeners

During the life time of the connection, it might be required to have modular components notified
about topic messages – these are topic listeners. A topic listener calls a supplied function with a
TopicMessage object when the topic of the message matches the pattern supplied. The topic listeners
are called in the order that they are added, and before the default DiffusionMessageEvent.MESSAGE,
that is called as well as the topic listener event. You can have many topic listeners on the same
topic pattern if required. The function supplied in charge of processing the message can signal that
a message is consumed, returning TRUE. In this case, this message is not relayed to subsequent
TopicListeners and the default listener. For example, if you want to be notified about a particular
topic, use the following code:

var listenerRef:String = theClient.addTopicListener("^Logs$",
 theLogsDataGrid.onMessage);

Note the syntax here, the ^ $ are regex pattern strings, the above means that the listener is only
interested in receive the message event if the topic is Logs. If the following was issued.

var listenerRef:String = theClient.addTopicListener("Logs",
 theLogsDataGrid.onMessage);

Any topic name that has “Logs” in it matches. You must store the reference to remove the topic listener
at a later date.

Diffusion | 447

Timed topic listeners

A timed topic listener calls a supplied function with an array of topicMessage objects when the topic
of the message matches the pattern, and only if the time supplied by the arguments has expired.
Otherwise, the TopicMessage is stored until the time expired.

Note:

The function in charge of processing the message cannot determine if a message is consumed
as you can do in a topic listener. For example, if you want to be notified about a particular
topic, use the following code:

var timedListenerRef:String =
 theClient.addTimedTopicListener("^Logs$",
 theLogsDataGrid.onMessage, 2000, false);

The third parameter is the frequency at which the function supplied is called. The optional fourth
parameter can be set if this function must be called, even if no messages are stored.

Failover

The ActionScript client supports autofailover. For more information, see ActionScript failover
documentation.

Special features

Paged topic data handling
Where paged topic data is in use at the server there are features within the client API
which simplify the handling of messages to and from such a topic.

Reconnecting with the ActionScript Classic API
The ActionScript Classic API supports reconnection. If you have reconnection enabled and you
lose your connection to a server, you can reestablish it, using the same client ID and with the client
subscriptions preserved.

Liveness monitor

The ActionScript Classic API implements a liveness monitor that listens for pings from the server and
raises an event if the connection to the server is lost.

Before you make a connection to the Diffusion server, enable the liveness monitor by using the
enableLivenessMonitor() method. For example:

client.enableLivenessMonitor(true);
client.connect(connectionDetails);

The Diffusion server sends out pings at regular intervals. The length of this interval is configured at the
server by using the system-ping-frequency element in the Connectors.xml configuration
file.

The liveness monitor in the ActionScript client library listens for the pings from the server and uses
them to estimate the ping interval. The liveness monitor takes an average of the time between the
pings it receives to estimate the ping interval. It revises this estimation each time it receives a ping,
until it has received ten pings. After ten pings the liveness monitor has obtained the estimated ping
interval that it uses for the rest of the client session.

If the liveness monitor does not receive a ping within a time interval equal to twice
the length of the estimated ping interval, it considers the connection lost and raises a
DiffusionConnectionEvent whose hasLostConnection() method returns true.

Diffusion | 448

You can implement an event listener in your client that listens for this event and reacts to it by using
the reconnect() method to reestablish the connection.

Warning:

The liveness monitor relies on server pings being received at regular intervals. If the server
pings the client in addition to the regular pings, these additional pings can cause the liveness
monitor to make an incorrect estimate of the ping interval. Because this incorrect estimate
is shorter than the correct ping interval, this can cause the liveness monitor to incorrectly
consider a connection lost.

To avoid this problem, if you are using the liveness monitor, ensure that you do not ping the
client from a publisher or from the Introspector.

Reconnection example

To reconnect, you must use the reconnect method when you lose a connection. You cannot
reconnect an aborted client.

The following code shows how to setup an event listener for connection events, if the connection
has been lost how to reconnect and how to tell if you have successfully reconnected the client.

var client:DiffusionClient = createClient();

function onConnectionEvent(event:DiffusionConnectionEvent) {
 if (event.hasLostConnection()) {
 client.reconnect();
 }
 else if (event.isConnected()) {
 if (event.isReconnected()) {
 // Successful reconnection
 }
 }
}

function createClient():DiffusionClient {
 var client:DiffusionClient = new DiffusionClient();
 client.addEventListener(DiffusionConnectionEvent.CONNECTION,
 onConnectionEvent);
 return client;
}

Logging Flash
You can get additional information out of your Flash client by using a debug version of the library or of
Flash Player.

Debug version of the Diffusion Flash client

Diffusion also provides a debug-friendly version of the Flash client libraries: diffusion-flex-
debug-version.swc, where version is the Diffusion version number, for example 5.9.4. You can
use this to output additional debug information, such as line numbers, in any stack traces that you
experience.

Debug version of Flash Player

1. Download the debug version for the Flash Player. Flash player debug versions are available at the
following location: http://www.adobe.com/support/flashplayer/downloads.html

2. Create a mm.cfg file

http://www.adobe.com/support/flashplayer/downloads.html

Diffusion | 449

The table below shows where to create a mm.cfg file

The following text is an example of entries in a mm.cfg file.

Enables policy file logging
PolicyFileLog=1
Optional; do not clear log at startup
PolicyFileLogAppend=0
ErrorReportingEnable=1
TraceOutputFileEnable=1

Viewing the log files

In the following directory there can be the following files: flashlog.txt and policyfiles.txt

Table 35: Location of the flashlog.txt file

Windows 95/98/ME %HOMEDRIVE%\%HOMEPATH%

Windows 2000/XP C:\Documents and Settings\username

Windows Vista C:\Users\username

OS X/macOS /Library/Application Support/
Macromedia

Linux /home/username

Table 36: Location of the policyfiles.txt file

Windows 95/98/ME/2000/XP C:\Documents and Settings\username
\Application Data\Macromedia\Flash
Player\Logs

Windows Vista C:\Users\username\AppData\Roaming
\Macromedia\Flash Player\Logs

OS X/macOS /Users/username/Library/
Preferences/Macromedia/Flash
Player/Logs

Linux home/username/Macromedia/
Flash_Player/Logs

DEPRECATED: Silverlight Classic API
The Silverlight Classic API is bundled in an assembly called clients/silverlight/
PushTechnology.Transports.dll. This can be embedded into a Silverlight application.

Full API documentation is issued with the product, so the sections below provide a brief outline of
the uses for the classes and examples of their use. The Silverlight library is based on an asynchronous
event model. There are a few events that the client object invokes. The client must subscribe to these
events before notification can happen.

For full API documentation, see Silverlight Classic API documentation

http://docs.pushtechnology.com/docs/5.9.4/silverlight/index.html

Diffusion | 450

Using the Silverlight Classic API
The DiffusionClient class is the main class that is used. This class enables the user to set all of
the connection and topic information.

Instantiation and connection example

 theClient = new DiffusionClient(Dispatcher);

 // Instantiate the server details object and the initial topic
 to subscribe to
 ServerDetails details = new ServerDetails("http://
localhost:8080", "SpotOnly");

 // Add the server details to the client
 theClient.AddServerDetails(details);

 // Add the event listeners
 theClient.ConnectionStatus +=
 DiffusionConnectionStatus;
 theClient.MessageReceived +=
 theClient_MessageReceived;

 // Now connect
 theClient.Connect();

Setting credentials

If credentials are required by the Diffusion server then use the Credentials property on the
DiffusionClient class. The DiffusionClientCredentials class takes a constructor
argument of userName and password. Please bear in mind that these are only tokens and can
contain any information that the AuthorisationHandler requires. However, if you set the
username as an empty string (that is, an anonymous user) the password is not stored and you cannot
retrieve it with getCredentials.

theClient.Credentials = new DiffusionClientCredentials(
 "username", "password");

Rejection of credentials event

If the credentials are rejected by the Diffusion server, a ServerRejectedCredentials event is
fired. This can be subscribed to by using the following code:

 theClient.ServerRejectedCredentials +=
 ServerRejectedCredentials;

Message not acknowledged event

When a message is created with the "acknowledge" flag, this event is fired when a message is not
acknowledged by the Diffusion server within the specified time period. This can be subscribed to by
using the following code:

theClient.MessageNotAcknowledged += MessageNotAcknowledged;

Diffusion | 451

The ConnectionStatus event

The ConnectionStatus event contains information about whether the connection was successful.
Here follows an example of the usage of this event.

 /// <summary>
 /// Called when the connection state to Diffusion changes.
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 void DiffusionConnectionStatus(
 object sender,
 DiffusionConnectionStatusEventArgs e)
 {
 switch(e.StatusType)
 {
 case DiffusionConnectionStatusType.ConnectionFailed:
 {
 Dispatcher.BeginInvoke(() =>
 MessageBox.Show("Unable to connect to
 Diffusion. Diffusion reports: " + e.ExtraData,
 "Connection failed",
 MessageBoxButton.OK));
 }
 break;

 case DiffusionConnectionStatusType.ConnectionReset:
 {
 Dispatcher.BeginInvoke(() =>
 MessageBox.Show("The connection to Diffusion
 has been reset. Diffusion reports: " + e.ExtraData,
 "Connection failed",
 MessageBoxButton.OK));
 }
 break;
 }
 }

Note: You can receive a ConnectionStatus event after you have successfully connected; it
might be because of a lost connection, or in the case of ConnectionAborted, the Diffusion
server has closed the client connection. This normally means that a publisher has aborted the
connection and the client must not try to connect again.

The MessageReceived event

When messages arrive from the Diffusion server on a subscribed topic, the MessageReceived event
is fired. This event contains a sender and a TopicMessageEventArgs object which itself contains a
TopicMessage object which can be interrogated to discover the contents of the received message.

The TopicStatusMessageReceived event

When the status of a topic changes on the Diffusion server, the TopicStatusMessageReceived
event is fired. This event contains a sender and a TopicStatusMessageEventArgs object which
contains the alias of the topic on which the status has changed. Currently, only the notification of the
removal of a topic is implemented.

Diffusion | 452

Subscriptions

After the client has connected, you can issue Subscribe and Unsubscribe commands. These
commands take string arguments which can be a topic selection pattern, a list of topics that are
comma-delimited, or a single topic.

Sending non-encoded topic messages

Once the client has connected, it can send messages to the Diffusion server on a particular topic. To do
this, use either the Send or SendTopicMessage methods on the DiffusionClient object, as shown in
the following code:

 theClient.Send("Fred", "Hello, publisher that looks after
 Fred");

 TopicMessage message =
 new TopicMessage("Fred", "Hello, publisher that
 looks after Fred");

 theClient.SendTopicMessage(message);

Note: The TopicMessage itself contains methods to set (for instance) user headers and
encoding, or the convenience methods described below can handle the alternate encoding
scenarios.

In the above examples, the publisher that looks after the topic Fred receives a
messageFromClient notification internally.

Sending an encrypted topic message

Sending an encrypted topic message is achieved by calling the SendTopicMessageEncrypted
method on the DiffusionClient object by using the following code:

 theClient.SendTopicMessageEncrypted(new TopicMessage("Fred",
 "Hello, publisher that looks after Fred"));

This sets the relevant encoding flags on the message itself, and the message will be encrypted
immediately prior to sending to the Diffusion server.

Note: Because of the limitations of HTTP-based transports, attempting to send a message of
this type results in a non-encoded message being sent.

Sending a compressed topic message

Sending a compressed topic message is achieved by calling the SendTopicMessageCompressed
method on the DiffusionClient object by using the following code:

 theClient.SendTopicMessageCompressed(new TopicMessage("Fred",
 "Hello, publisher that looks after Fred"));

This sets the relevant encoding flags on the message itself, and the message will be compressed
immediately prior to sending to the Diffusion server.

Note: Because of the limitations of HTTP-based transports, attempting to send a message of
this type results in a non-encoded message being sent.

Diffusion | 453

Sending a Base64-encoded topic message

Sending a Base64-encoded topic message is achieved by calling the SendTopicMessageBase64
method on the DiffusionClient object to using the following code:

theClient.SendTopicMessageBase64(new TopicMessage("Fred", "Hello,
 publisher that looks after Fred"));

This sets the relevant encoding flags on the message itself, and the message will be Base64-encoded
immediately prior to sending to the Diffusion server.

Ping

A client can ping the Diffusion server. To process the ping response, the user monitors the
MessageReceived event and checks for a message type of PingServer, as shown in the following
code:

 private void HandleServerPingMessage(TopicMessageEventArgs e)
 {
 var message = e.Message as PingMessage;

 if(message != null)
 {
 tbElapsedTime.Text = message.ElapsedTime.ToString();
 tbQueueSize.Text = message.QueueSize.ToString();
 }
 }

Fetch

Using the fetch method, a client can send a request to the Diffusion server for the current state of
a topic, which returns a state message to the client. A client can do this even if not subscribed to the
topic.

Topic listeners

During the lifetime of the connection, it might be required to have modular components that get
notified about topic messages – these are known as topic listeners. A topic listener calls a supplied
function with a TopicMessage object when the topic of the message matches the pattern supplied.
It is also worth noting that the OnMessageReceived event is called as well as the topic listener
event itself.

You can have many topic listeners on the same topic pattern if required. For example, if you want to be
notified about a particular topic, use the following code:

 instrumentListener = theClient.AddTopicListener(
 "^SpotOnly$", ProcessInstruments, this);

Note: The “^” and “$” characters are regular expression pattern strings; the above means that
the listener is only interested in receiving the message if the topic is SpotOnly.

Enabling JavaScript method invoking

To call JavaScript functions (and they are permitted to do so by the Silverlight runtime), use the
following method call:

 theClient.InitialiseJavaScriptMethodInvoking(HtmlPage.Window);

Diffusion | 454

Listening to internal transport debug messages

To subscribe to the internal log tracings of the Silverlight API, the user can subscribe to the
DiffusionTraceEvent on the DiffusionClient object, as shown in the following code:

theClient.DiffusionTraceEvent += theClient_DiffusionTraceEvent;

This enables the user to monitor all internal debug messages within the Silverlight API.

DEPRECATED: iOS Classic API
The static libraries and header files that comprise the iOS API are provided in the file diffusion-
iphoneos-classic-version.zip, where version is the version number, for example 5.9.4.

The iOS library is provided with the Diffusion server installation in the clients/apple folder.

The iOS library uses the delegate model. There are a number of Diffusion events dispatched by a
DFClient instance as Objective-C messages. To receive these events, provide an implementation
conforming to the DFClientDelegate protocol.

The API documentation is also available as an Xcode docset. Once installed into Xcode the iOS client
can be browsed within the Xcode Documentation viewer.

For full API documentation, see iOS Classic API documentation

Capabilities

To see the full list of capabilities supported by the iOS Classic API, see .

Support

Table 37:

Getting started with iOS Classic API
Create a client application within minutes that connects to the Diffusion server.

Before you begin
Ensure that the iOS client libraries are available on your development system. The libraries are
included in the Diffusion installation, which is available from the following location: Get the iOS
libraries from the Diffusion installation. Install Diffusion and get the diffusion-iphoneos-
classic-version.zip file from the clients/apple folder of the installation. For more
information, see Installing the Diffusion server on page 523.

About this task
These instructions have been created using Xcode 6.0.1.

Procedure

1. Extract the contents of the diffusion-iphoneos-classic-version.zip file to your
preferred location for third-party SDKs for use within Xcode.
For example, you might have a directory within your Documents folder for code within which
you have a sub-directory for software development kits (SDKs). In this case, locate the iOS SDK
for Diffusion in the following directory: ~/Documents/code/SDKs/diffusion-iphoneos-
classic-version/, where version is the version number, for example 5.9.4

2. Create an Xcode project for your Diffusion client.

http://docs.pushtechnology.com/docs/5.9.4/ios-classic/index.html
http://download.pushtechnology.com/releases/5.9
http://download.pushtechnology.com/releases/5.9

Diffusion | 455

a) From the File menu, select New > Project...
Xcode prompts you to Choose a template for your new project.

b) Select iOS > Application on the left.
c) Select Single View Application on the right and click Next.

Xcode prompts you to Choose options for your new project.
d) Configure your project appropriately for your requirements.

The Diffusion iOS Classic API does not work with Swift without additional code, so select
Objective-C as the Language.

For example, use the following values:

• Product Name: TestClient
• Language: Objective-C
• Devices: Universal

e) Click the Next button.
Xcode prompts you to select a destination folder for your new project.

f) Select a target folder. For example, ~/Documents/code/, and click Create.
3. Import the Diffusion iOS SDK.

Use the Xcode Build Settings to define the location of your Diffusion iOS SDK.
a) Go to the Build Settings tab for the Project or Target.
b) Click the plus sign (+) and select Add User-Defined Setting.
c) Set the name of the user-defined setting to DIFFUSION_ROOT and the value to the top-level

directory of your extracted Diffusion iOS SDK.
We recommend that you use the Xcode SRCROOT property in order to provide a
relative location. For example, $(SRCROOT)/../SDKs/diffusion-iphoneos-
classic-version defines the location of the Diffusion iOS SDK as the directory given in step
1 on page 454

d) Go to the User Header Search Paths (USER_HEADER_SEARCH_PATHS) setting and add the
following value: $(DIFFUSION_ROOT)/headers
Use the default, non-recursive option.

e) Go to the Library Search Paths (LIBRARY_SEARCH_PATHS) setting and add the following
values:

• Debug configuration: $(DIFFUSION_ROOT)/Debug-universal
• Release configuration: $(DIFFUSION_ROOT)/Release-universal

Use the default, non-recursive option.
f) Go to the Other Linker Flags (OTHER_LDFLAGS) setting and add the following value:

-lDiffusionTransport

For more information, see https://developer.apple.com/library/mac/documentation/
DeveloperTools/Reference/XcodeBuildSettingRef/1-Build_Setting_Reference/
build_setting_ref.html.

4. Add the required system libraries
The Diffusion iOS SDK depends on Zlib and on ICU: International Components for Unicode. These
libraries are not included with the linker requirements by default for new Xcode projects so you
need to add them.
a) Go to Target > Build Phases > Link Binary With Libraries
b) Add libz.dylib
c) Add libicucore.dylb

https://developer.apple.com/library/mac/documentation/DeveloperTools/Reference/XcodeBuildSettingRef/1-Build_Setting_Reference/build_setting_ref.html#//apple_ref/doc/uid/TP40003931-CH3-SW38
https://developer.apple.com/library/mac/documentation/DeveloperTools/Reference/XcodeBuildSettingRef/1-Build_Setting_Reference/build_setting_ref.html#//apple_ref/doc/uid/TP40003931-CH3-SW38
https://developer.apple.com/library/mac/documentation/DeveloperTools/Reference/XcodeBuildSettingRef/1-Build_Setting_Reference/build_setting_ref.html#//apple_ref/doc/uid/TP40003931-CH3-SW38

Diffusion | 456

The following libraries are included by default for new Xcode projects and are required by the
Diffusion iOS SDK:

• CFNetwork.framework

• Foundation.framework

• Security.framework

5. Create a client that connects to the Diffusion server when the view controller loads.
(ViewController.m)

#import "ViewController.h"
#import "diffusion.h"

@interface ViewController (DFClientDelegate) <DFClientDelegate>
@end

@implementation ViewController
{
 DFClient *_diffusionClient;
}

- (void)viewDidLoad
{
 [super viewDidLoad];

 NSURL *const serverURL = [NSURL URLWithString:@"ws://
diffusion.example.com:80"];
 DFServerDetails *const serverDetails = [[DFServerDetails alloc]
 initWithURL:serverURL error:nil];
 DFConnectionDetails *const connectionDetails =
 [[DFConnectionDetails alloc] initWithServer:serverDetails

 topics:@"Assets/"

 andCredentials:nil];
 _diffusionClient = [[DFClient alloc] init];
 _diffusionClient.delegate = self;
 [_diffusionClient setConnectionDetails:connectionDetails];
 [_diffusionClient connect];
}

@end

@implementation ViewController (DFClientDelegate)

-(void)onConnection:(const BOOL)isConnected
{
 NSLog(@"Diffusion %@connected.", (isConnected ? @"" : @"NOT
 "));
}

-(void)onMessage:(DFTopicMessage *const)message
{
 NSLog(@"Diffusion message: \"%@\" =\"%@\"", message.topic,
 message.records[0]);
}

// Implement other required methods
-(void)onAbort { }
-(void)onConnectionSequenceExhausted:(DFClient *const)client { }
-(void)onLostConnection { }
-(void)onMessageNotAcknowledged:(DFTopicMessage *const)message { }

Diffusion | 457

-(void)onPing:(DFPingMessage *const)message { }
-(void)onServerRejectedConnection { }

@end

a) Import the diffusion.h header file.
This file pulls in the other required header files.

b) Conform to the DFClientDelegate protocol, using a category with the same name to
enhance readability.

c) In the viewDidLoad method, assign serverURL to point to the Diffusion server using the
DPT protocol.

d) Create a DFServerDetails object, serverDetails. Use the initWithURL method to
wrap serverURL.
Change the URL from that provided in the example to the URL of the Diffusion server.

e) Create a DFConnectionDetails object, connectionDetails. Use the
initWithServer method to include serverDetails. Request a default, recursive
subscription to the Assets topic.

f) Define a _diffusionClient instance variable.
g) Assign self to the delegate property of _diffusionClient.
h) Use the setConnectionDetails method to include connectionDetails.
i) Use the connect method to connect _diffusionClient to the Diffusion server.
j) Implement the DFClientDelegate category.
k) In the DFClientDelegate implementation, implement onConnection: to perform the

required actions when the client connects. For example, log that the connection was successful.
l) In the DFClientDelegate implementation, implement onMessage: to perform the

required actions when a message is received. For example, log the message content.
m) In the DFClientDelegate implementation, implement the other required methods.

• onAbort:

• onConnectionSequenceExhausted:

• onLostConnection:

• onMessageNotAcknowledged:

• onPing:

• onServerRejectedConnection:

These implementations can be empty.

Results
The client connects to the Diffusion server. It receives a callback from the Diffusion iOS SDK though
the onConnection: implementation. When connected the client receives topic messages (both for
initial topic load and deltas) from the Diffusion iOS SDK through the onMessage: implementation.

Using the iOS Classic API
There are features, issues, and considerations that are specific to clients that are implemented using
the iOS Classic API.

Diffusion Delegate

The Diffusion Delegate class is a custom class that must adhere to the DFClientDelegate
protocol. The protocol consists of the following methods

/**
 Protocol implemented by classes wishing to receive notifications.
 Notification primarily of new messages and the state of the
 connection to the server.

Diffusion | 458

 */
@protocol DFClientDelegate

/**
 * This method is called when the DFClient tries to connect, if the
 connection is made, isConnected is true
 * @param isConnected
 */
- (void) onConnection:(BOOL) isConnected;

/**
 * This method is called when the DFClient has lost connection
 */
- (void) onLostConnection;

/**
 * This method is called when the Diffusion server has terminated the
 connection (barred)
 */
- (void) onAbort;

/**
 * This method is called when a message has been received from the
 Diffusion server.
 * This method is called as well as any topicListeners that might
 match the topic.
 */
- (void) onMessage:(DFTopicMessage *) message;

/**
 * This method is called on receipt of the ping request
 * @see DFClient
 * @param message PingMessage
 */
- (void) onPing:(DFPingMessage *) message;

/**
 * This method is called after a send credentials message, and the
 server rejected the credentials
 * @see DFClient
 */
- (void) onServerRejectedConnection;

/**
 * This method is called if the server did not respond to an Ack
 message in time
 * @see TopicMessage
 */
- (void) onMessageNotAcknowledged:(DFTopicMessage *) message;

/**
 The list of DFServerDetails object has been exhausted, and no
 connection can be placed.
 Once this method is called the set of DFServerDetails is reset and
 further connections can be placed. In most simple scenarios where
 there is only one DFServerDetails object in the DFConnectionDetails
 object call method [client connect] here.
 @param client DFClient that has exhausted its set of DFServerDetails
 object from the DFClientDetails object.
 */
-(void)onConnectionSequenceExhausted:(DFClient*)client;

@optional

Diffusion | 459

/**
 Conveys news from the Diffusion server that the named topic no
 longer exists
 */
-(void)onTopicRemoved:(NSString*) topicName;

/**
 The given DFServerDetails object has been selected for connection.
 @param details Details object that has been chosen.
 @param client DFClient that has chosen this DFServerDetails
 */
-(void)onConnectionDetailsAcquired:(DFServerDetails*)details
 forClient:(DFClient*)client;

You can receive an onConnection event after you have successfully connected, this might be
because of a lost connection.

Credentials

When credentials are required, use the credentials property on the DFClient class. Create a
DFCredentials class and set it on the client before you call connect.

onMessage event

When messages arrive from the Diffusion server on a subscribed topic, the onMessage method is
called on the delegate provided. The message is wrapped in a class called TopicMessage. This class
contains helper methods that surround the message itself, such as the topic and isInitialLoad
properties. For more information, see iOS Classic API documentation.

Subscriptions

Once the client has connected, you can issue subscribe and unsubscribe commands. The subscribe
and unsubscribe methods take a string format, that can be a topic selection pattern, a list of topics
that are comma delimited, or a single topic.

Send

Once connected, you can send messages to the Diffusion server on a particular topic path. To do this,
use the send method.

[mClient send:"Fred" :"Hello Fred"];

In the example above, the registered message handler for topic Fred receives a
messageFromClient notification. If you want to send a message with user headers, use the
sendTopicMessage method. A TopicMessage enables you to set user headers.

Ping

You can ping the Diffusion server. The delegate is notified by the onPing method. The resulting
ping event has two attributes in it, firstly the time stamp of the request. The second attribute is how
many items are currently in the client queue at the server. This information enables the client to get
some vital connection information. It is down to the implementation of the client to specify the ping
frequency, if at all required.

http://docs.pushtechnology.com/docs/5.9.4/ios-classic/index.html

Diffusion | 460

Topic listeners

During the lifetime of the connection, it might be required to have modular components notified
about topic messages – these are topic listeners. A topic listener calls a supplied method with a
TopicMessage class when the topic path of the message matches the topic name.

Note: For performance the iOS topic listeners do not have regular expression patterns but
topic name matching.

You can have many topic listeners on the same topic pattern if required. For example, if you want to be
notified about a particular topic, issue the following listener:

[mClient addTopicListener:aTopicListener];

Where a topic listener implements the protocol DFTopicListenerDelegate which is shown
below.

/**
 Protocol for receiving messages from a particular topic.
 */
@protocol DFTopicListenerDelegate

/**
 * This method is called if the TopicMessage matches the message
 received from Diffusion
 *
 * @param message
 * @return YES if the message is consumed and must not be relayed to
 subsequent DFTopicListenerDelegate, nor the default listener.
 */
- (BOOL) onMessage:(DFTopicMessage *) message;

/**
 * This is the topic used to see if the message from Diffusion
 matches (equals) this String
 */
- (NSString *) getTopic;

Topic listeners can be removed by calling the removeTopicListener method on the DFClient
class.

iOS Classic API examples
Examples that use the iOS Classic API.

F1 Steering Wheel demo

The F1 Steering Wheel demo is available on Github: https://github.com/pushtechnology/blog-steering-
wheel/. This demo uses the iOS Classic API to create a display client that shows the realtime input from
a driving game controller.

DEPRECATED: Android Classic API
The Android API is bundled in a library called diffusion-android-version.jar, where version
is the version number, for example 5.9.4.

The Android library is provided with the Diffusion server installation in the clients/android
folder.

DiffusionClient class is the main class that is used. ConnectionDetails and the
ServerDetails classes enables the user to set all of the connection and topic information.

https://github.com/pushtechnology/blog-steering-wheel/
https://github.com/pushtechnology/blog-steering-wheel/

Diffusion | 461

The DiffusionClient uses a listener model where the DiffusionConnectionListener
interface is responsible for all of the event notifications from DiffusionClient

Capabilities

To see the full list of capabilities supported by the Android Classic API, see .

Support

Table 38:

Getting started with Android Classic API
Create a client application within minutes that connects to the Diffusion server.

About this task
The example demonstrates an empty Android client that you can base your clients on.

Procedure

1. Download the Android SDK and the Diffusion Android library.
2. Create an Android project that references the diffusion-android-version.jar library,

where version is the version number, for example 5.9.4.
3. In your project, create a Java file that extends the android.app.Activity class.

import android.app.Activity;
import android.app.AlertDialog;
import android.content.DialogInterface;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Spinner;
import android.widget.TextView;

import com.pushtechnology.android.diffusion.DiffusionClient;
import com.pushtechnology.mobile.APIException;
import com.pushtechnology.mobile.ConnectionDetails;
import com.pushtechnology.mobile.DiffusionConnectionListener;
import com.pushtechnology.mobile.DiffusionTopicStatusListener;
import com.pushtechnology.mobile.MalformedURLException;
import com.pushtechnology.mobile.Message;
import com.pushtechnology.mobile.PingMessage;
import com.pushtechnology.mobile.ServerDetails;
import com.pushtechnology.mobile.ServiceTopicError;
import com.pushtechnology.mobile.ServiceTopicHandler;
import com.pushtechnology.mobile.ServiceTopicListener;
import com.pushtechnology.mobile.ServiceTopicResponse;
import com.pushtechnology.mobile.TopicListener;
import com.pushtechnology.mobile.TopicMessage;
import com.pushtechnology.mobile.URL;
import com.pushtechnology.mobile.enums.EncodingValue;

public class DemoClient extends Activity implements
 DiffusionConnectionListener, DiffusionTopicStatusListener {

Diffusion | 462

 private DiffusionClient theClient;
 static final String TAG = "Diffusion Client";
 private static final String SERVICE_TOPIC = "SERVICE";

 ConnectionDetails cnxDetails;
 {
 try {
 ServerDetails svrDetailsArr[] = new ServerDetails[] {
 new ServerDetails(new URL("URL:port")),
 };
 cnxDetails = new ConnectionDetails(svrDetailsArr);
 cnxDetails.setTopics(SERVICE_TOPIC);
 cnxDetails.setCascade(true);
 cnxDetails.setAutoFailover(true);
 } catch (MalformedURLException ex) {
 writeln(ex.toString());
 }
 }
 ServerDetails currentServerDetails;

 // Set Diffusion connection details, and place the Diffusion
 connection
 private void connectToServer()
 {
 theClient = new DiffusionClient();
 theClient.setConnectionDetails(cnxDetails);
 theClient.addTopicListener(new TopicListener());
 theClient.setConnectionListener(this);
 theClient.setTopicStatusListener(this);
 theClient.connect();
 statusText.setText(String.format("Connecting to %s",
 currentServerDetails.getUrl()));
 }

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 // Set up the UI of your Android app

 connectToServer();
 }

}

a) Import com.pushtechnology.android.diffusion.DiffusionClient and the
classes in the com.pushtechnology.mobile package.

b) Implement DiffusionConnectionListener and
DiffusionTopicStatusListener.

c) Create a ConnectionDetails object that includes the connections details and settings that
you require.

d) Create a connectToServer() method that uses the ConnectionDetails object to set
the connections details and places a connection to Diffusion.

e) Override the onCreate() method inherited from Activity. In this method call
connectToServer() to place the Diffusion connection when the application starts.

f) Use the onCreate() method to set up the views and content of your Android application.

Diffusion | 463

Related information
http://developer.android.com/training/index.html

Using the Android Classic API
There are features, issues, and considerations that are specific to clients that are implemented using
the Android Classic API.

Credentials

When credentials are required, there are three ways to set the credentials. The ServerDetails, the
ConnectionDetails and the DiffusionClient all have a setCredentials method. It is
required that the user create a DiffusionCredentials object and pass it to one of these methods
before calling connect. Use only one of these ways. If more than one way is used, the selection of
the credentials to use is undefined. The Android Classic API only supports sending credentials on
connection.

onMessage event

When messages arrive from the Diffusion server on a subscribed topic, the onMessage is called on
the delegate provided. The message is wrapped in a interface called Message. This interface contains
helper methods that surround the message itself, like getTopic() and isInitialTopicLoad.
For more information, see Android Unified API documentation.

Subscriptions

Once the client has connected, you can issue subscribe and unsubscribe commands. The subscribe
and unsubscribe methods take a string format, that can be a topic selector pattern, a list of topics
that are comma delimited, or a single topic.

Send

Once connected a client can send messages to the Diffusion server on a particular topic. To do this, use
the send method.

theClient.send("Fred","Hello Fred");

In the example above, the registered message handler of the topic Fred receives a
messageFromClient notification. If the message requires a user header, use the
sendTopicMessage method. A TopicMessage allows for the setting of user headers.

 TopicMessage message = new TopicMessage("Fred");
 message.addUserHeader("myHeaders");
 message.setMessage("Hello Fred");
 theClient.sendTopicMessage(message);

Ping

The client can ping the Diffusion server. The delegate is notified of the response by the onPing
function. The resulting ping event has two attributes in it:

• the timestamp of the request
• the number of items in the client queue

This information enables the client to get some vital connection information. It is down to the
implementation of the client to specify the ping frequency, if at all required.

http://developer.android.com/training/index.html
http://docs.pushtechnology.com/docs/5.9.4/android/index.html

Diffusion | 464

Topic listeners

During the life time of the connection, it might be required to have modular components that get
notified about topic messages, these are topic listeners. A topic listener is called using its onMessage
method with a message object when the topic of the message matches the topic name.

Note: For performance the Android topic listeners do not have regular expression patterns but
topic name matching.

You can have many topic listeners on the same topic path if required. For example, if you want to be
notified about a particular topic, use the following code:

 theClient.addTopicListener(topicListener);

Where topicListener implements the interface TopicListener. See the following example.

 /**
 * getTopic
 *
 * @return the topic that this listener is interested in. This
 does
 * not take regular expressions this must be an exact match
 */
 String getTopic();

 /**
 * onMessage
 *
 * @param message message which topic matches the getTopic method
 */
 void onMessage(Message message);

Remove topic listeners by calling the removeTopicListener method on the DiffusionClient
class.

Threading concerns

The DiffusionClient creates and dedicates a thread to listening to traffic from
the Diffusion server and reacting to messages from it. Consequently methods on the
DiffusionConnectionListener and DiffusionTopicStatusListener are executed in
the same thread. Android does not allow background threads to interact with GUI controls, only the
main thread is allowed to do so.

To overcome this, any non-main thread can pass a java.lang.Runnable to the main thread for
execution via android.view.View.post(Runnable action). For example:

/*
 * Called when the Diffusion connection is established
 */
public void connected() {
 // Post this Runnable to the GUI thread to change the display
 String statusTextStr = String.format("Connected to %s:%d\n",
 HOST, PORT);
 setStatus(statusTextStr);
 Log.i(TAG, statusTextStr);
 }

 /**
 * Set the content of the status view
 * @param statusStr
 */

Diffusion | 465

 private void setStatus(final String statusStr)
 {
// Pass a Runnable to the GUI thread to execute using one of its
 widgets
 outputView.post(new Runnable() {
 public void run() {
 statusText.setText(statusStr);
 }
 });
 }

User permissions in Manifest.xml

To establish a connection with the Diffusion server, Android devices must add the user permission
INTERNET within the Manifest.xml. This permission allows applications to open network sockets.

Android Classic API examples
Examples that use the Android Classic API.

DiffusionClient

The following code shows an example of connection:

 // Get a new DiffusionClient
 theClient = new DiffusionClient();

 //Set the connection details
 ServerDetails serverDetails = new ServerDetails(new URL("dpt://
diffusion.example.com:80"));
 ConnectionDetails connectionDetails = new
 ConnectionDetails(serverDetails);
 theClient.setConnectionDetails(connectionDetails);

 // Make this listen to the DiffusionClient events
 theClient.setConnectionListener(this);

 // Connect
 theClient.connect();

DiffusionConnectionListener

The DiffusionConnectionListener interface consists of the following methods (for further information
refer to the API documentation)

 /**
 * connected, called upon connection
 */
 void connected();

 /**
 * errorConnecting, called if there is an error connecting
 *
 * @param e
 */
 void errorConnecting(Exception e);

 /**
 * disconnected, called when the connection list lost
 */
 void disconnected();

Diffusion | 466

 /**
 * connectionAborted, called when DiffusionServer has rejected
 the connection
 */
 void connectionAborted();

 /**
 * onMessage, called when a message has been received from
 Diffusion
 *
 * @param message
 */
 void onMessage(Message message);

 /**
 * onPingMessage, called when a ping response is received
 *
 * @param message
 */
 void onPingMessage(PingMessage message);

 /**
 * onMessageNotAcknowledged, called when an ack message has not
 been acknowledged by Diffusion
 *
 * @param message
 */
 public void onMessageNotAcknowledged(TopicMessage message);

 /**
 * onConnectionSequenceExhausted, called when the complete list
 of ServerDetails have been exhausted.
 */
 public void onConnectionSequenceExhausted();

 /**
 * onConnectionDetailsAcquired, called each time a ServerDetails
 object is selected for connection.
 *
 * @param serverDetails
 */
 public void onConnectionDetailsAcquired(ServerDetails
 serverDetails);

 /**
 * onServerRejectedCredentials, called when Diffusion reject the
 credentials.
 */
 public void onServerRejectedCredentials();

Change the URL from that provided in the example to the URL of the Diffusion server.

DEPRECATED: C Classic API
The C Classic API is provided as a source distribution in the file diffusion-c-
classic-version.zip, where version is the version number, for example 5.9.4. This file is
located in the clients/c directory of your Diffusion installation.

Note: This API is deprecated and will be removed in the next release.

Diffusion | 467

The source builds to either a dynamic or shared library on UNIX systems and is supported on Red Hat
7.2 and CentOS 7.2. You can link it into your own C/C++ applications, or used as the foundation for
creating Diffusion clients for other languages which can be extended through binary APIs.

For full API documentation, see C Classic API documentation

Using the C Classic API
Build the library using the make command and ensure that it is on your LD_LIBRARY_PATH.

Building

To build the library, type make in the source directory. This builds shared and static versions of the
Diffusion library, libdiffusion.so and libdiffusion.a respectively. Additionally, a number of
sample applications are also built.

Installation

Copy the libraries to a location on the user's LD_LIBRARY_PATH (or equivalent). Copy the header
files, diffusion.h and llist.h to your C compiler's include path.

For example:

$ mkdir /usr/local/include/diffusion
$ mkdir /usr/local/lib/diffusion
$ cp include/*.h /usr/local/include/diffusion/
$ cp lib/libdiffusion.* /usr/local/lib/diffusion/
$ echo "/usr/local/lib/diffusion" > /etc/ld.so.conf.d/
libdiffusion.conf
$ ldconfig

Example usage

The following example shows how to connect to a Diffusion instance (no credentials):

 DIFFUSION_CONNECTION *c = diff_connect("localhost", 8080, NULL);
 if(c == NULL) {
 fprintf(stderr, "Failed to connect to Diffusion\n");
 return(-1);
 }

The following example shows how to connect to a Diffusion instance (with credentials)

 SECURITY_CREDENTIALS creds;
 creds.username = strdup("smith");
 creds.password = strdup("secret");
 DIFFUSION_CONNECTION *c = diff_connect("localhost", 8080, &creds);
 if(c == NULL) {
 fprintf(stderr, "Failed to connect to Diffusion\n");
 return(-1);
 }

The following example shows how to request a subscription to a topic:

 DIFFUSION_CONNECTION *c = diff_connect(...);

 if(diff_subscribe(c, "Assets") == -1) {
 fprintf(stderr, "Failed to subscribe to topic\n");
 return(-1);
 }

http://docs.pushtechnology.com/docs/5.9.4/c-v4/index.html

Diffusion | 468

The following example shows how to use the event loop and callbacks:

 void on_initial_load(DIFFUSION_MESSAGE *msg) {...}
 void on_delta(DIFFUSION_MESSAGE *msg) {...}

 ...

 DIFFUSION_CONNECTION *c = diff_connect(...);
 diff_subscribe(...);

 DIFFUSION_CALLBACKS callbacks;
 DIFF_CB_ZERO(callbacks); // Reset callback structure
 callbacks.on_initial_load = &on_initial_load;
 callbacks.on_delta = &on_delta;

 diff_loop(c, &callbacks);

diffusion-wrapper.js
The Diffusion wrapper is a script which addresses a weakness in the Flash and Silverlight VMs – when
running inside a web browser there is no provision for the execution of callback code when the user
closes either the containing tab or the entire browser window.

Consequently there is no opportunity for the Diffusion client to inform the server that the client is
willingly closing the connection, instead the connection is severed. This can result in various server
warnings (dependent on the transport mechanism, that is DPT or HTTP) as well as maintaining the
server-side reference to the client if any reconnection timeout is specified.

The JavaScript environment in the hosting browser provides browser closing callbacks, and these
are employed by DiffusionWrapper.js. By supplying the setClientDetails function with
client and server info after a connection has been established within the Flash or Silverlight API,
DiffusionWrapper attaches a JavaScript function to the onbeforeunload event that is triggered
when a browser window or tab closes. This notifies Diffusion that the client is deliberately closing.

diffusion-wrapper.js can be found in clients/flex and clients/silverlight
directories from a default installation.

Figure 25: Diffusion wrapper

The preceding diagram shows diffusion-wrapper.js in use. When the user closes the
containing browser tab or window, the following events occur:

Diffusion | 469

1. The user closes the browser. This engages a JavaScript callback that calls diffusion-
wrapper.js.

2. diffusion-wrapper.js runs and sends a closure request to the Diffusion server.
3. The Flash or Silverlight client dies. It has no chance to run cleanup code.

How to use Diffusion wrapper
The HTML page that loads the Flash/Silverlight app, must to load the Diffusion wrapper script.

The following example shows the diffusion-wrapper.js file being included in a web page:

<html>
 <head>
 <script src="diffusion-wrapper.js" language="javascript"></script>
 </head>
 <body>

 </body>
</html>

The Flash/Silverlight app makes a call to the external DiffusionWrapper method
setClientDetails, typically in the onConnection callback, supplying the client ID and server
URL. In the example below, the method ExternalInterface.call("setClientDetails")
provides DiffusionWrapper with the client ID and server URL. DiffusionWrapper adds a method to
the onbeforeunload event of the window, which informs the Diffusion server that the client is
intentionally closing the connection when the browser window or tab is closed.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 width="371" height="334" minWidth="955"
 minHeight="600" layout="absolute">
<mx:Script>
 import com.pushtechnology.diffusion.ConnectionDetails;
 import com.pushtechnology.diffusion.DiffusionClient;
 import com.pushtechnology.diffusion.ServerDetails;
 import com.pushtechnology.diffusion.events.DiffusionConnectionEvent;
 import com.pushtechnology.diffusion.events.DiffusionExceptionEvent;
 import com.pushtechnology.diffusion.events.DiffusionMessageEvent;

 private var theServerUrl:String = "http://127.0.0.1:8080"
 private var theInitialTopic:String = "Echo"
 private var theClient:DiffusionClient;

 private function onConnect():void{
 theClient = new DiffusionClient();
 var theConnectionDetails:ConnectionDetails = new
 ConnectionDetails(new ServerDetails(theServerUrl),null);

 // Add the listeners
 theClient.addEventListener(DiffusionConnectionEvent.CONNECTION,
 onConnection);
 theClient.addEventListener(DiffusionMessageEvent.MESSAGE,
 onMessages);
 theClient.addEventListener(DiffusionExceptionEvent.EXCEPTION,
 onException);

 //Lets Go...
 theClient.connect(theConnectionDetails);
 }

Diffusion | 470

 private function onConnection(event:DiffusionConnectionEvent):void{
 // Is the client connected?
 if(event.isConnected()){
 //Check the externalInterface availability
 if(ExternalInterface.available){
 // Send the ClientId and serverURL to the DiffusionWrapper
 ExternalInterface.call("setClientDetails",
 theClient.getClientID(), event.getServerDetails().getURL());
 }else{
 //The externalInterface is not available, so the
 DiffusionWrapper is not called.
 }
 }
 }

 private function onMessages(event:DiffusionMessageEvent):void{
 //Message received
 theMessages.text += event.toString();
 }

 private function onException(event:DiffusionExceptionEvent):void{

 //Exception received
 theMessages.text += event.toString();
 }

</mx:Script>
 <mx:TextArea id="theMessages" x="18" y="40" width="335" height="283"
 text="Messages"/>
 <mx:Button id="bConnect" x="105.5" y="10" width="160"
 label="Connect" click="onConnect()"/>
</mx:Application>

Developing a publisher

You can develop a publisher in Java by using the Publisher API.

Note: We recommend using a client to create and publish to topics, instead of a publisher. The
ability to create and publish to topics is available in the following client APIs:

• Java on page 193
• .NET on page 203
• C on page 216
• Apple on page 165
• Android on page 179
• JavaScript on page 158

Publisher basics
A publisher is a user-defined object deployed within a Diffusion server which provides one or more
topics on which it publishes messages to clients.

There can be one or more publishers deployed with a Diffusion server.

Diffusion | 471

Clients connect to the server and subscribe to topics. Messages relate to topics and when a publisher
publishes a message it is broadcast to all clients that are currently subscribed to the message topic. A
publisher can also send messages to individual clients and receive messages sent from clients. Clients
can request (fetch) topic state, even when not subscribed.

A publisher must be written by the user in Java (utilizing the publisher API) and deployed within the
server. This is done by extending a supplied publisher class and implementing methods as required.
Implement the methods relating to the functionality that you require. For more information, see
Writing a publisher on page 479.

Defining publishers
How to define publishers that start with Diffusion.

The Diffusion server is able to start the publishers defined in the etc/Publishers.xml file when
the server starts. The XML file can contain any number of publishers. Each publisher must have at least
a name and a class. The class must implement the publisher by extending the Publisher class For
more information, see Creating a Publisher class on page 480.

<publishers>
 <publisher name="Publisher">
 <class>com.example.Publisher</class>
 </publisher>
 ...
</publishers>

The name must be unique on the server, and the class must exist on the classpath of the Diffusion
server (For more information, see Classic deployment on page 629). This is sufficient for the publisher
to start when Diffusion does. There are other options, including those that can prevent the publisher
from starting.

When the enabled element is false, the publisher class is not loaded. If the start element is false,
the publisher is not started when the server starts. If the topic-aliasing element is false,topic
aliases is not used by topic messages. The following example shows the default values for these
optional settings.

<publishers>
 <publisher name="Publisher">
 <class>com.example.Publisher</class>
 <enabled>true</enabled>
 <start>true</start>
 <topic-aliasing>true</topic-aliasing>
 </publisher>
</publishers>

For more information, see .

You can define properties in the etc/Publishers.xml that can be accessed from the publisher.
For more information, see .

DEPRECATED: Server connections can be configured in the etc/Publishers.xml for connecting to
other publishers.

The full configuration file options can be found in the XSD document for the etc/Publishers.xml
or in Publishers.xml on page 595.

Diffusion | 472

Loading publisher code
This describes how to load publisher classes or code it is dependent upon.

When you write a publisher class (or any other classes it uses), you can deploy them in any folder
as long as it is specified in the configuration (usr-lib in etc/Server.xml). JAR files can also be
deployed in user libraries and any other software libraries that the publisher requires can be specified
in this way.

Also, when Diffusion starts, the data directory is on the class path. The ext folder, and its sub-
directories are scanned for jar files and class loaded. This means that you can easily add new jars to
the Diffusion runtime, without having to edit the startup scripts.

Take care when creating backup jars in the ext folder as anything that ends in .jar is class loaded.

Related tasks
Building a publisher with mvndar on page 503
Use the Maven plugin mvndar to build and deploy your publisher DAR file. This plugin is available from
the Push Public Maven Repository.

Load publishers by using the API
You can configure and load custom publishers using the Diffusion API at any point in the Diffusion
server's lifecycle.

Similarly to loading publishers using configuration files, each publisher must have at least a name
and a class. The class must implement the publisher by extending the Publisher class. For more
information, see Creating a Publisher class on page 480.

PublisherConfig config =
 ConfigManager.getServerConfig().addPublisher("MyPublisher",
 "com.acme.foo.MyPublisher");
Publisher publisher = Publishers.loadPublisher(config);

The name must be unique on the server, and the class must exist on the classpath of the Diffusion
server. For more information, see Classic deployment on page 629. By default the autostart
property is enabled on the PublisherConfig, so the publisher starts once it is loaded. If this option is
disabled, you can load a publisher and retain a reference to it, to start at a later point in time.

If the default configuration options are suitable for your requirements (as detailed within the API docs
for com.pushtechnology.diffusion.api.config.PublisherConfig) there are several
convenience methods that can be used to load a given publisher and get a reference to it without the
need for construction a specific PublisherConfig instance.

// Create Publisher with classname
Publisher publisher = Publishers.createPublisher("MyPublisher",
 "com.acme.foo.MyPublisher");

// Create Publisher with Class
Publisher publisher = Publishers.createPublisher("MyPublisher",
 MyPublisher.class);

You can load a default publisher instance. This facilitates programmatic access any features exposed
through the publisher abstract class that do not require method overriding.

Publisher publisher =
 Publishers.createPublisher("MyDefaultPublisher");

Diffusion | 473

Starting and stopping publishers
Typically publishers are started when the server starts but you can prevent such automatic start up
and allow publishers to be started using System Management.

Publishers can also be stopped and restarted using System Management functions and are
automatically stopped and removed when the server closes.

In order for a publisher to function properly on being stopped and restarted from System Management
it must be able to cater for the integrity of its data and client connections. For this reason a publisher
cannot be stopped by default and must override the isStoppable method to enable this
functionality.

Publisher startup steps

When a publisher is started it goes through its initial processing in the order shown below:

Table 39: Start publisher

Add initial topics Initial topics configured for the publisher are added.

Load server connections Server connections configured for the publisher are loaded and
validated.

initialLoad The initialLoad notification method is called. This can be
used to perform any initial processing required for the publisher.
Topics can be added here. Other aspects of the publisher, such
as topic loaders and client listeners can also be set up here. If an
exception is thrown by this method, the publisher fails to start.

Connect to servers A connection is made to each server connection.

STARTED At this point the publisher is considered to have started.

publisherStarted The publisherStarted notification method is called.

Publisher closedown steps

When a publisher is stopped, either during server closedown or by System Management it goes
through the following steps:

Table 40: Stop publisher

publisherStopping The publisherStopping notification method is called to allow
the publisher to perform any preliminary close processing.

Remove topics All topics owned by the publisher are removed.

Close server connections Any server connections made by the publisher are closed.

STOPPED At this point the publisher is considered to be stopped.

0publisherStopped The publisherStopped notification method is called.

Client events Stopped Client event notifications are stopped.

Publisher removal

A publisher is removed after it is stopped during server closedown but you can also remove a stopped
publisher at any time using System Management. Once removed a publisher cannot be restarted again
until the server is restarted.

Diffusion | 474

In either case, after removal the publisherRemoved notification method is called.

Publisher topics
Topics are the mechanism by which publishers provide data to clients.

Each publisher can provide one or more topics but each topic must be unique by name within the
server. Topics are hierarchical in nature and so topics can be parents of topics and a tree of topics
can be set up. Using hierarchies allows clients to subscribe to branches of the hierarchy rather than
having to subscribe to individual topics. Only the owner of a topic can create new topics below it in the
hierarchy.

Adding topics

In the simplest case a publisher can name the topics it provides within its configuration. In this case
such topics are automatically added as the publisher is started. These topics can be obtained from
within the publisher using the getInitialTopicSet method.

More typically a publisher adds the topics it requires itself as it starts up. A Publisher can choose to
add some topics at start up and others later. Topics can be added at any time using the publisher's
addTopic or addTopics method. They can be added only if they are added by the owner of the
parent topic.

A topic can be a simple topic where all of the handling of the topic state is provided by the publisher.
Alternatively a topic can be created with topic data which handles the state of the topic automatically.

As soon as a topic has been added clients can subscribe to it.

Loading topics

Simple topic processing involves sending all of the data that defines a topic (the topic load) to a client
when they first subscribe and then subsequently sending deltas (or changes to the data). There are
two mechanisms for performing the topic load:

Send on subscribe
When the publisher is notified of subscription it creates, populates and sends a topic
load message to the client.

Topic loaders
Define a topic loader for the topic which is automatically called to perform the topic
loading when a client subscribes.

If a topic has topic data, the current state is automatically provided to a client when they subscribe.

Subscribing clients to topics

Clients normally request subscription to a topic and if the topic exists the clients become subscribed to
it at that point.

A client can subscribe to a topic that does not exist at that time – this is called pre-emptive
subscription. When the publisher creates a topic, any clients that have pre-emptively subscribed to a
topic are subscribed to that topic automatically.

A publisher can also force all currently connected clients to become subscribed to a topic by calling
subscribeClients with force=true.

Subscribing clients to topics that they were already subscribed to causes the topic load to be
performed again.

A publisher can also cause individual clients to be subscribed to a topic using the client's subscribe
method or unsubscribed using the unsubscribe method.

Diffusion | 475

Providing topic state

The publisher method fetchForClient must be implemented if clients are to obtain state using
the topic fetch feature.

Handling topics that do not exist

A topic is an entity that notionally has state but in some circumstances a client might request access
to a topic that does not exist. Client notifications provide a mechanism whereby this situation can be
handled.

Where a client attempts to subscribe to a topic that does not exist, a
clientSubscriptionInvalid notification occurs which gives the publisher the opportunity to
dynamically create the topic (and subscribe the client to it) if that is what is required.

Where a client attempts to fetch the state of a topic that does not exist, a clientFetchInvalid
notification occurs which gives the publisher the opportunity to return a response to the fetch request
(using sendFetchReply) even if the topic does not exist. This can provide an efficient request/response
mechanism without the overhead of actually creating topics.

If a Classic API client attempts to send a message to a topic that does not exist, a
clientSendInvalid notification occurs, allowing the publisher to either create the topic, process
the message as stand-alone data, or discard the message as appropriate.

Removing topics

A publisher can also remove topics at any time using its removeTopic or removeTopics methods.

Removing a topic causes all clients that are subscribed to it to be unsubscribed.

Receiving and maintaining data
A publisher can obtain the data it is to publish and transform that data in any way that is appropriate.

The publisher maintains the state of its own data by updating it whenever any changes are received so
that as a new client subscribes it can be sent the latest state of the data as a whole. As such changes
are received they are also published as deltas to all currently subscribed clients.

Receiving messages from a remote service

Remote service can also provided a data feed into a publisher. The remote service can publish to
topics and the updates are applied to the topics and passed onto subscribed clients.

Publishing and sending messages
Publishing messages to clients and sending messages to clients

Creating messages

Messages can be created using the factory methods on the publisher or on a topic for creating
messages (called createLoadMessage and createDeltaMessage).

If within a class that does not have a direct reference to the publisher or topic objects, the equivalent
static methods in the Publishers class can be used. Messages can be populated with data using the
many variants of the put method.

Publishing messages

Messages (whether load or delta) can be sent to all clients that are subscribed to the message topic.
For stateless topics, use Topic.publishMessage(). For stateful topics (those with topic data),
use PublishingTopicData.publishMessage().

Diffusion | 476

Messages can be sent to an identified group of clients using client groups.

Exclusive publishing

You might want to publish a message to all but a particular client. For example, a message can be sent
to the publisher from a client and the publisher can, publish the message to all of the other subscribed
clients.

This is done using the publisher's publishExclusiveMessage method. This facility also exists on
client groups.

Sending messages to individual clients

To send a message to an individual client the Client.send method can be used.

To send a message to a group of clients the ClientGroup.send method can be used.

Publisher notifications
A publisher is notified of certain events by certain methods on it being called. These methods can be
overridden by the user to perform processing at these points as required.

By default these methods (other than those indicated) perform no processing. You do not have to
override any of these methods unless you choose to. The notification methods are:

Table 41: Notification methods

initialLoad Called when the publisher is first loaded. Is
typically overridden to perform any initial
processing required to prepare the publisher.

publisherStarted Called after initialLoad (see startup steps).

subscription Called when a client subscribes to a topic that the
publisher owns. References to the topic and the
client are passed and also a flag to indicate if the
topic has already been loaded by a TopicLoader.
If the topic has not been loaded already, typically
a publisher sends an initial load message to the
client at this point. It might not be necessary to
override this method if topic loaders are in use.

unsubscription Called when a client unsubscribes from a topic
that the publisher owns.

messageFromClient Called when a message is received from a client.
References to the message and the client are
passed.

messageFromServer Called when a message is received from a server
connection. References to the message and the
server connection are passed.

fetchForClient Called when a client requests a fetch of the topic
state for stateless topics.

messageNotAcknowledged Called when a message which required
acknowledgment was sent by the publisher and
was not acknowledged by one or more clients
within the given timeout period.

Diffusion | 477

serverConnected This is called when a server connection is made. A
reference to the server connection is passed.

serverTopicStatusChanged This is called when a topic subscribed to at a
ServerConnection has its status changed
(for example, is removed). The topic name and
reference to the server connection is passed.

serverDisconnected This is called when a ServerConnection is lost. A
reference to the server connection is passed.

publisherStopping This is called when the publisher has been
requested to stop. It gives the publisher
the opportunity to tidily perform any close
processing.

publisherStopped This is called after a publisher has stopped.
The publisher can still be restarted (but only if
isStoppable is true).

publisherRemoved This is called when a publisher is removed and
provides the opportunity for final tidy up. The
publisher cannot be restarted after this is called.

systemStarted This is called when the Diffusion system has
completed loading and is ready to accept
connections. Publishers are started before
connectors, so this notification is used all
Diffusion sub systems are loaded.

Publisher notification threads

To understand issues of concurrency when writing a publisher it is necessary to understand in which
threads the various publisher notifications occur.

When a message or request is received from a client (of any sort) or server connection, the inbound
thread pool is used to process it. Depending upon the number of threads in the pool this can mean
that the publisher can receive such notifications concurrently.

Message acknowledgment notifications use the background thread pool.

Other notifications come from various control threads.

All of the above considerations mean that concurrency must always be taken into account in publisher
code and it must be made thread safe as appropriate.

Client handling
A publisher can receive notifications about and perform actions on individual clients.

Closing/Aborting clients

A publisher can close a client at any time using the close method. This disconnects the client which
might choose to subsequently reconnect.

Alternatively a publisher can use the abort method, which sends an abort notification to the client
before disconnecting it. A client receiving an abort notification must not attempt to reconnect.

Diffusion | 478

Client notifications

A publisher can choose to receive additional client notifications so that it can be informed when clients
connect, disconnect etc.

Client pings

A client ping message is one that can be sent to a client which reflects it back to the server to measure
latency. A publisher can send a ping message to a client using the Client.ping method and
receives a response on the ClientListener.clientPingResponse method within which the
message passed can be queried to establish the round trip time.

Client message filtering

You can filter the messages that get queued for any particular client. For more information, see .

Publisher properties
Properties for a publisher are defined in the etc/Publishers.xml configuration file.

As well as the standard properties a publisher can have user-defined properties. These properties
can be read using convenience methods available on the publisher (for example, getProperty,
getIntegerProperty etc).

Using concurrent threads
Often within a publisher you might have to initiate some processing in a separate thread so that the
publisher itself is not blocked.

For example, a thread can be used to poll data from some data source.

Diffusion provides a mechanism for easily managing concurrent processing using the threads API.

Publisher logging
Every publisher is assigned its own Logger which can be used within the publisher itself for logging
diagnostic messages.

This Logger is obtained using the getLogger method.

The log level of the publisher can be changed dynamically at any time using the setLogLevel
method.

DEPRECATED: Server connections
Connecting to other Diffusion servers from within a publisher

Publishers can act as clients of other publishers for the purpose of distributed processing. In this case
there is a client/server relationship between two publishers. One publisher can be a client of many
other publishers and a publisher can have many publisher clients.

A publisher acting as the server in such a relationship sees the client as a normal client. The only thing
distinguishing it is its client type (obtained using Client.getClientType).

However, for a publisher to act as the client of another publisher it must make an outbound
connection to the Diffusion server that hosts the server publisher. In fact, the client publisher knows
nothing of the server publisher, only the server and the topics it subscribes to, as if it were a normal
client.

Diffusion | 479

Server connections can be made automatically for a publisher by declaring them in etc/
Publishers.xml. In this case the connections are made automatically during publisher startup.
You can configure the behavior when such connections fail. It might cause the publisher to fail (if it
is dependent upon the server as a data source) or it might allow the publisher to start but retry the
connection periodically until it succeeds. Alternatively, it might do nothing.

Alternatively, the publisher can dynamically make server connections as, and when required. To do
this it uses the addServerConnection method to create a PublisherServerConnection
object, configure the connection as required and use the connect method on the object to make the
connection

Whether server connections are made automatically or manually the publisher is notified when a
connection is made using the serverConnected method and when the connection is closed or lost
using the serverDisconnected method.

The publisher receives messages from server connections on the messageFromServer notification
method.

The publisher is notified of the change of status (for example, removal) of any topics it is subscribed to
at a server connection on the serverTopicStatusChanged notification method.

General utilities
General purpose utilities that can be used from within a publisher

There are a number of general purpose utilities available which can aid in the process of writing a
publisher, for example:

Table 42: General publisher utilities

Utils A set of general purpose utilities which include
file handling, property handling, date and time
formatting and more.

XMLUtils A set of utilities to aid in the processing of XML.

HTTPUtils A set of utilities to aid in HTTP processing.

Writing a publisher
How to approach writing a publisher

Note: This section covers only the main aspects of the publisher API. See the API
documentation for full details.

There are demo publishers issued with Diffusion which have the source provided and these act as
examples of working publishers.

In its simplest sense a publisher is responsible for providing topics, and publishing messages relating
to those topics.

Before a publisher is written you need to carefully consider what it needs to do and what methods
need to be implemented. The areas that need to be considered and the methods relating to them are
discussed in the following sections.

There are many ways to approach the design of a publisher. For more information, see .

Related concepts
Classic deployment on page 629

Diffusion | 480

Installing publishers into a stopped Diffusion instance.

Creating a Publisher class
A publisher is written by extending the abstract Publisher class (see Publisher API) and overriding
any methods that must be implemented to achieve the functionality required by the publisher.

In all but the simplest of publishers it is likely that other classes must be written to perform the
functionality required of the publisher.

The considerations of which methods must be overridden are discussed further within this section.

After the class is written and compiled, you can deploy it in the Diffusion server by specifying its details
in etc/Publishers.xml

Publishers can also be deployed as a DAR file, sidestepping etc/Publishers.xml

See the section on testing for information about how to test the publisher.

Related tasks
Building a publisher with mvndar on page 503
Use the Maven plugin mvndar to build and deploy your publisher DAR file. This plugin is available from
the Push Public Maven Repository.

Publisher startup
When a publisher is first loaded by the Diffusion server it can also be automatically started.

If not automatically started (or if it has been manually stopped), a publisher can be manually started
by using the System Management interface. In either case the publisher processing goes through a
number of startup steps. During these steps the initialLoad and publisherStarted methods
are called and these methods can be implemented by the publisher to perform any initial processing
like setting up the initial data state or adding initial topics.

Data state
A publisher typically holds some data on topics which it updates according to any data update events
it might receive.

The data held by the publisher on the topics it provides is referred to as its state. It is up to the
publisher whether the data state is managed as a whole or on topic by topic basis.

It is the responsibility of the publisher to initialize its state and keep it updated as appropriate. Clients
that subscribe to topics usually want to know the current state of the data relating to that topic and
the publisher provides this as an initial topic load message. Clients are notified of all changes to that
state by the publisher sending out delta messages.

A publisher typically has its own data model represented by classes written to support the data for
the publisher. Ways in which such a data model can be managed are discussed in Designing your data
model on page 58.

Initial state

A publisher's data typically has some initial state which can be updated during the life of the publisher.
The state clearly must be set up before a client requires it but exactly when this is done is up to the
publisher.

The state of the data as a whole can be set up when the publisher starts. This can be done in the
initialLoad method where all topics required can be set up and the data loaded as appropriate.

Diffusion | 481

Alternatively, the state of the data relating to a topic can be initialized when the topic is added, which
is not necessarily when the publisher is started.

Another option is that the initial state is provided by a data feed as it connects (or is connected to). If
data is provided by a server connection, the initial state can be set up when the server connection is
notified to the publisher or more typically the server provides an initial topic load message.

Data integrity

The integrity of the data is also the responsibility of the publisher and care must be taken to ensure
that all updating of data state is thread-safe. For example, it must be borne in mind that a client can
request a load of current state (for example, by subscription) at the same time as the state is being
updated.

Note: The topic data feature automatically handles such data locking and in other cases
topics might be locked as and when required.

Providing data state

If clients are to use the fetch facility to obtain the current state of topics, it will be necessary to
consider the implementation of the fetchForClient method of the publisher.

Stateful and stateless topics

The topics that the publisher provides can store data state, but not all topics store data state. Topics
that store data state are called stateful topics. Topics that do not store data state are called stateless
topics.

The publisher has different mechanisms for publishing data through stateful or stateless topics. For
more information, see Publishing messages on page 483.

Data inputs
For a publisher to be able to publish data to clients it must have a source for that data.

The data can be obtained from some type of feed, perhaps provided by some external API or it can
be from some other application communicating using Diffusion protocols. This is entirely up to the
publisher but Diffusion does offer some mechanisms.

DEPRECATED: Server connections

A publisher can receive its data from another publisher in a distributed environment as if it were
a client of that publisher. To do this it is necessary for the publisher to connect to the server of the
remote publisher and subscribe to its topics.

Connection to remote servers can be set up automatically for a publisher by configuring the
connection in etc/Publishers.xml. A reference to such a server connection can be obtained by
the publisher using the getServerConnection method or all connections van be obtained using
getServerConnections.

Alternatively, a publisher can explicitly connect to remote servers using addServerConnection.

However the connection is made, the publisher is notified of the connection via the
serverConnected method.

If a server connection is closed by the remote server or lost the publisher is notified through the
serverDisconnected method.

Diffusion | 482

Once a serverConnection is established the publisher must subscribe to topics on it and receive topic
messages through the messageFromServer method. Typically, the first such method is a load
message providing the initial state for the topic. Processing of the messages can be done within this
method or alternatively the publisher can specify topic listeners to handle the messages on a per topic
basis.

Control clients

A publisher can receive input from a control client.

Control clients can use the TopicUpdateControl feature to publish messages to topics. Where such
topics have topic data the topic state is automatically updated and deltas are published to subscribed
clients. Where topics do not have topic data, published messages are forwarded to subscribed clients
(that is, it is assumed that the control client maintains the data state).

Control clients can also send messages to specific clients and these are forwarded to the clients
automatically.

Handling client subscriptions
Clients subscribe to topics provided by publishers and whenever this occurs the publisher is
notified through its subscription method. The publisher can perform any processing it requires on
subscription.

Performance considerations

Any queries about subscriptions are expensive on resources and time, because these queries are
synchronous and blocking. For example, querying whether a client is subscribed to a topic, what
clients are subscribed to a specific topic, or what topic a specific client subscribes to.

If your publishers respond to add topic notifications or subscription notifications, ensure that these
responses are efficient. These publisher actions are now serialized in a single thread and as a result the
publisher can become a bottleneck and hold up processing.

Using topic data

Where a topic is inherently stateful and has associated data, the use of topic data is recommended.
Topic data automatically handles topic loading.

Topic loading

Typically, on subscription, the publisher provides the client with the current state of the data for the
topic. It can do this by creating a new topic load message and populating it with a representation of
the state. Rather than doing this every time a client subscribes it is generally more efficient for the
publisher to create a topic load message only when the state changes and send this same message out
to every client that subscribes.

This provision of the current state is known as the topic load. This can be done in one of the following
ways:

Topic load in subscription method

If the topic has not already been loaded by a topic loader (see below), the loaded parameter of the
subscription method is false. In this case, the normal action is for the publisher to send a topic load
message to the client (passed as a parameter to subscription) through its send method.

Diffusion | 483

Topic loaders

A topic loader is an object that implements the TopicLoader interface and can be used to perform
any topic load processing that is required for one or more topics. Topic loaders can be declared for
a Publisher using the Publisher.addTopicLoader method. This is typically done in the
initialLoad processing and must be done before any topics that are loaded by the topic loader are
added.

Hierarchic subscription

When a client subscribes to a topic the publisher can choose to subscribe the client to other topics or
to subordinate topics. This can be done using the Client.subscribe methods.

A client itself can request subscription to a hierarchy of topics using topic selectors but this is an
alternative method of handling hierarchies.

Publishing messages
Publishing a message means sending it to all clients subscribed to a topic. The message itself
nominates the topic to which it relates.

A message for publishing can be created and populated by the publisher and then published using
publishing methods on the topic or the publisher itself.

Exclusive messages
To send a message from a publisher to all clients subscribed to a topic except one single client, it can
use the publishExclusiveMessage method. This might be appropriate if the message being published is
a result of receiving a message from a client which you do not want to send back to that client.

Message priority
The priority at which a message is to be sent can be altered from the normal priority. For example, an
urgent message can be sent with high priority causing it to go to the front of the client's queue.

Message acknowledgment
If acknowledgment of a message is required then it can be set as an acknowledged message. If any
clients do not respond to a acknowledged message within a specified timeout, the publisher is notified
on its messageNotAcknowledged method.

Publishing using stateful topics
Stateful topics are topics that store a current value in the Diffusion server. You can publish using
stateful topics in a simple way or as part of a more complex transactional update.

This section covers working with topics that have associated topic data that extends the
PublishingTopicData interface. There are other types of topic data that can be associated with
topics, for example PagedTopicData.

Simple updates to a stateful topic

Use the updateAndPublish or updateAndPublishFromDelta method on the topic data of a
stateful topic to update the topic state. Updating the topic data of a stateful topic publishes a delta to
all subscribed client that includes the changes to the topic data.

topic.getData().updateAndPublish(update);
// OR
topic.getData().updateAndPublishFromDelta(deltaUpdate);

Diffusion | 484

Transactional updates to a stateful topic

Stateful topics can be updated transactionally by bracketing the updates with the startUpdate and
endUpdate methods of the associated topic data.

Combining updates to the topic data as part of a single transaction can be useful when the stateful
topic is a record topic that has multiple records and fields that can be updated from separate sources.
These fields can be updated separately within the transaction, but all updates in the topic state are
published to the subscribing clients at the same time.

// Start the transaction
data.startUpdate();
try {
 // Make multiple updates as part of a single transaction
 data.update(firstUpdate);
 data.update(secondUpdate);
 data.update(thirdUpdate);
 data.update(fourthUpdate);
 data.update(fifthUpdate);

 // Publish the updates that have been made in this transaction
 if (data.hasChanges()){
 data.publishMessage(data.generateDeltaMessage());
 }
}
finally {
 // Complete the transaction
 data.endUpdate()
}

Publishing using stateless topics
Stateless topics are topics that have no associated current value in the Diffusion server. You can
publish using a stateless topic in a simple way or as part of a complex action triggered by a client
subscription to that topic.

Stateless topics have no associated topic data. These topics simply pass through any updates that are
made to them to the subscribing clients.

Simple updates using a stateless topic

Use the publishMessage method on the topic to publish data using the stateless topic at any time.
This data is not stored on the Diffusion server and is sent as-is to all current subscribers to the stateless
topic.

topic.publishMessage(data);

On-subscription updates using a stateless topic

Stateless topics pass through data from the publisher to the subscribing clients. This published data
can be a full update or a delta on previous updates. If a client subscribes to a stateless topic after a full
update and before a delta, the client receives the delta, but does not have the base data to apply it to.

To ensure that a newly subscribing client receives a full update for that topic, the publisher
subscription method — which is called every time a client subscribes to a topic managed by the
publisher — can publish an update that contains all the data required by the subscriber to that topic.
This data is not published until the client subscription to the topic is complete.

Using the subscription method can cause performance issues. For more information, see
Handling client subscriptions on page 482.

Diffusion | 485

To publish a message to the topic whenever a client subscribes to the topic, override the
Publisher.subscription() method in your own publisher class and include in the method a
call to topic.publishMessage() that passes in all the data to publish.

@Override
 protected void subscription(final Client client, final Topic
 topic, final boolean loaded)
 throws APIException {

 // Do the required processing to create the full update
 message to
 // publish for the newly subscribed client.

 // Publish that message to the stateless topic
 topic.publishMessage(data);
 }

DEPRECATED: Publishing using paged topics
Paged topics are topics that store current values as lines in a page. Paged topic data can be updated at
any time using a set of methods that enable additions, updates, and deletions.

While paged topics have associated topic data, that data does not extend the
PublishingTopicData interface. Because of this paged topics do not act in the same way as other
stateful topics.

All of these methods lock the data, perform the update, notify any affected clients of changes as
appropriate and unlock the data. If it is required to lock the data over more than one update so that it
cannot be changed whilst manipulating it, use the lock() mechanism on the data.

The method signatures vary according to the type so the line referred to in the table below refers to a
String or a record as appropriate.

Some methods are usable only with unordered topic data, some only with ordered, and some behave
differently according to the type.

Methods for use with ordered topic data typically act on only one record at a time and do not require
an index reference to the record.

Table 43: Usable methods with ordered topic data

add(line) Add the specified line to the end of the data (if
unordered) or at the appropriate position (if
ordered).

add(List<line>) Add the specified list of lines to the data. For
unordered data the lines are all added at the
end. For ordered data this is the same as calling
add(line) repeatedly.

add(int,List<line>) Add the specified list of lines into the data at the
specified index.

update(line) This is functionally equivalent to calling
remove(line) followed by add(line).

remove(int,int) Removes one or more lines. The first number
specified is the index to start from and the
second is the number of lines to remove The code
remove(0,1) removes the first line.

Diffusion | 486

remove(line) The current line that is equal to the specified line
according to the comparator is removed. If there
is more than one matching line, the duplicates
policy specifies which is removed. If no matching
line is found, this has no effect.

Methods for use with unordered topic data typically requires an index reference to the record that they
act on.

Table 44: Usable methods with unordered topic data

add(line) Add the specified line to the end of the data (if
unordered) or at the appropriate position (if
ordered).

add(List<line>) Add the specified list of lines to the data. For
unordered data the lines are all added at the
end. For ordered data this is the same as calling
add(line) repeatedly.

add(int,line) Add the specified line into the data at the
specified index. The line is inserted at the
specified index. Indexing starts at 0. Using
add(0,line) is the same as inserting the line at the
start of the data.

add(int,List<line>) Add the specified list of lines into the data at the
specified index.

update(int,line) Update the line at the specified index with the
specified line. This effectively replaces the line
with the one supplied.

remove(int,int) Removes one or more lines. The first number
specified is the index to start from and the
second is the number of lines to remove The code
remove(0,1) removes the first line.

Methods are also available to get specified lines or a range of lines which might help in updating.

DEPRECATED: Topic locking
All locking of the topic state is handled automatically. However, when the state of the topic is not
maintained by the topic (the topic is stateless), it is the responsibility of the publisher application to
handle locking.

The publisher must consider the issue of locking the topic whilst its state is changed and delta
messages published.

By default, all topics have locking enabled which allows the publisher to lock and unlock the topic as
required. When a client subscribes to a topic the subscription method of the publisher, normally sends
the current state of the topic to the client.

Threads that update the topic state and publish messages must also lock the topic for the duration of
the update and publish. If this technique is not employed, a delta message might be sent to a client
before the subscription method has the opportunity to send a topic load message. This can cause a
failure at the client if topic aliasing is in use as aliasing relies upon the topic load message reaching the
client first. Even if topic aliasing were not in use, the client application must be prepared for a delta
arriving before the topic load.

Diffusion | 487

Handling clients
Interacting with clients from within a publisher

A publisher is notified when a client subscribes to one of its topics through the subscription
method and when the client unsubscribes the unsubscription method is called.

A publisher can receive message from clients and send messages to clients (see below).

A client can request the state of any topic or topics at any time even if not subscribed to it. This is
referred to as 'fetch' request. Such a request can routed to the publisher's fetchForClient method
if a topic has no topic data.

Other than the above, a publisher is not normally notified of any other client activity. However a
publisher can choose to receive client notifications using the Publishers.addEventListener
method. Using client notifications, a publisher can even handle a fetch request for a topic that does
not exist and return a reply (using Client.sendFetchReply) without the overhead of actually
creating a topic.

A publisher can also choose to close or abort clients.

Sending and receiving client messages

In addition to publishing messages to all clients subscribed to a topic, you can send a message to only
a single client using the Client.send method.

A client can also send messages to the publisher and these are received on the
messageFromClient method which handles them accordingly. Only implement this method if
messages are expected from clients. Alternatively the publisher specifies topic listeners to handle the
messages on a per topic basis.

If it is a Unified API client that sends a message to a publisher on a topic, the message is mapped to a
delta TopicMessage.

The 'client groups' facility allows messages to be sent to all clients in a group. There is also an
'exclusive message' facility which caters for sending to all but one client in a group.

Publisher closedown
A publisher is stopped and removed when the Diffusion server closes but can also be stopped and
restarted, or stopped and removed by using the System Management interface.

However a publisher is stopped it always goes through a set of closedown steps, during which the
publisherStopping and publisherStopped methods are called. A publisher can implement
these methods if required to perform any special processing such as tidying up resources used.

Publisher removal
When a publisher is finally removed (either during server closedown or by using System Management),
it cannot be restarted again within the same server instance. After removal the publisherRemoved
method is called and this gives the publisher the opportunity to perform any final tidy up processing.

Stopping and restarting using System Management

By default, you cannot stop and restart a publisher using the System Management functions because
in order for this to work the publisher must cater for the integrity of its state when this happens. As
topics are also removed during stopping, the publisher must also be able to restore these topics if it
were restarted.

If a publisher does want to cater for stop and restart using System Management, it must override the
isStoppable method to return true. The publisher code must be able to recover topics and data
state on restart.

Diffusion | 488

Testing a publisher
There are various ways you can test your publishers after you have written them and deployed them
on a Diffusion server instance.

The easiest way to perform some initial tests is to start it and try it out using some of the supplied
testing tools. For example, you can start one or more instances of the client test tool, connect each to
the test server and subscribe to the publisher's topic or topics. The initial topic load data is displayed
and any messages sent as deltas are also displayed in each client. This tool can also be used to send
messages to the publisher from the client.

Ultimately such tests are limited and you might want to develop Java tests which simulate clients
using the Java external client API (or the Windows external client API).

Test as soon as possible with the actual clients that are going to be used. So, for example, you might
want to develop browser clients using JavaScript, Flash or Silverlight.

It can help to diagnose problems with the publisher if it has diagnostic logging encoded within it. Such
logging can be provided only at fine level and this logging level used only during testing.

Client queues
How messages sent to clients are queued and how such queues can be manipulated by publishers

The Diffusion server maintains an outbound queue of messages for each client. Whenever a message
is published to a topic, it is placed in the queue of each client subscribed to that topic as will any
message sent explicitly to the client. Messages are sent to the client strictly in the order that they are
enqueued.

Figure 26: The message queue

A publisher is able to enquire upon the details of a particular client's queue and even to change some
aspects of the queue's behavior.

Queue enquiries
How the publisher can access details of client queues

A publisher can enquire upon the following information about a particular client's queue using the
client interface:

• The current queue size
• The maximum queue size (The limit the queue can reach before the client is automatically

disconnected.)
• The largest queue size (The largest size the client queue has been since the client connected.)

Diffusion | 489

Maximum queue depth
To limit the backlog of messages queued for a client that is not consuming them quickly enough you
can indicate a maximum queue depth for clients.

Choose this size carefully as a large queue size can lead to excessive memory usage and vulnerability
to Denial of Service attacks, whilst a small queue size can lead to slow clients being disconnected too
frequently.

The maximum queue depth for clients can be configured for a client connector in etc/
Connectors.xml. A default value can also be configured in etc/Server.xml for connectors that
do not explicitly specify a value.

These values can be changed dynamically at run time using System Management but they only take
effect for new clients.

Queue notification thresholds
A publisher can receive notifications when a client queue has reached a certain size and use this
information to decide whether or not to act on the situation.

For example, the publisher might want to notify the client so that it can take some action (like
suspending processing). As there is little point in queuing a message to tell the client that their queue
is becoming full, this is probably done using a high priority message which goes to the front of the
queue.

To this end, an upper notification threshold can be set for a client's queue. This is expressed as a
percentage of the maximum queue depth at which a notification is sent to any client listeners that
are declared. A client listener is any object that implements the ClientListener interface and
such a listener can be added from within a publisher using the Publishers.addEventListener
method. Listeners are notified of the limit breach using the clientQueueThresholdReached
method.

In addition a lower notification threshold can be specified. The lower threshold is a percentage of the
maximum queue depth at which a notification occurs when a message is removed from the queue
causing the queue size to reach the threshold if (and only if) the upper threshold has been breached.

When the clientQueueThresholdReached method is called on the client listener it indicates
whether it was the upper or lower threshold that was reached.

The thresholds to use for clients can be configured for a connector in connectors.properties. If not
specified, the default thresholds specified in etc/Server.xml are used.

The thresholds on a client connector can be changed dynamically at run time using System
Management, but the new values only take effect for new clients.

Thresholds can also be set or changed from within the publisher for a connected client using the
Client.setQueueNotificationThresholds method.

Tidy on unsubscribe
When a client unsubscribes from a topic, the topic updates that are already queued for delivery to
the client are delivered. These messages can be cleared from the queue if the client does not want to
receive them.

After a message is queued for a client, it will be delivered. This means that a client can unsubscribe
from a topic but still receive messages queued for it on it on that topic. This is generally what is
required as the messages were sent whilst the client was subscribed.

Diffusion | 490

However, it can be decided that once the client has unsubscribed from a topic then the client no longer
has any interest in any messages for that topic and such messages are removed from the queue. To
achieve this there is an option on a topic (using the setTidyOnUnsubscribe method) to indicate
that messages for the topic must be removed from client queues when the client unsubscribes from
that topic.

Filtering queued messages
Filtering the messages that get queued for a client

You can filter the messages that get queued for a particular client. For more information, see .

Client Geo and WhoIs information
When a client connects to Diffusion, information about that client's geographic location is looked up
and the information is made available to publishers.

When a client first connects to a Diffusion server, its remote IP address is immediately available (using
the Client.getRemoteAddress method) as well as other details obtained from the embedded
GeoIp database. Further host and geographic details about the client are obtained using the Diffusion
"WhoIs service".

GeoIp information

Diffusion ships with a GeoIP database from MaxMind. This provides information about Locale and
geographic co-ordinates. The Java API includes utilities (GeoIPUtils) to make use of this database.

This is a public domain database and is free to use. You can purchase the more accurate database
from MaxMind and change the configuration in the etc/Server.xml properties to use the new
database.

The database can be disabled but its use is mandatory if you are going to use client connection or
subscription validation policies. For more information, see .

WhoIs

The inbuilt WhoIs service can provide additional information about clients, however the lookup of
the WhoIs information might take some time, especially if it is not already cached. This means that
notification of the connection and further processing of the client cannot wait for this information
to become available. For this reason the resolution of the client's WhoIs details is notified to client
listeners separately from client connection on the clientResolved method.

When a client is first connected it is likely that the WhoIs details of the client are not available. This can
be checked using the Client.isResolved method. When the details become available they can be
obtained from the client using the getWhoIsDetails method which returns an object containing
the following information:

Table 45: WhoIs

Address The client's IP Address – this is the same as that obtained using
Client.getRemoteAddress.

Host The resolved host name of the client. If the host name cannot be
resolved, the address is returned.

Resolved name The fully resolved name of the client. Exactly what this means depends
upon the WhoIs provider in use. If a fully resolved name cannot be
obtained, the host name value is returned.

http://www.maxmind.com/app/geolitecity

Diffusion | 491

Locale Returns the result of a geographic lookup of the IP address indicating
where the address was allocated. The country of the locale is set to
the international two-letter code for the country where the internet
address was allocated (for example, NZ for New Zealand). If the internet
address cannot be found in the database, the country and language of
the returned locale are set to empty Strings.

Three country values can be returned that do not exist within the
international standard (ISO 3166). These are EU (for a non-specific
European address), AP (for a non-specific Asia-Pacific address) and **
(an internet address reserved for private use, for example on a corporate
network not available from the public internet).

The language of the returned locale is set to the international two-letter
code for the official language of the country where the internet address
was allocated. Where a country has more than one official language,
the language is set to that which has the majority of native speakers.
For example, the language for Canada is set to English (en) rather
than French (fr). Non-specific addresses (EU and AP), private internet
addresses (**), and addresses not found within the database, all return
an empty string for language.

WhoIsData This is data extracted from an enquiry upon a 'WhoIs' data provider.

Local Indicates whether the client address is a local address, in which case no
locale or WhoIsData is available.

Loopback Indicates whether the client address is a loopback address in which case
no locale or WhoIsData is available.

The Diffusion WhoIs service
The Diffusion WhoIs service runs as a background task in the Diffusion server. It looks up client details
and caches them in case the same client reconnects later.

The behavior of the WhoIs service is configured in etc/Server.xml. This allows the following to be
specified:

Table 46: WhoIs service

The WhoIs provider This specifies a class to use for WhoIs lookups. A
default WhoIs provider is provided with Diffusion.

Number of threads The number of background threads that
processes WhoIs resolver requests. More threads
will improve the WhoIs performance. Setting this
to 0 disables WhoIs.

WhoIs Host/Port These details provide the location of an internet
based WhoIs lookup server that adheres to the
RFC3912 WhoIs protocol. This is used by the
default WhoIs provider. This defaults to using the
RIPE database.

Cache details Specifying the maximum size of the cache of
details and how long cache entries are retained
before being deleted.

Diffusion | 492

If you envisage large numbers of different clients
connecting over time, it is important to consider
the automatic cache tidying options on the
service.

The WhoIs service can be disabled both by setting the number of threads to zero and removing the
whois configuration element.

WhoIs providers

The Diffusion WhoIs provider is a class which implements the WhoIsProvider interface of the
WhoIs API. This is used by the WhoIs service to lookup WhoIs details for connected clients.

Default provider

A default WhoIsProvider (WhoIsDefaultProvider) is provided with Diffusion.

A connection is made to the WhoIs server specified in etc/Server.xml and returned details are
parsed and used to update the supplied details. Child details objects are added for any separate WhoIs
records found and the type of such objects is the key of the first WhoIs record entry (for example,
person). Where duplicate field names occur then all but the first are suffixed by “_n”, where n is a
number distinguishing the entries.

The netname entry is used as the resolved name if present.

Custom provider

If the behavior of the issued default WhoIs provider is not exactly what is required then users can write
their own WhoIs provider which must implement the WhoIsProvider interface. The name of the
user-written class can be specified in etc/Server.xml and must be deployed on the Diffusion
server's classpath.

Client groups
Clients that are connected can be managed in client groups allowing messages to be sent to groups of
clients

Client groups are a convenient way of managing groups of clients with common attributes.

A publisher can create a client group and add clients to it. Messages can be sent to the group of clients
rather than to individual clients.

When a client disconnects it is automatically removed from all client groups of which it is a member.

A client group belongs to the publisher that created it and can be used only from within that publisher.
Group names are unique within the publisher only.

Client groups are a feature of the Java API using the Publisher interface.

Creating a client group

A publisher can create a new client group at any time using createClientGroup. When creating
the group it is given a name which must be unique within the publisher. When a client group is created
a reference to a ClientGroup object is returned.

Adding clients to a group

Clients can be added to a client group using the addClient method on a ClientGroup object.

Diffusion | 493

Sending messages to clients in a group

A message can be sent to all clients in a client group using the ClientGroup.send method. To send
to all but a specified client use publishExclusiveMessage.

Removing clients from a group

To remove clients from a client group, use the ClientGroup.removeClient method.

Removing a client group
To delete / remove a client group that is no longer required, use the
Publisher.removeClientGroup method.

Other methods

All clients within a client group can be listed using ClientGroup.getClients.

You can check whether a particular client is already a member of a client group using
ClientGroup.containsClient.

To enquire upon which client groups a particular client belongs to you can use
Publisher.getClientGroupMembership.

To get a reference to a named client group from a publisher use getClientGroup.

Temporary client groups

Normally client groups have publisher scope, but you can create temporary groups using the union
and intersect methods. These methods allow for the creation of client groups which are not
managed by the client group manager. These temporary groups allow for the sending of messages
which contain clients from different groups.

Client notifications
A publisher can opt to receive certain notifications regarding clients. It does this by adding a
ClientListener which can be the publisher itself or any other object that implements the
ClientListener interface.

A listener is added using the Publishers.addEventListener method.

All notifications are passed a reference to the client in question which can be interrogated for further
information as required.

Notifications received on the ClientListener interface are as follows:

Table 47: Client listener notifications

clientConnected This is called whenever a new client connects. It is not
necessarily a client that is subscribing to one of the publisher's
topics.

clientResolved This is called when a newly connected client is resolved. A
client's full geographical information is not necessarily available
as soon as a client connects and so this method is called
separately after the client has been resolved.

Diffusion | 494

clientSubscriptionInvalid This is called whenever a client attempts to subscribe to a topic
that does not exist. This might be because the topic is not yet
available and this gives a publisher the opportunity to create
the topic and subscribe the client to it.

clientFetchInvalid This is called whenever a client attempts to fetch a topic that
does not exist. This gives the publisher the opportunity to
respond to fetch request on a non-existent topic. A publisher
can even reply to such a request without having to create a
topic using the sendFetchReply method.

clientSendInvalid This is called whenever a client attempts to send a message
to a topic that does not exist, or to which the client is not
subscribed. This enables a client to send a message to a topic
and for that topic to be created and subscribed to on demand,
or send data when a response is never expected.

clientQueueThresholdReachedThis is called whenever a client's queue breaches an upper
queue notification threshold or returns to a lower queue
notification threshold. Parameters indicate which threshold has
been reached and the threshold value.

clientCredentials This is called whenever a client supplies new credentials
after connection. It is called after the authentication handlers
and authorization handlers (if any exist) have validated the
credentials.

clientClosed This is called whenever a client disconnects. The
reason for disconnection can be obtained using
theClient.getCloseReason method.

Adding a ClientListener
You can add a ClientListener to listen for client notifications.

About this task

Procedure

So a publisher can add itself as a listener for client notifications as follows:

Results

public class MyPublisher extends Publisher implements ClientListener
 {

 protected void initialLoad() throws APIException {
 Publishers.addEventListener(this);
 }

Using DefaultClientListener
How to use the default client listener to avoid implementing all methods.

About this task

The publisher must implement all of the ClientListener methods.

Diffusion | 495

Procedure

For convenience, an abstract DefaultClientListener class is provided which has empty
implementations of all methods. This can be extended to produce a class which implements
only the methods you are interested in. Alternatively an anonymous class can be used within the
publisher as follows:

Results

 protected void initialLoad() throws APIException {
 Publishers.addEventListener(
 new DefaultClientListener() {
 public void clientConnected(Client client) {
 LOG.info("Client {} connected",client);
 }

 public void clientClosed(Client client) {
 LOG.info("Client {} closed",client);
 }
 });
 }

Developing other components

Diffusion provides Java APIs that enable you to customize the behavior of your Diffusion server and
related components.

Local authentication handlers
You can implement authentication handlers that authenticate client connections to the Diffusion
server.

A local authentication handler is an implementation of the AuthenticationHandler interface.
Local authentication handlers can be implemented only in Java. The class file that contains a local
authentication handler must be located on the classpath of the Diffusion server.

For more information, see Authentication API.

Related concepts
Configuring authentication handlers on page 550
Authentication handlers and the order that the Diffusion server calls them in are configured in the
Server.xml configuration file.

Developing a local authentication handler
Implement the AuthenticationHandler interface to create a local authentication handler.

About this task
Local authentication handlers can be implemented only in Java.

Note: Where c.p.d is used in package names, it indicates
com.pushtechnology.diffusion.

Diffusion | 496

Procedure

1. Create a Java class that implements AuthenticationHandler.

package com.example;

import com.pushtechnology.diffusion.client.details.SessionDetails;
import
 com.pushtechnology.diffusion.client.security.authentication.AuthenticationHandler;
import com.pushtechnology.diffusion.client.types.Credentials;

public class ExampleAuthenticationHandler implements
 AuthenticationHandler{

 public void authenticate(String principal, Credentials
 credentials,
 SessionDetails sessionDetails, Callback callback) {

 // Logic to make the authentication decision.

 // Authentication decision
 callback.abstain();

 // callback.deny();
 // callback.allow();

 }

}

a) Ensure that you import Credentials from the c.p.d.client.types package, not the
c.p.d.api package.

b) Implement the authenticate method.
c) Use the allow, deny, or abstain method on the Callback object to respond with the

authentication decision.
2. Package your compiled Java class in a JAR file and put the JAR file in the ext directory of your

Diffusion installation.
This includes the authentication handler on the server classpath.

3. Edit the etc/Server.xml configuration file to point to your authentication handler.
Include the authentication-handler element in the list of authentication handlers. The
order of the list defines the order in which the authentication handlers are called. The value of the
class attribute is the fully qualified name of your authentication handler class. For example:

<security>
 <authentication-handlers>

 <authentication-handler
 class="com.example.ExampleAuthenticationHandler" />

 </authentication-handlers>
</security>

4. Start or restart the Diffusion server.

• On UNIX-based systems, run the diffusion.sh command in the
diffusion_installation_dir/bin directory.

• On Windows systems, run the diffusion.bat command in the
diffusion_installation_dir\bin directory.

Diffusion | 497

Related concepts
User-written authentication handlers on page 140
You can implement authentication handlers that authenticate clients that connect to the Diffusion
server or perform an action that requires authentication.

Authentication on page 137
You can implement and register handlers to authenticate clients when the clients try to perform
operations that require authentication.

Related tasks
Developing a composite authentication handler on page 497
Extend the CompositeAuthenticationHandler class to combine the decisions from multiple
authentication handlers.

Developing a control authentication handler on page 398
Implement the ControlAuthenticationHandler interface to create a control authentication
handler.

Developing a composite control authentication handler on page 401
Extend the CompositeControlAuthenticationHandler class to combine the decisions from
multiple control authentication handlers.

Developing a composite authentication handler
Extend the CompositeAuthenticationHandler class to combine the decisions from multiple
authentication handlers.

About this task

If there are several, discrete authentication steps that must always be performed in the same order,
packaging them as a composite authentication handler simplifies the server configuration.

This example describes how to use a composite authentication handler to call multiple local
authentication handlers in sequence.

Procedure

1. Create the individual authentication handlers that your composite authentication handler calls.
You can follow steps in the task Developing a local authentication handler on page 495.
In this example, the individual authentication handlers are referred to as HandlerA, HandlerB,
and HandlerC.

2. Extend the CompositeAuthenticationHandler class.

package com.example;

import com.example.HandlerA;
import com.example.HandlerB;
import com.example.HandlerC;

import
 com.pushtechnology.diffusion.client.security.authentication.CompositeAuthenticationHandler;

public class CompositeHandler extends
 CompositeAuthenticationHandler {

 public CompositeHandler() {
 super(new HandlerA(), new HandlerB(), new HandlerC());
 }

Diffusion | 498

}

a) Import your individual authentication handlers.
b) Create a no-argument constructor that calls the super class constructor with a list of your

individual handlers.
3. Package your compiled Java class in a JAR file and put the JAR file in the ext directory of your

Diffusion installation.
This includes the composite authentication handler on the server classpath.

4. Edit the etc/Server.xml configuration file to point to your composite authentication handler.
Include the authentication-handler element in the list of authentication handlers. The
order of the list defines the order in which the authentication handlers are called. The value of the
class attribute is the fully qualified class name of your composite authentication handler. For
example:

<security>
 <authentication-handlers>

 <authentication-handler class="com.example.CompositeHandler" />

 </authentication-handlers>
</security>

5. Start the Diffusion server.

• On UNIX-based systems, run the diffusion.sh command in the
diffusion_installation_dir/bin directory.

• On Windows systems, run the diffusion.bat command in the
diffusion_installation_dir\bin directory.

Results

When the composite authentication handler is called, it calls the individual authentication handlers
that are passed to it as parameters in the order they are passed in.

• If an individual handler responds with ALLOW or DENY, the composite handler responds with that
decision to the server.

• If an individual handler responds with ABSTAIN, the composite handler calls the next individual
handler in the list.

• If all individual handlers respond with ABSTAIN, the composite handler responds to the server with
an ABSTAIN decision.

Related concepts
User-written authentication handlers on page 140
You can implement authentication handlers that authenticate clients that connect to the Diffusion
server or perform an action that requires authentication.

Authentication on page 137
You can implement and register handlers to authenticate clients when the clients try to perform
operations that require authentication.

Related tasks
Developing a local authentication handler on page 495
Implement the AuthenticationHandler interface to create a local authentication handler.

Developing a control authentication handler on page 398

Diffusion | 499

Implement the ControlAuthenticationHandler interface to create a control authentication
handler.

Developing a composite control authentication handler on page 401
Extend the CompositeControlAuthenticationHandler class to combine the decisions from
multiple control authentication handlers.

Push Notification Bridge persistence plugin
The Push Notification Bridge stores subscription information in memory. To persist this information
past the end of the bridge process, implement a persistence plugin.

The persistence API

The Push Notification Bridge persistence API provides the following interfaces for you to use to
develop your persistence plugin:

SaverFactory

Your implementation of this interface is referenced by the bridge configuration and is
called by the bridge to build the Saver object.

Saver

Your implementation of this interface is called by the bridge when push notification
subscriptions and unsubscriptions are made. It uses this information to update the
persisted model of the subscriptions.

Loader

Your implementation of this interface is called by the bridge when it starts and is used
to update the model of subscriptions held in memory by the bridge.

Context

This provides a context for events passed to the Saver interface. It is used for
logging and audit trail purposes.

Full API documentation is available at the following location: Java Unified API documentation.

An example implementation of the persistence API is available on GitHub: https://github.com/
pushtechnology/push-notification-persistence-example. This example is basic and uses Java
serialization to persist the subscription model.

Note: The example persistence plugin is not suitable for production use.

Developing the persistence plugin

A JAR file that contains the persistence API is available on the Push Technology Maven repository.

To use Maven to declare the dependency, first add the Push Technology public repository to your
pom.xml file:

<repositories>
 <repository>
 <id>push-repository</id>
 <url>https://download.pushtechnology.com/maven/</url>
 </repository>
</repositories>

http://docs.pushtechnology.com/docs/5.9.4/java/index.html
https://github.com/pushtechnology/push-notification-persistence-example
https://github.com/pushtechnology/push-notification-persistence-example

Diffusion | 500

Next declare the following dependency in your pom.xml file:

<dependency>
 <groupId>com.pushtechnology</groupId>
 <artifactId>push-notification-persistence-api</artifactId>
 <version>1.0</version>
</dependency>

Using the persistence plugin

1. Compile your persistence code.
2. Ensure that the compiled code is on the classpath of the JVM that runs the bridge.
3. Configure the bridge to use your persistence plugin.

Use the saverFactory attribute of the persistence element to specify the name of the
SaverFactory class in your plugin. For example:

<persistence saverFactory="com.example.pnb.SaverFactory"/>

The content of the persistence element can be text content. This content is passed into the
saver factory as arguments.

For more information, see Configuring your Push Notification Bridge on page 652.

Related concepts
Push notification networks on page 120
Consider whether your solution will interact with push notification networks.

Example: Send a request message to the Push Notification Bridge on page 368
The following examples use the Unified API to send a request message on a topic path to communicate
with the Push Notification Bridge. The request message is in JSON and can be used to subscribe or
unsubscribe from receiving push notifications when specific topics are updated.

Push Notification Bridge on page 649
The Push Notification Bridge is a Diffusion client that subscribes to topics on behalf of other Diffusion
clients and uses a push notification network to relay topic updates to the device where the client
application is located.

Using Maven to build Java Diffusion applications

Apache™ Maven is a popular Java build tool and is well supported by Java IDEs. You can use Apache
Maven to build your Diffusion applications.

The Push Technology public Maven repository

Push Technology publishes Diffusion components and related artifacts to a public Maven repository at
the following location: http://download.pushtechnology.com/maven.

The published artifacts include the following:

https://download.pushtechnology.com/maven

Diffusion | 501

Table 48: Artifacts

Artifact Maven coordinates Description

Diffusion
Unified
API

com.pushtechnology.diffusion:diffusion-
api:jar:5.9.4

The Diffusion Unified API interfaces only. Use this
artifact for compilation only. The JAR includes
the source and Javadoc attachments.

Diffusion
Clients

com.pushtechnology.diffusion:diffusion-
client:jar:5.9.4

The Diffusion client library. The runtime library
includes both the Unified API and the Classic API.

mvndar com.pushtechnology.tools:dar-
maven-plugin:maven-
plugin:1.2

A Maven plugin for building DAR files.

To use the Push Technology public Maven repository, add the following repository description to your
pom.xml file:

<repositories>
 <repository>
 <id>push-repository</id>
 <url>https://download.pushtechnology.com/maven/</url>
 </repository>
</repositories>

Related concepts
Building the demos using mvndar on page 802
You can use the Maven plugin mvndar with the provided pom.xml file to build the demos.

Build client applications
You can build and run Diffusion Java client applications without installing the Diffusion product. The
Diffusion client JAR is all you need.

The following pom.xml shows how to declare the appropriate dependencies:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://
maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/
maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example</groupId>
 <artifactId>myclient</artifactId>
 <version>1.0-SNAPSHOT</version>

 <repositories>
 <repository>
 <id>push-repository</id>
 <url>https://download.pushtechnology.com/maven/</url>
 </repository>
 </repositories>

 <dependencies>
 <dependency>
 <groupId>com.pushtechnology.diffusion</groupId>
 <artifactId>diffusion-client</artifactId>

Diffusion | 502

 <version>5.9.4</version>
 </dependency>
 </dependencies>
</project>

Build publishers with Maven
The Diffusion API for publishers is not available in the Push Technology public Maven repository. To
build publishers, you must install the product locally and depend on diffusion.jar using a Maven
system scope.

DAR files

The preferred way to deploy publishers is to build them into a DAR. DARs are JAR format files that
contain compiled code, libraries, and configuration. They have a similar purpose to Java EE EAR or
WAR files, and can be dynamically deployed to and undeployed from a running Diffusion server

Figure 27: Example folder structure inside a DAR file

The root folder name is the name of the publisher. For example, MyPublisher.

• The META-INF directory contains the MANIFEST.MF file.

This file contains an attribute, Diffusion-Version, which specifies the minimum version
number of Diffusion on which this publisher runs. This prevents deployment of publishers to
Diffusion instances which might not support features of the publisher or have different API
signatures.

Manifest-Version: 1.0
Diffusion-Version: 5.9.4

• The etc directory can contain the following files.

etc/Publishers.xml

You must include this file.

The Publishers.xml file has the same structure and the one in a Diffusion
installation's etc directory. For more information, see Publishers.xml on page 595.

For example:

<publishers>
 <publisher name="MyPublisher">

Diffusion | 503

 <class>com.pushtechnology.diffusion.test.publisher.MyPublisher</
class>
 <start>true</start>
 <enabled>true</enabled>
 </publisher>
</publishers>

etc/Aliases.xml (optional)
Include this file if there are associated HTML files.

etc/SubscriptionValidationPolicy.xml

Include this file if it is referenced from the etc/Publishers.xml file.

These files are normally found in the Diffusion server installation's etc directory, but contain only
information relating to the publisher being deployed. Files that affect the operation of the Diffusion
server and have no relationship to the publisher are not loaded.

• The ext directory contains all Java code required by your publisher.

You can also include any required third-party JAR files or resources in this folder.
• The html is optional and can contain any HTML files or web assets required by the publisher.

mvndar

The preferred way to build a DAR mvndar is a Maven plugin for creating DAR files. More information
about mvndar is available at the following locations:

• http://pushtechnology.github.io/mvndar/index.html

Example: Using Maven to build the demo applications

If you selected the demo applications when you installed Diffusion, the source files and an example
Maven pom.xml can be found in the directories beneath the demos/src directory. The example uses
mvndar, and depends on diffusion.jar using system scope.

For more information, see Building the demos using mvndar on page 802.

Related concepts
Classic deployment on page 629
Installing publishers into a stopped Diffusion instance.

Hot deployment on page 630
Installing publishers into a running Diffusion instance.

Deployment methods on page 630
There are two ways to deploy a DAR file: file copy or HTTP.

Building a publisher with mvndar
Use the Maven plugin mvndar to build and deploy your publisher DAR file. This plugin is available from
the Push Public Maven Repository.

Before you begin

This task describes how to build existing publisher code into a DAR file for deployment on the Diffusion
server. Develop your publisher code before beginning this task. For more information, see Writing a
publisher on page 479.

You must have an installation of the Diffusion server on the system you use to build the DAR file.

http://pushtechnology.github.io/mvndar/index.html

Diffusion | 504

Procedure

1. Create a Maven project.

mvn archetype:generate -DgroupId=group_id -DartifactId=publisher_id
 -DarchetypeArtifactId=maven-archetype-quickstart -
DinteractiveMode=false

Replace group_id with the group identifier for your publisher, for example, com.example.
Replace publisher_id with the artifact name for your publisher, for example, my-first-
publisher.
This command creates a publisher_id directory that contains a pom.xml and sample files.

2. Replace the sample code in the new publisher_id Maven project with your publisher code.
Put your Java code in the publisher_id/src/main/java/ directory.

3. Add a Publishers.xml file to your Maven project.
Create the file at publisher_id/src/main/diffusion/etc/Publishers.xml:

<publishers>
 <publisher name="publisher_name">
 <class>fq_publisher_name</class>
 <start>true</start>
 </publisher>
</publishers>

Replace publisher_name with the name of the class that extends the Publisher
class, for example, MyFirstPublisher. Replace fq_publisher_name with the
fully qualified name of the class that extends the Publisher class, for example,
com.example.publish.MyFirstPublisher.

4. Edit the pom.xml file in the publisher_id directory:
a) Remove the boilerplate code and ensure that the group and artifact IDs are set to the correct

values.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>
 <groupId>group_id</groupId>
 <artifactId>publisher_id</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>publisher_id</name>

</project>

b) Create a system-scoped dependency on the Diffusion JAR.

 <dependencies>
 <dependency>
 <groupId>com.pushtechnology</groupId>
 <artifactId>diffusion</artifactId>
 <version>5.9.4</version>
 <scope>system</scope>
 <systemPath>diffusion_installation_directory/lib/
diffusion.jar</systemPath>
 <optional>true</optional>
 </dependency>

Diffusion | 505

 </dependencies>

c) Add the Push Public Maven Repository as a repository that plugins can be fetched from

<pluginRepositories>
 <pluginRepository>
 <id>push-repository</id>
 <url>http://download.pushtechnology.com/maven/</url>
 </pluginRepository>
</pluginRepositories>

d) Add mvndar as configured plugin

<build>
 <plugins>
 <plugin>
 <groupId>com.pushtechnology.tools</groupId>
 <artifactId>dar-maven-plugin</artifactId>
 <version>1.2</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
</build>

e) Set the packaging method to dar instead of jar:

 <packaging>dar</packaging>

5. Build your DAR file.
Run the mvn clean package command in the publisher_id directory.

Results
A DAR file is created in the publisher_id/target directory. This DAR file is ready to deploy to
the Diffusion server. For more information, see Deploying publishers on your Diffusion server on page
629

Related concepts
Classic deployment on page 629
Installing publishers into a stopped Diffusion instance.

Hot deployment on page 630
Installing publishers into a running Diffusion instance.

Deployment methods on page 630
There are two ways to deploy a DAR file: file copy or HTTP.

Creating a Publisher class on page 480
A publisher is written by extending the abstract Publisher class (see Publisher API) and overriding
any methods that must be implemented to achieve the functionality required by the publisher.

Loading publisher code on page 472

Diffusion | 506

This describes how to load publisher classes or code it is dependent upon.

Build server application code with Maven
The Diffusion API for server application code is not available in the Push Technology public Maven
repository. To build server components, you must install the product locally and depend on
diffusion.jar using a Maven system scope.

The following pom.xml shows to declare the dependency on diffusion.jar. To use it, you
must set the DIFFUSION_HOME environment variable to the absolute file path of your Diffusion
installation.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.examplecorp</groupId>
 <artifactId>mypublisher</artifactId>
 <version>1.0-SNAPSHOT</version>

 <dependencyManagement>
 <dependency>
 <groupId>com.pushtechnology.diffusion</groupId>
 <artifactId>diffusion</artifactId>
 <version>local-installation</version>
 </dependency>
 </dependencyManagement>

 <profiles>
 <profile>
 <activation>
 <property>
 <name>env.DIFFUSION_HOME</name>
 </property>
 </activation>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.pushtechnology.diffusion</
groupId>
 <artifactId>diffusion</artifactId>
 <version>local-installation</version>
 <scope>system</scope>
 <systemPath>${DIFFUSION_HOME}/lib/
diffusion.jar</systemPath>
 </dependency>
 </dependencies>
 </dependencyManagement>
 </profile>
 </profiles>
</project>

Related concepts
Classic deployment on page 629

Diffusion | 507

Installing publishers into a stopped Diffusion instance.

Hot deployment on page 630
Installing publishers into a running Diffusion instance.

Deployment methods on page 630
There are two ways to deploy a DAR file: file copy or HTTP.

Building the demos using mvndar on page 802
You can use the Maven plugin mvndar with the provided pom.xml file to build the demos.

Testing

This section covers some aspects of testing a Diffusion system.

DEPRECATED: Flex/Flash client
The Flex client test tool is a Flex application that uses the diffusion-flex.swc library. The tool can be
found in the Tools section in the root menu of your Diffusion installation.

This tool enables the user to supply connection information as well as credential information. Select
which transport is going to be used to connect to the Diffusion server. This client can issue a server
ping. The ping response displays the elapsed time, its average and the current queue size for this
client.

This tool can also be used to test reconnection, auto failover, and load balancing. Available servers
can be listed by IP in the URL box. The Reconnect button, after a disconnect, returns the client to the
server it was originally connected to, and receive messages queued during disconnection. Selecting
Auto Failover causes the client to connect to the next available server, after the existing connection
is forcibly killed. Selecting Cascade causes the client to cascade through the available servers until it
finds one to which it can connect. Select Load Balancing in conjunction with Auto Failover, and the
client connects to one of a shuffled list of available servers.

Diffusion | 508

Figure 28: Flex client: Connection tab

You can pass user headers with a fetch request which are reflected back to the client in the response
message as a Correlation ID. This allows the client to be able to associate replies with requests. The
Flex client API has a new 'headers' parameter on the fetch methods. No changes are required to
publishers to benefit from this.

Once connected to a Diffusion server, you can send messages to any topic. The publisher receives this
message and notify the messageFromClient method in the publisher. The requested encoding can
be set, as well as any user headers required. You can request an acknowledgment from the server.

Diffusion | 509

Figure 29: Flex client: Send tab

Messages are displayed in a tree format. It is not a true hierarchic tree, as each topic has its own node
directly off the root node.

Diffusion | 510

Figure 30: Flex client: Messages tab

The log tab shows messages that are sent from the Diffusion client when debugging is switched on.

Diffusion | 511

Figure 31: Flex client: Log tab

DEPRECATED: Java client test tool
The external client test tool is a swing application that enables the user to connect, using credentials if
required to a Diffusion server.

The tool is found in the Tools folder in your Diffusion installation, and is run from the command line
using either extclient.bat or extclient.sh.

It allows for many different connection types (for example, HTTP / DPTS, WebSocket). Once connected
the user can subscribe and unsubscribe to topics or topic selectors. It is also possible to issue a server
ping from this client. The ping response displays the elapsed time, the average and the current queue
size for this client.

Diffusion | 512

Figure 32: External client tester: Connection tab

You can connect to Diffusion securely. In order for the external client to work in secure mode, a
certificate must be installed on the client machine. To aid in installing the certificate, there is an option
under the file menu called Load Cert. This connects to Diffusion and detail instructions on how to
install the newly created jssecerts file.

After subscribing to a topic, the client can send messages to that topic. The publisher receives this
message and notify the messageFromClient method in the publisher. It is also possible to set the
message encoding type and any user headers if required.

Diffusion | 513

Figure 33: External client tester: Send tab

Messages are displayed in a tree format. It is not a true hierarchic tree, as each topic has its own node
directly off the root node.

Diffusion | 514

Figure 34: External client tester: Messages tab

It is also possible to examine a message by double clicking it

Diffusion | 515

Figure 35: External client tester: Message details window

DEPRECATED: JavaScript client test tool
The JavaScript test tool allows the user to connect to a publisher and test the API.

The JavaScript test tool is browser based and can be found in the Root Menu of your Diffusion
installation. It allows for different types of connections. The test tool also allows for Subscribing,
Unsubscribing and Fetching against topic sets.

Fetch Correlation allows user headers to be passed with a fetch request which is reflected back to the
client in the response message. This allows the client to be able to associate replies with requests. The
JavaScript client API has a new headers parameter on the fetch methods. See API documentation for
changes to the API specification. No changes are required to publishers to benefit from this.

Diffusion | 516

Figure 36: JavaScript test tool

Silverlight client test tool
The Silverlight client test tool is a Silverlight application that uses the
PushTechnology.Transports assembly. This tool enables the user to perform various diagnostic
functions without having to build a new Silverlight application.

The following screenshot shows the connection tab of the test tool:

Diffusion | 517

Figure 37: Silverlight test tool: Connection tab

Once connected to a Diffusion server, you can send messages to any subscribed topic. The Diffusion
publisher then receives this message and notifies the messageFromClient method in the publisher.
The requested encoding can be set, as well as any user headers.

Diffusion | 518

Figure 38: Silverlight test tool: Send tab

Received messages are displayed in a hierarchical format:

Diffusion | 519

Figure 39: Silverlight test tool: Messages tab

Stress test tuning
Stress testing Diffusion requires various tuning changes to be made.

Table 49: Tuning changes for stress testing

Increase number of open files If the Diffusion server is running in Linux, there is
a limit to the number of open files/connections.
See "Increasing Number of Open files".

Buffer sizes Socket buffer sizes can be changed in etc/
Connectors.xml

Inbound thread settings The Inbound thread pool settings must be tuned
otherwise the pool and queues get full.

The settings are found in etc/Server.xml.
Increase these values carefully and the server
re-tested each time. Set the maximum size
and queue size quite high for stress testing (for
example, 250) so that the server can handle
the hundreds or thousands of simultaneous
connection attempts.

Diffusion | 520

Client queues Depending on the number and frequency of the
messages, you might have to increase the client
queue parameter.

Client multiplexers By default, the number of client multiplexers
configured is equal to the number of cores on the
host system of the Diffusion server. You might
have to increase the number of multiplexers as
the client load on each Diffusion server increases.

Limitations

If more than 2000 clients are to be simulated, it is better to run the stress test from multiple machines.
Most systems start to struggle when dealing with 2000 concurrent connections. By running the stress
test on multiple machines any number of clients can be tested.

Socket exceptions can be encountered when a large number of clients are run on one machine. These
can be thrown on either the Diffusion server or within the stress test tool. If this is occurring, the
number of clients needs to be reduced

Stress test
Stress test is a good way of working out what the system requirements are going to be of a Diffusion
server under duress. The stress test tool is issued to test the performance of Diffusion under stress and
helps to understand how changes to the configuration can have an effect upon the performance.

Before you begin
Do not run the stress test tool on the same machine as the Diffusion server. A separate machine is
required to run the stress test tool.

About this task
Installing the stress test tool;

Procedure

1. On the test machine, create a stresstest directory and copy the files stresstest/
stresstest.bat, stresstest/stresstest.sh, stresstest/
stresstest.properties and stresstest/stresstest.jar from the Diffusion
installation

2. Configure stress test by editing the stresstest.properties file. The following need to be
configured:

3. Number of clients
4. Transport type
5. Server details
6. Number of messages with which to run the test
7. The topic to which the clients subscribe
8. On a Windows system, launch stresstest.bat, on a UNIX machine launch stresstest.sh.

Diffusion | 521

Benchmarking suite
A benchmarking suite for Diffusion is available on GitHub. You can use this suite to test the latency and
throughput of publishers.

The benchmarking suite is available at the following location: https://github.com/pushtechnology/
diffusion-benchmark-suite.

The benchmarking suite works on Linux only and requires the following software be installed on the
system:

• Apache Ant™

• Java with JDK
• Diffusion server

For more information about using the benchmarking suite, see the readme file in the GitHub project.

Test tools
Test tools are provided which allow you to connect to a Diffusion server as an external client
application. There are also tools that act as a publisher server application.

Generic Java versions are provided which work on any platform and Windows versions are provided
specifically for use on Windows platforms.

Table 50: Testing tools

Java client Provides a GUI interface simulating an external
client connection using the Java API. Suitable for
use on any platform.

Windows client Provides a GUI interface simulating an external
client connection using the Windows API.
Suitable for use on Windows platforms only.

JavaScript client Provides a GUI interface simulating a JavaScript
client connection. Suitable for use on any
platform.

Flex/Flash client Provides a GUI interface simulating a Flash client
connection. Suitable for use on any platform
where Flash Player is installed.

Silverlight client Provides a GUI interface simulating a Silverlight
client connection. Suitable for use on any
platform where Silverlight is installed.

https://github.com/pushtechnology/diffusion-benchmark-suite
https://github.com/pushtechnology/diffusion-benchmark-suite

Diffusion | 522

Part
V

Administrator Guide

This guide describes how to deploy, configure, and manage your Diffusion solution.

In this section:

• Installing the Diffusion server
• Configuring your Diffusion server
• Starting the Diffusion server
• Deploying publishers on your Diffusion server
• Load balancers
• Web servers
• Push Notification Bridge
• JMS adapter
• Network security
• Going to production
• Managing and monitoring your running Diffusion server
• Tuning
• Demos
• Tools

Diffusion | 523

Installing the Diffusion server

You can install the Diffusion server from a JAR file, through Docker, or through Red Hat Package
Manager.

Review the system requirements before installing Diffusion.

Download Diffusion from the following location: http://download.pushtechnology.com/releases/5.9

The Diffusion installation includes a developer license that allows up to five concurrent connections to
the Diffusion server. To use Diffusion in production, you can obtain a production license from Sales at
Push Technology.

System requirements for the Diffusion server
Review this information before installing the Diffusion server.

The Diffusion server is certified on the system specifications listed here. In addition, the Diffusion
server is supported on a further range of systems.

Certification
Push Technology classes a system as certified if the Diffusion server is fully
functionally tested on that system.

We recommend that you use certified hardware, virtual machines, operating systems,
and other software when setting up your Diffusion servers.

Support
In addition, Push Technology supports other systems that have not been certified.

Other hardware and virtualized systems are supported, but the performance of these
systems can vary.

More recent versions of software and operating systems than those we certify are
supported.

However, Push Technology can agree to support Diffusion on other systems. For more
information, contact Push Technology.

Physical system

The Diffusion server is certified the following physical system specification:

• Intel Xeon E-Series Processors
• 8 Gb RAM
• 8 CPUs
• 10 Gigabit NIC

Network, CPU, and RAM (in decreasing order of importance) are the components that have the biggest
impact on performance. High performance file system and disk are required. Intel hardware is used
because of its ubiquity in the marketplace and proven reliability.

Virtualized system

The Diffusion server certified on the following virtualized system specification:

Host

• Intel Xeon E-Series Processors

http://download.pushtechnology.com/releases/5.9
http://more.pushtechnology.com/talk-to-sales
http://more.pushtechnology.com/talk-to-sales

Diffusion | 524

• 32 Gb RAM
• VMware vSphere 5.5

Virtual machine

• 8 VCPUs
• 8 Gb RAM

Operating system

Diffusion is certified on the following operating systems:

• Red Hat 6.5, 6.6, and 7.2
• Windows Server 2012 R2

We recommend you install your Diffusion server on a Linux-based operating system with enterprise-
level support available, such as Red Hat Enterprise Linux.

Operating system configuration

If you install your Diffusion server on a Linux-based operating system and do SSL offloading of secure
client connections at the Diffusion server, you must disable transparent huge pages.

If you install your Diffusion server on a Linux-based operating system but do not do SSL offloading
of secure client connections at the Diffusion server, disabling transparent huge pages is still
recommended.

Having transparent huge pages enabled on the system your Diffusion server runs on can cause
extremely long pauses for garbage collection. For more information, see https://access.redhat.com/
solutions/46111.

Java

The Diffusion server is certified on Oracle Java 8 64-bit JDK

Only the Oracle JDK is certified.

Ensure that you use the Oracle JDK and not the JRE.

JVM configuration

If you do SSL offloading of secure client connections at the Diffusion server, you must ensure that you
constrain the maximum heap size and the maximum direct memory size so that together these to
values do not use more than 80% of your system's RAM.

Networking

Push Technology recommends the following network configurations:

• 10 Gigabit network
• Load balancers with SSL offloading
• In virtualized environments, enable SR-IOV.

For more information about how to enable SR-IOV, see the documentation provided by your virtual
server provider. SR-IOV might be packaged using a vendor-specific name.

Client requirements

For information about the supported client platforms, see Platform support for the Diffusion Unified
API libraries on page 44.

https://access.redhat.com/solutions/46111
https://access.redhat.com/solutions/46111

Diffusion | 525

Related concepts
The Diffusion license on page 531
Diffusion includes a development license that enables you to use make up to 5 concurrent connections
to the Diffusion server.

Installed files on page 534
After installing Diffusion the following directory structure exists:

Related tasks
Installing the Diffusion server using the graphical installer on page 525
The Diffusion binary files are available from the Push Technology website. You can install Diffusion
using the graphical installer.

Installing the Diffusion server using the headless installer on page 527
The Diffusion binary files are available from the Push Technology website. You can install Diffusion
from the command line.

Installing the Diffusion server using Red Hat Package Manager on page 528
Diffusion is available as an RPM file from the Push Technology website.

Installing the Diffusion server using Docker on page 529
Diffusion is available as a Docker® image from Docker Hub.

Verifying the Diffusion installation on page 536
Start your Diffusion server, review the logs, and connect to the console to verify that your installation is
correct.

Installing the Diffusion server using the graphical installer
The Diffusion binary files are available from the Push Technology website. You can install Diffusion
using the graphical installer.

Before you begin
You must have Java 8 installed on your system to install and use Diffusion.

About this task

To install Diffusion using the graphical installer, complete the following steps:

Procedure

1. Go to the Diffusion download page:
http://download.pushtechnology.com/releases/5.9

2. Click on the following download links to download the required jar files into a temporary directory:

• Diffusion (Diffusion version_id.jar)
• Installer (install.jar)

3. In the temporary directory, double-click the install.jar file.
The graphical installer launches.

4. Optional: If you have a production license, you can load it into the Diffusion installation at this
point.
You can skip this step if you are using the included development license.
a) Ensure that the license file is available on your system.
b) At the Introduction step, select File > Load license file
c) In the window that opens, navigate to the license file (licence.lic). Click Open.

http://download.pushtechnology.com/releases/5.9

Diffusion | 526

5. At the Introduction step, click Continue.
6. At the License agreement step, select Accept to accept the End User License Agreement (EULA)

and click Continue.
7. At the Destination directory step, select the install destination.

We recommend you create a Diffusion directory on your system. Click Continue.
8. At the Select products step, select the components you want to install.

We recommend you select All. Click Continue.
9. At the Confirmation step, review the install information. If the information is correct, click

Continue to confirm.
The installer installs Diffusion into the directory specified.

10.At the Summary step, click Done to exit the graphical installer.

Results
You have successfully downloaded and installed Diffusion.

What to do next
Next:

• Edit the configuration of your Diffusion server to suit your requirements. For more information, see
Configuring your Diffusion server on page 538.

• Edit the security setup of your Diffusion server.
• Start your Diffusion server using the diffusion.bat file, if on Windows, or the diffusion.sh

file, if on Linux or OS X/macOS.

These start up scripts are located in the bin directory of your Diffusion installation.

Related concepts
The Diffusion license on page 531
Diffusion includes a development license that enables you to use make up to 5 concurrent connections
to the Diffusion server.

Installed files on page 534
After installing Diffusion the following directory structure exists:

Related tasks
Installing the Diffusion server using the headless installer on page 527
The Diffusion binary files are available from the Push Technology website. You can install Diffusion
from the command line.

Installing the Diffusion server using Red Hat Package Manager on page 528
Diffusion is available as an RPM file from the Push Technology website.

Installing the Diffusion server using Docker on page 529
Diffusion is available as a Docker® image from Docker Hub.

Verifying the Diffusion installation on page 536
Start your Diffusion server, review the logs, and connect to the console to verify that your installation is
correct.

Related reference
System requirements for the Diffusion server on page 42

Diffusion | 527

Review this information before installing the Diffusion server.

Installing the Diffusion server using the headless installer
The Diffusion binary files are available from the Push Technology website. You can install Diffusion
from the command line.

Before you begin
You must have Java 8 installed on your system to install and use Diffusion.

About this task
You can install in headless mode in circumstances where the graphical installer cannot be used or is
not appropriate.

Procedure

1. Go to the Diffusion download page:
http://download.pushtechnology.com/releases/5.9

2. Click on the following download links to download the required jar files into a temporary directory:

• Diffusion (Diffusion version_id.jar)
• Installer (install.jar)

3. Copy these files to a temporary directory on the system where Diffusion is to be installed.
4. In the terminal window, change to the directory where the Diffusion jar files are located.
5. Type the following command:

java -jar install.jar Diffusionn.n.n.jar

where n.n.n is the Diffusion release number.
6. If you agree to the terms of the license agreement, type Y and Enter.
7. Enter the full path to the directory in which to install Diffusion and type Enter.
8. Type Y to install all packages.

If you choose not to install all packages, the installer asks you about each package individually.

Results
You have successfully downloaded and installed Diffusion.

What to do next
Next:

• Edit the configuration of your Diffusion server to suit your requirements. For more information, see
Configuring your Diffusion server on page 538.

• Edit the security setup of your Diffusion server.
• Start your Diffusion server using the diffusion.bat file, if on Windows, or the diffusion.sh

file, if on Linux or OS X/macOS.

These start up scripts are located in the bin directory of your Diffusion installation.

Related concepts
The Diffusion license on page 531

http://download.pushtechnology.com/releases/5.9

Diffusion | 528

Diffusion includes a development license that enables you to use make up to 5 concurrent connections
to the Diffusion server.

Installed files on page 534
After installing Diffusion the following directory structure exists:

Related tasks
Installing the Diffusion server using the graphical installer on page 525
The Diffusion binary files are available from the Push Technology website. You can install Diffusion
using the graphical installer.

Installing the Diffusion server using Red Hat Package Manager on page 528
Diffusion is available as an RPM file from the Push Technology website.

Installing the Diffusion server using Docker on page 529
Diffusion is available as a Docker® image from Docker Hub.

Verifying the Diffusion installation on page 536
Start your Diffusion server, review the logs, and connect to the console to verify that your installation is
correct.

Related reference
System requirements for the Diffusion server on page 42
Review this information before installing the Diffusion server.

Installing the Diffusion server using Red Hat Package Manager
Diffusion is available as an RPM file from the Push Technology website.

About this task
On Linux systems that have Red Hat Package Manager installed, you can use it to install Diffusion.

Procedure

1. Go to the Diffusion download page:
http://download.pushtechnology.com/releases/5.9

2. Click on the following download link to download the required RPM file:

• Diffusion RPM (diffusion-n.n.n_build.noarch.rpm)
3. Copy this file to a temporary directory on the system where Diffusion is to be installed.
4. In the terminal window, change to the directory where the Diffusion RPM file is located.
5. Type the following command:

rpm -ivh diffusion-n.n.n_build.noarch.rpm

where n.n.n is the Diffusion release number and build is an additional string containing numbers to
represent the build level.

Results
Diffusion is installed in the following directory: /opt/Diffusion. A startup script is installed in the /
etc/init.d directory that enables Diffusion to start when you start the system.

http://download.pushtechnology.com/releases/5.9

Diffusion | 529

What to do next

Your Diffusion installation includes a development license that allows connections from up to five
clients. To use Diffusion in production, you can obtain a production license from Sales at Push
Technology.

Copy the license file into the /etc directory of your Diffusion installation.

Related concepts
The Diffusion license on page 531
Diffusion includes a development license that enables you to use make up to 5 concurrent connections
to the Diffusion server.

Installed files on page 534
After installing Diffusion the following directory structure exists:

Related tasks
Installing the Diffusion server using the graphical installer on page 525
The Diffusion binary files are available from the Push Technology website. You can install Diffusion
using the graphical installer.

Installing the Diffusion server using the headless installer on page 527
The Diffusion binary files are available from the Push Technology website. You can install Diffusion
from the command line.

Installing the Diffusion server using Docker on page 529
Diffusion is available as a Docker® image from Docker Hub.

Verifying the Diffusion installation on page 536
Start your Diffusion server, review the logs, and connect to the console to verify that your installation is
correct.

Related reference
System requirements for the Diffusion server on page 42
Review this information before installing the Diffusion server.

Installing the Diffusion server using Docker
Diffusion is available as a Docker® image from Docker Hub.

Before you begin
You must have Docker installed on your system to run Diffusion from a Docker image. For more
information, see https://docs.docker.com/userguide/ .

About this task

You can use Docker to install the Diffusion server, and a minimal complete set of its dependencies, on
a Linux system. This image contains a Diffusion server with a trial license and default configuration and
security.

Using Docker enables you to install the Diffusion server in an isolated and reproducible way.

Procedure

1. Pull the latest version of the Diffusion image.

docker pull pushtechnology/docker-diffusion:latest

http://more.pushtechnology.com/talk-to-sales
http://more.pushtechnology.com/talk-to-sales
https://docs.docker.com/userguide/

Diffusion | 530

2. Run the image.

docker run -p 8080:8080 image_id

Where image_id is the ID of the image to run. Port 8080 is the port that is configured to allow client
connections by default.

Results
Diffusion is now running in a container on your system. Clients can connect through port 8080.

Note: This Diffusion instance contains well known security principals and credentials. Do not
use it in production without changing these values.

Related concepts
The Diffusion license on page 531
Diffusion includes a development license that enables you to use make up to 5 concurrent connections
to the Diffusion server.

Installed files on page 534
After installing Diffusion the following directory structure exists:

Related tasks
Installing the Diffusion server using the graphical installer on page 525
The Diffusion binary files are available from the Push Technology website. You can install Diffusion
using the graphical installer.

Installing the Diffusion server using the headless installer on page 527
The Diffusion binary files are available from the Push Technology website. You can install Diffusion
from the command line.

Installing the Diffusion server using Red Hat Package Manager on page 528
Diffusion is available as an RPM file from the Push Technology website.

Verifying the Diffusion installation on page 536
Start your Diffusion server, review the logs, and connect to the console to verify that your installation is
correct.

Related reference
System requirements for the Diffusion server on page 42
Review this information before installing the Diffusion server.

Next steps with Docker
The Diffusion image on Docker Hub includes the default configuration, default security, and trial
license. Additional steps are required to secure and configure the Diffusion server.

Procedure

1. Create a Dockerfile that contains commands to configure a Diffusion image for your use.
a) Base your Docker image on the Diffusion image.

FROM pushtechnology/docker-diffusion:latest

b) To use Diffusion in production, obtain a production license from Sales at Push Technology.
The default Diffusion image includes a development license that allows connections from up to
five clients.

http://more.pushtechnology.com/talk-to-sales

Diffusion | 531

c) Copy the production license into the /opt/Diffusion/etc directory of your Diffusion
image.

ADD license_file /opt/Diffusion/etc/licence.lic

Where license_file is the path to the production license relative to the location of the Dockerfile.
d) Create versions of the Diffusion configuration files that define your required configuration.

For more information, see Configuring your Diffusion server on page 538.
e) Copy these configuration files into the /opt/Diffusion/etc directory of your Diffusion

image.

ADD configuration_file /opt/Diffusion/etc/file_name

Where configuration_file is the path to the configuration file relative to the location of the
Dockerfile and file_name is the name of the configuration file.

f) Create versions of the Security.store and SystemAuthentication.store that
define roles, principals and authentication actions for your security configuration.
For more information, see Pre-defined roles on page 135, DSL syntax: security store on page
414, and DSL syntax: system authentication store on page 404.
You can instead choose to edit these files using a Diffusion client. However, your Diffusion server
is not secure for production use until you do so.

g) Copy these store files into the /opt/Diffusion/etc directory of your Diffusion image.

ADD store_file /opt/Diffusion/etc/file_name

Where store_file is the path to the store file relative to the location of the Dockerfile and
file_name is the name of the store file.

h) Include any additional configuration actions you want to perform on your image in the
Dockerfile.

2. Build your image.
Run the following command in the directory where your Dockerfile is located:

docker build .

Results
The image you created contains a configured Diffusion server ready for you to use in your solution. You
can run multiple identically configured Diffusion servers from this image.

The Diffusion license
Diffusion includes a development license that enables you to use make up to 5 concurrent connections
to the Diffusion server.

To use Diffusion in production, contact Sales at Push Technology for production licenses.

Related concepts
Installed files on page 534
After installing Diffusion the following directory structure exists:

Related tasks
Installing the Diffusion server using the graphical installer on page 525

http://more.pushtechnology.com/talk-to-sales

Diffusion | 532

The Diffusion binary files are available from the Push Technology website. You can install Diffusion
using the graphical installer.

Installing the Diffusion server using the headless installer on page 527
The Diffusion binary files are available from the Push Technology website. You can install Diffusion
from the command line.

Installing the Diffusion server using Red Hat Package Manager on page 528
Diffusion is available as an RPM file from the Push Technology website.

Installing the Diffusion server using Docker on page 529
Diffusion is available as a Docker® image from Docker Hub.

Verifying the Diffusion installation on page 536
Start your Diffusion server, review the logs, and connect to the console to verify that your installation is
correct.

Related reference
System requirements for the Diffusion server on page 42
Review this information before installing the Diffusion server.

License restrictions
The Diffusion license can include restrictions on how the Diffusion server is used.

Environments

A Production license must not be used on a Development server, and a Development license must not
be used on a Production server. Order separate licenses defined as Production, QA/Testing, Disaster
Recovery, and Development.

License expiry

All license files provided by Push Technology include an expiry date. To continue to use Diffusion after
this date you must replace your license file with an updated license file.

The Diffusion server logs the number of days remaining on your license every day at midnight and
when the server starts (#unique_317).

When the license has expired, the Diffusion server stops working within 24 hours. A message is logged
when the license expires (#unique_318).

Concurrent client connections

An instance of the Diffusion server is licensed to only allow up to a certain number of client
connections at the same time.

A license can include a soft limit and a hard limit on concurrent client connections. When the soft
limit is reached, the Diffusion server logs a message (#unique_319) to say that the soft limit has been
reached. When the hard limit is reached, the Diffusion server logs a message (#unique_320) to say that
the hard limit has been reached. No further client connections can be made to the Diffusion server.
Subsequent client connection attempts are refused and a message is logged (#unique_320).

MAC addresses or IP addresses

An instance of the Diffusion server can be licensed to run only on systems with a certain range of IP
addresses or MAC addresses.

Diffusion | 533

on startup, the Diffusion server checks the IP address or MAC address of the system the server runs
on. If the Diffusion server cannot read the IP or MAC address of the host system, it logs a message
(#unique_321 or #unique_322) and does not start. If the IP or MAC address of the host system is not
in the licensed address range, the server logs a message (#unique_323 or #unique_324) and does not
start.

Diffusion version

A Diffusion licensed can be valid for specific versions of Diffusion only.

If you use a license file with a version of Diffusion that it is not valid for, the Diffusion server logs a
message (#unique_325) and does not start.

Related reference
PUSH-000056
PUSH-000199
PUSH-000200
PUSH-000201
PUSH-000202
PUSH-000203
PUSH-000204
PUSH-000207
PUSH-000208
PUSH-000209

Updating your license file
You can update your Diffusion license file without having to restart the Diffusion server. Copy the new
file over the old and ensure that the timestamp is updated.

Before you begin
Obtain a new or renewed license file from Push Technology.

About this task
When your license file expires, the Diffusion server continues to run for another day before it stops. We
recommend you update your license file before your existing license file expires.

Procedure

1. Copy the new license file (licence.lic) over the existing file in the diffusion_directory/
etc directory.
You do not need to stop or restart the server.

2. Check that the timestamp of licence.lic has updated.

• On Windows, you might have to use the following command to copy the file over and force the
timestamp to update: COPY /B licence.lic +,,

3. Diffusion checks the timestamp of the licence.lic every minute. If the license file has been
updated, Diffusion reloads it and logs this to stdout.

4. You can verify that the license file has been updated in the server by accessing the mbean
com.pushtechnology.diffusion > Server > LicenseExpiryDate

Diffusion | 534

Installed files
After installing Diffusion the following directory structure exists:

Table 51: Installed files

Folder name Contents

bin Executables for starting Diffusion

clients Client Diffusion API libraries and related artifacts for all supported
platforms.

data Files used by publishers, the console, and third-party components.

This directory is always on the server classpath. However, the
ext directory is the preferred place to store resource files that are
loaded by publishers.

demos The compiled DAR files and source code for the demos issued with
Diffusion.

For more information, see Demos on page 801.

deploy Publisher DAR files that are deployed when the Diffusion server
starts.

If you selected during the install process to deploy the demos, the
demo DAR files are in this directory.

docs License information, release notes, and install notes.

etc Diffusion configuration files and example policy files for Silverlight
and Flash.

For more information, see Configuring your Diffusion server on
page 538.

examples Example code that uses the Diffusion APIs.

ext This directory, together with any jar files in this directory or
subdirectories, are available through the classloader used to
deploy application code to the Diffusion server. You can add
library jar files to this directory that are required by application
code such as publishers and local authentication handlers.

html Files that are used by the default web server for issuables
accessible through the browser.

lib The main Diffusion server JAR file, third-party libraries, and
additional server-side components.

logs The directory to which Diffusion server and web server logs are
written.

pushnotifications The directory that contains the Push Notification Bridge and its
associated files.

stresstest The stress test package.

Diffusion | 535

Folder name Contents
For more information, see Stress test tuning on page 519.

tools Tools and utilities that help with testing and deploying Diffusion.

For more information, see Tools and utilities on page 535

xsd The schema files for the XML configuration files used by the server.

Tools and utilities

The following table describes the some of the contents of the tools directory.

Note: The files present and their suffixes vary according to the platform that the product is
installed on.

Table 52: Tools and utilities

Tool Description

/ec2 A sample configuration for setting up the
Diffusion server in an Amazon™ EC2 instance.

/init.d Sample init.d files to start the Diffusion server
as daemon on macOS, Linux, or UNIX systems.

/joyent A sample configuration for setting up the
Diffusion server in a Joyent™ instance.

extclient.bat/sh and tools.jar Generic external client test tool.

externalclienttest.properties External client test tool properties.

war.xml Example war.xml file

web.xml and sun-web.xml Example web.xml files

Related concepts
The Diffusion license on page 531
Diffusion includes a development license that enables you to use make up to 5 concurrent connections
to the Diffusion server.

Related tasks
Installing the Diffusion server using the graphical installer on page 525
The Diffusion binary files are available from the Push Technology website. You can install Diffusion
using the graphical installer.

Installing the Diffusion server using the headless installer on page 527
The Diffusion binary files are available from the Push Technology website. You can install Diffusion
from the command line.

Installing the Diffusion server using Red Hat Package Manager on page 528
Diffusion is available as an RPM file from the Push Technology website.

Installing the Diffusion server using Docker on page 529
Diffusion is available as a Docker® image from Docker Hub.

Verifying the Diffusion installation on page 536

Diffusion | 536

Start your Diffusion server, review the logs, and connect to the console to verify that your installation is
correct.

Related reference
System requirements for the Diffusion server on page 42
Review this information before installing the Diffusion server.

Verifying the Diffusion installation
Start your Diffusion server, review the logs, and connect to the console to verify that your installation is
correct.

About this task
After installation, all of the Diffusion files are available in the directory specified during installation.

Procedure

1. Start the Diffusion server using one of the start script located in the bin directory of your Diffusion
installation.

• On Windows, use the diffusion.bat file.
• On Linux, macOS, or UNIX, use the diffusion.sh file.

2. Inspect the log messages to ensure that the Diffusion server started successfully.
The terminal window displays logging information about the status of the Diffusion
server. A log message containing the following text indicates that the server started
successfully: INFO|main|PUSH0165|Diffusion Server started.|
com.pushtechnology.diffusion.DiffusionController This line is typically the last
one to be printed on terminal.

3. Inspect all log messages displayed in the terminal to search for WARN messages to ensure that all
components have started correctly.

4. Open a browser and navigate to http://serverAddress:8080 (or http://
localhost:8080)
The browser shows the Diffusion landing page.

Diffusion | 537

The landing page provides links to information regarding legal terms and conditions (for example,
EULA), user guides, API documentation and demos.

The Diffusion server is ready to be used.
5. If you chose to install the demos, you can access them from the landing page. Use these demo

publishers to verify your installation.

Related concepts
The Diffusion license on page 531
Diffusion includes a development license that enables you to use make up to 5 concurrent connections
to the Diffusion server.

Installed files on page 534
After installing Diffusion the following directory structure exists:

Related tasks
Installing the Diffusion server using the graphical installer on page 525
The Diffusion binary files are available from the Push Technology website. You can install Diffusion
using the graphical installer.

Installing the Diffusion server using the headless installer on page 527
The Diffusion binary files are available from the Push Technology website. You can install Diffusion
from the command line.

Installing the Diffusion server using Red Hat Package Manager on page 528
Diffusion is available as an RPM file from the Push Technology website.

Installing the Diffusion server using Docker on page 529

administratorguide/installation/Landing.png
administratorguide/installation/Landing.png

Diffusion | 538

Diffusion is available as a Docker® image from Docker Hub.

Related reference
System requirements for the Diffusion server on page 42
Review this information before installing the Diffusion server.

Configuring your Diffusion server

You can configure the Diffusion server using XML files which normally reside in the etc directory. You
can also configure user security on the Diffusion server using the .store files in the etc directory.

Alternatively, a Diffusion server can be instantiated in a Java application and configured
programmatically. Some properties can also be changed at runtime programmatically from within
publishers.

In a Java client environment certain properties can also be configured programmatically.

All properties (whether configured from XML or programmatically) are available to read
programmatically from within the Java API.

Related reference
The configuration tree on page 543

XML configuration
Configuring a Diffusion server using XML property files

XML Property files

A Diffusion server is configured using a set of XML property files typically loaded from the etc folder.
In a new Diffusion installation example versions of these files are provided which can be edited as
required.

XML is used rather than standard property files due to the hierarchic nature and the ability to support
repeating groups.

The Introspector has a built in configuration editor, which is able to load and save the configuration
files remotely if required.

XSD files are issued that define the content of the XML property files and this section summarizes the
XSD content.

Configuration path loading

You can pass a parameter to Diffusion upon startup so that files are not automatically loaded from the
etc folder but loaded from a different folder. This folder does not have to contain the complete set of
XML files, but the file is loaded from the specified folder first, if it exists. If it does not, Diffusion loads
the configuration file from the etc folder. When Diffusion starts, it logs where each configuration file
has been loaded from.

XML Value types

When XML values are loaded, the schema is checked so that we know that it is valid, but to aid
configuration, there are some extra data types. When values are loaded, they are trimmed of leading
and trailing white space.

Diffusion | 539

Table 53: XML Value types

Data type Meaning

push:boolean true or false

push:string String value

push:int A number between -2,147,483,648 and 2,147,483,647

push:long A number between -9,223,372,036,854,775,808 and
9,223,372,036,854,775,807

push:double A number between 2-1074and (2-2-52)¬†.21023

push:port A positive number but less than 65535

push:millis A string that represents the number of milliseconds. Append the
mnemonic for the time unit. The mnemonic can be either upper or lower
case.

s
Seconds

m
Minutes

h
Hours

d
Days

360000, 360s, 6m all represent 6 minutes

push:bytes A string that represents the number of bytes. Append the mnemonic size
unit. The mnemonic can be either upper or lower case.

k
Kilobytes

m
Megabytes

g
Gigabytes

6291456, 6144k, 6m, all represent 6 Megabytes

push:log-level A log level can be ERROR, WARN, INFO, DEBUG, or TRACE.

push:percent A value that represents a percentage, this can have the trailing percent
sign (%)

push:positiveNonZeroInt A number between 1 and 2,147,483,647

push:positiveInt A number between 0 and 2,147,483,647

push:positiveNonZeroLongA number between 1 and 9,223,372,036,854,775,807

push:positiveLong A number between 0 and 9,223,372,036,854,775,807

<element> This notation is used to indicate a complex element type. It can also be
List<element> to indicate a repeating property group.

Diffusion | 540

Environmental values

When defining custom configurations, you can define environmental variables that can be reused in all
XML property files. These variables can be defined in the etc/Env.xml property file to be used in all
other property files. Suppose, for example, the etc/Env.xml file defines a server-name variable,
with value d-unit as follows:

<env>
 <property name="server-name">d-unit</property>
</env>

The server-name variable can be used in all other property files, where the value d-unit is
appropriate, either as a value for an attribute, as in

<server name={server-name}>‚Ä¶</server>

or as a name for an element as in:

<server>{server-name}</server>

As a side remark, it is worth noting that names can be combined to provide malleable environmental
variables. Suppose for instance Env.xml contains the following entries:

<env>
 <property name="server-name">myServer</property>
 <property name ="server-version">V2.0</property>
</env>

Then server-name and server-version can be combined, for instance within the same etc/
Env.xml, as

<property name="server-and-version">{server-name}-{server-version}</
property>

and used in all other configuration files.

Obfuscated values

Obfuscation is a technique through which sensitive entries can be hidden in clear text. Within the
Diffusion context, obfuscation can be used to hide password, and any other data deemed to be
sensitive, to be included in configuration files.

To create obfuscated values you can use the Property Obfuscator dialog in the Diffusion plugin for
Eclipse™. Obfuscated entries are identified by a OB: prefix in clear text.

Related concepts
Property obfuscator on page 773

Diffusion | 541

This dialog is part of the Diffusion perspective and can be used to hide sensitive Diffusion configuration
file entries, such as passwords and JMS login credentials.

Programmatic configuration
An alternative to configuring a Diffusion server using XML property files is to instantiate a Diffusion
server within a Java application and configure it programmatically before starting it.

If desired, some properties can be loaded from XML files and some supplied programmatically or
default properties can be bootstrapped from XML files and overridden programmatically before the
server is started.

Most server properties can be configured only before the server is started. Instantiate the server
within an application and configure before starting the server. However, certain configuration items
(examples being conflation and connection policies) can be configured at any time during the life of
the server. The API documentation makes it clear if a property can be changed at runtime.

Because the properties that can be set programmatically reflect those that can be set in XML
this section does not describe the properties in detail. The XSD property descriptions or the API
documentation for the configuration API can be consulted for full details.

As well as allowing configuration properties to be set the configuration API also allows all properties
that can be configured to be read at runtime. So publisher code has direct access to all property
settings.

Using the configuration API

General use

From within a Java application the root of the configuration tree can be obtained at any time using
ConfigManager.getConfig(). This provides access to the general objects and can be used from
within server-side or client-side code.

From within server-side code (for example, a publisher) the server configuration root can be obtained
using ConfigManager.getServerConfig() which exposes all of the server side configuration
also.

From the configuration root you can navigate to any subordinate configuration objects to view them
or set their properties.

On the server side most properties cannot be changed after the server has started and they become
locked so any attempt to change them results in an exception. Certain properties (such as conflation
and connection policies) can be changed at runtime. The API documentation makes it clear which
properties can be changed at runtime.

In client-side Java code the configuration does not become locked and can be changed at any time.
However, some values are read at the start only. Ideally, set all properties before creating any client
side objects.

For configuration objects which are optional but there can be many (multiplicity 0..n), there are
appropriate add methods to add new objects. For example to add a publisher and set a property on it:

PublisherConfig publisher =
 ConfigManager.getServerConfig().addPublisher(
 "MyPublisher",
 "com.pub.MyPublisher");
publisher.setTopicAliasing(false);

Diffusion | 542

In these cases there are also methods to obtain the full list (for example, getPublishers()) or to
obtain a specific one by name (for example, getPublisher("MyPublisher")). In many cases
there are also methods to remove an object.

Note: When there must be at least one object (multiplicity 1..n), you must configure at least
one. However, if a server is started with missing configuration of this kind, suitable defaults are
normally created and a warning logged.

Single instance configuration objects (multiplicity 1..1) subordinate to the root can be obtained so
that their properties can be changed (or read). So, for example the Queues object (an instance of
QueuesConfig) can be obtained using the getQueues() method.

When a single configuration object is optional (multiplicity 0..1), the get method can return null
if it has not been defined. In this case to set it the set method (as opposed to add) returns the
object created. An example of this is the file service (FileServiceConfig) on a web server
(WebServerConfig) as shown in the following example code:

ServerConfig config = ConfigManager.getServerConfig();
WebServerConfig webServer = config.addWebServer("MyWebServer");
FileServiceConfig fileService = webServer.setFileService("File
 Service");

Configuring a server

After instantiating a Diffusion server in Java the root of the server configuration tree can be obtained
from the server object itself and configuration objects can be navigated to and changed as required
before starting the server.

For example, the following code shows how to add a connector that accepts client connections on port
9090:

DiffusionServer server = new DiffusionServer();
ServerConfig config = server.getConfig();
ConnectorConfig connector = config.addConnector("Client Connector");
connector.setPort(9090);
connector.setType(Type.CLIENT);
server.start();

In reality, it is best to configure far more values. However, if any essential objects are omitted (such as
queues), suitable defaults are created when the server starts and a warning is logged.

Configuration access from a publisher

Within a publisher the configuration object for the publisher itself can be obtained using the
getConfig method which returns the publisher configuration (PublisherConfig) object.

Diffusion | 543

The configuration tree

All general objects can be obtained by navigating from the root object obtained from
ConfigManager.getConfig().

Server-side objects can be reached only in a server environment using
ConfigManager.getServerConfig().

Related concepts
Configuring your Diffusion server on page 538

Diffusion | 544

You can configure the Diffusion server using XML files which normally reside in the etc directory. You
can also configure user security on the Diffusion server using the .store files in the etc directory.

Configuring the Diffusion server
Use the Server.xml configuration file to configure the core behaviors of the Diffusion server.

Configuring fan-out
Configure the the Diffusion server to act as a client to one or more other Diffusion servers and replicate
topics from those servers.

Use the fanout section of the Server.xml configuration files to define client connections for this
secondary server to make to one or more primary servers and the topics on those primary servers to
replicate locally.

Each fanout-connection element represents a client connection that your Diffusion server makes
to another Diffusion server in your solution.

<fanout>
 <connection>
 <url>ws://primary_server_hostname:8080</url>
 <principal>client</principal>
 <password>password</password>
 <retry-delay>1000</retry-delay>
 <reconnect-timeout>60s</reconnect-timeout>
 <recovery-buffer-size>1024</recovery-buffer-size>
 <input-buffer-size>1024k</input-buffer-size>
 <output-buffer-size>1024k</output-buffer-size>
 <link><selector>?topic_path//</selector></link>
 </connection>
</fanout>

Connection

Use the url element to specify the URL of the primary server and the transport and port used for the
connection.

Permissions

When connecting to another Diffusion server as a client, this secondary server can provide a principal
and associated password. If a principal is not provided, the secondary server connects anonymously

To subscribe to topics on the primary server and replicate them locally, the secondary server's client
session must have the select_topic and read_topic permissions for those topics. Ensure that the
principal this secondary server uses is assigned a role with the appropriate permissions on the primary
server. If the secondary server connects anonymously to the primary server, ensure anonymous
sessions on the primary server are assigned the appropriate permissions.

Reconnection

Use the retry-delay element to specify the time in milliseconds between the connection or
reconnection attempts that the secondary server makes to the primary server.

Diffusion | 545

Use the reconnect-timeout element to specify the maximum time in milliseconds that the
secondary server will attempt to reconnect to its existing session on the primary server after a
disconnection. If this element is not specified, a value of 0 is assumed and reconnection is not
attempted.

If the secondary server is configured to attempt to reconnect, it keeps a buffer of messages sent to the
primary server. Use the recovery-buffer-size element to configure the size of this buffer.

Replicating topics

Each fanout-connection has one or more link elements. Each link element uses a topic
selector to specify a set of topics on the primary server to replicate on this secondary server.

Note: The set of topics specified by a link cannot overlap the set of topics specified by any
other link within either this fanout-connection or any of the others.

If you want missing topic handlers registered on the primary server to receive missing topic
notifications when a subscription or fetch request is made on the secondary server to a part of the
topic tree that matches a link selector, consider the following when configuring your secondary server
links:

• Avoid using regular expressions in the selectors you use to configure when setting up fan-out links
on the secondary server. Topic selectors containing regular expressions increase the likelihood of
false negatives and false positives when propagating missing topic notifications.

• Ensure that the principal that the secondary server uses to make the fan-out connection to the
primary server has the SELECT_TOPIC permission for the path prefix of the selector that triggered
the missing topic notification.

For more information, see Using missing topic notifications with fan-out on page 100.

Configuring your primary server

The primary server in a fan-out configuration must be configured to handle serving the topics
replicated by fan-out to the secondary server or servers.

Ensure that the primary server connector that the secondary server or servers connect to has a large
enough queue to handle the number of primary server topics that will be replicated by fan-out. In the
Connectors.xml file, inside the <connector> element that defines the connector used for fan-
out connections, set the queue depth to greater than the number of fanned out topics:

<queue-definition>depth</queue-definition>

To allow the secondary server to reconnect, enable reconnection on the connector that the primary
server uses to accept connections from the secondary server or servers. Ensure that the reconnection
timeout (keep-alive) value for the connector is long enough to allow the secondary server time to
reconnect. Set the maximum queue depth and recovery buffer sizes to values that are appropriate to
the volume of messages you expect to occur between the primary and secondary servers.

For more information, see Connectors.xml on page 572.

Topic aliasing

Topic aliasing is not supported with fan-out. Ensure that it is disabled at the primary server.

In the primary server Publishers.xml file, set topic-aliasing as false for any publishers that
create topics that are fanned out.

<topic-aliasing>false</topic-aliasing>

Diffusion | 546

When starting the primary server ensure that
diffusion.publishers.v5.topic.aliasing.disabled is set to true. Edit the
diffusion.sh or diffusion.bat file to set it as a system property when starting the Diffusion
server:

-Ddiffusion.publishers.v5.topic.aliasing.disabled=true

Related concepts
Fan-out on page 98
Consider whether to use fan-out to replicate topic information from primary servers on one or more
secondary servers.

Configuring conflation
Use the conflation section of the Server.xml configuration file to define one or more conflation
policies, which describe how the conflation is to be done, and map topics to those policies.

Note: Conflation policies can be also be configured programmatically using the addPolicy
methods on ConflationConfig. Such policies can also be added dynamically after the
Diffusion server has started.

Conflation policies

One or more conflation policies can be configured, each defining different conflation mechanisms by
using conflation-policy elements. Conflation policies comprise the following:

Table 54: Conflation policy elements

Property Description

name A unique name by which the policy is referred to.

mode Indicating whether the new (or merged) message is to replace the current message in
place or whether the current message is to be removed and the new one appended to
the end of the queue.

matcher A Java class which matches two messages and is used to locate an existing queued
message as a candidate for conflation.

If no matcher is specified then default matching finds a message that is of the same
topic.

merger A Java class which performs the merge of two messages of the same topic to produce a
new message containing the data from both messages (or any resulting data required).

If no merger is specified, no merging takes place and the current message is removed
from the queue and the new message either replaces it or is appended to the queue
depending upon the mode.

The merger can also indicate that either the current or new message is to be used or
even that no conflation takes place in this instance.

Having defined one or more conflation policies, you can map topics to them. This is done by specifying
a topic name or a topic selection string (regex pattern) which maps to a particular conflation policy.

Conflation policies can be added or removed at runtime and the removal of a conflation policy
automatically removes any mappings to it.

Diffusion | 547

Conflation policy mode

The conflation policy mode determines whether the new (or merged) message is to replace the
existing message in the client queue or be appended to the end of the client queue.

Available modes are:

Table 55: Conflation policy modes

Mode Definition

REPLACE The new (or merged) message will replace the existing message at its current position in
the client queue.

APPEND The current message is removed from the client queue and the new (or merged)
message is appended to the end of the queue.

If no mode is specified, REPLACE is assumed.

The mode is specified in the mode property of a conflation-policy section in etc/
Server.xml.

When defining conflation policies programmatically the mode is specified when creating the policy.

Message matchers

A message matcher is used by a conflation policy when queuing a new message for a client that has
conflation enabled for a topic that has a conflation policy defined for it. The message matcher is used
to locate the last message queued for a client that is a candidate for conflation.

If no message matcher is explicitly defined for a conflation policy, a default matcher is used which
locates a message of the same topic.

A message matcher can be supplied if the matching is to be somehow dependent upon the content of
the messages.

To implement a message matcher, write a Java class that implements
com.pushtechnology.diffusion.api.conflation.MessageMatcher. This has a single
method called matches to which is passed the current message in the queue being tested and the
new message to be queued.

Note: The existing message is always of the same topic as the new message so you do not
have to check that is the case.

An example of a MessageMatcher implementation is shown below:

public class ExampleMessageMatcher implements messageMatcher {
 @Override
 public boolean matches(TopicMessage currentMessage,TopicMessage
 newMessage) {
 return
 currentMessage.nextField().equals(newMessage.nextField());
 }
}

MessageMatcher implementations must be thread safe and stateless. The same
MessageMatcher instance can be supplied to more than one different conflation policy if so
required.

Diffusion | 548

Message mergers

A message merger can be specified on a conflation policy if the action of the policy is to merge the
content of an existing queued message with the new message being queued. This technique can be
used when message data comprises more than one data item and it is desirable to reduce the number
of messages sent to the client whilst preserving the data from all messages.

If no message merger is specified for a conflation policy, the policy replaces the current message with
the new.

To implement a message merger, write a Java class that implements
com.pushtechnology.diffusion.api.conflation.MessageMerger. This has a single
method called merge to which is passed the current message in the queue and the new message to be
queued.

Note: The existing message is always of the same topic as the new message so you do not
have to check that is the case.

The action of conflation will depend upon the message that is returned from the merger method, as
follows:

Table 56: Action depending upon merge result

Returned
message

Action

A new message It is assumed that the new message represents a merging of the data of the
two messages input and so the returned message either replaces the current
message in the queue or the current message is removed and the returned
message added to the end of the queue, depending upon the policy mode.

The current
message

The current message is retained at its current queue position and the new
message is not queued.

The new message The new message either replaces the current message in the queue or the
current message is removed and the new message appended to the end of the
queue depending upon the policy mode.

This is effectively the same as the result that occurs if there is no merger.

Null No conflation will occur. The current message remains where it is in the queue
and the new message is appended to the end of the queue,

An example of a message merger implementation is shown below:

package com.pushtechnology.diffusion.examples;

import com.pushtechnology.diffusion.api.message.MessageReader;
import com.pushtechnology.diffusion.api.message.Record;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.pushtechnology.diffusion.api.APIException;
import com.pushtechnology.diffusion.api.conflation.MessageMerger;
import com.pushtechnology.diffusion.api.message.TopicMessage;
import com.pushtechnology.diffusion.api.publisher.Publishers;

import java.util.ArrayList;
import java.util.List;

public final class MessageMergerExample implements MessageMerger {
 private static final Logger LOG =

Diffusion | 549

 LoggerFactory.getLogger(MessageMergerExample.class);

 @Override
 public TopicMessage merge(TopicMessage currentMessage,
 TopicMessage newMessage) throws APIException {

 final MessageReader currentMessageReader =
 currentMessage.getReader();
 final MessageReader newMessageReader =
 newMessage.getReader();

 final TopicMessage result =
 Publishers.createDeltaMessage(currentMessage.getTopicName());

 Record cRecord = currentMessageReader.nextRecord();
 Record nRecord = newMessageReader.nextRecord();

 while (nRecord != null) {
 final List<String> mergedRecord = new
 ArrayList<>(nRecord.size());
 for (int i = 0; i < nRecord.size(); i++) {
 final String nField = nRecord.getField(i);
 if (!nField.isEmpty() || cRecord == null || i >=
 cRecord.size()) {
 mergedRecord.add(nField);
 }
 else {
 mergedRecord.add(cRecord.getField(i));
 }
 }

 result.putRecord(mergedRecord);

 nRecord = newMessageReader.nextRecord();
 cRecord = currentMessageReader.nextRecord();
 }

 if (LOG.isTraceEnabled()) {
 LOG.trace("MessageMerger merging - currentMessage: {},
 newMessage: {}, merged: {}",
 currentMessage.asRecords(),
 newMessage.asRecords(), result.asRecords());
 }

 return result;
 }
}

The above example merges delta messages for record topics with variable records and fields.

MessageMerger implementations must be thread safe and stateless. The same MessageMerger
instance can be supplied to more than one different conflation policy if so required.

Default conflation policy

You can specify a default conflation policy that is used for any topics that do not have explicit policy
mappings.

Use a default conflation policy only if you want to apply conflation to all topics when conflation is
enabled for a client.

Diffusion | 550

This can be specified using the default-conflation-policy property in the conflation
section of etc/Server.xml. Alternatively it can be set programmatically at any time using the
setDefaultPolicy method on ConflationConfig.

If no default policy is set, conflation will not occur for topics that have no explicit mappings even when
conflation is enabled.

Mapping topics to policies

Having defined one or more conflation policies, you can map topics to the conflation policies that are
to be used for them.

Either a full topic name or a topic selector pattern can be used when mapping to a conflation policy.

As the use of topic selectors makes it possible for more than one mapping to potentially apply to the
same topic, the last mapping defined that matches a specific topic is the one that is used for conflating
messages of that topic.

A default conflation policy can be specified which is selected to map to if no other mapping matches a
topic.

Messages for topics that have no mappings (when there is no default policy) are not conflated, even if
conflation is enabled for a client.

Conflation mappings can be defined using topic-conflation elements within the conflation
section of the etc/Server.xml property file.

Conflation mappings can also be set programmatically using the setTopicPolicy method of
ConflationConfig. Mappings can be set at any time during the running of a server. Mappings can
also be removed at any time using unsetTopicPolicy.

Note: Removing a conflation policy at runtime will automatically remove any mappings to it.

Enabling conflation

Specify conflation for a queue-definition by setting the conflates property to true. This queue
definition can then be used wherever required, for example by connectors that have conflation
enabled for all clients.

Configuring authentication handlers
Authentication handlers and the order that the Diffusion server calls them in are configured in the
Server.xml configuration file.

To configure authentication handlers for your server, edit the Server.xml configuration file to
include the following elements:

 <security>
 <authentication-handlers>
 <authentication-handler class="com.example.LocalLDAPHandler" />
 <system-authentication-handler/>
 <control-authentication-handler handler-name="RemoteHandler" />
 </authentication-handlers>
 </security>

Diffusion | 551

Ordering your configuration handlers

The order of handler elements within the <authentication-handlers> element
defines the order in which the authentication handlers are called. In the preceding example,
localLDAPHandler is called first. If localLDAPHandler returns an ABSTAIN result, the system
authentication handler is called next. If the system authentication handler returns an ABSTAIN result,
RemoteHandler is called next.

Order your authentication handlers from least to most restrictive and configure your handlers to
abstain unless they are to explicitly allow or deny the authentication request.

For more information, see Authentication on page 137.

Configuring local authentication handlers

Configure local authentication handlers by using the <authentication-handler/> element. The
value of the attribute class is the class name for the handler.

You can configure any number of distinct local authentication handlers in the Server.xml file.

Configuring the system authentication handler

You can configure Diffusion to use the system authentication handler by using the <system-
authentication-handler/> element. The system authentication handler uses information in
the system authentication store to make authentication decisions.

You can configure the system authentication handler to be called at most once. This restriction is not
enforced by the XSD for the Server.xml file, but the Diffusion server does enforce this restriction on
the configuration.

Configuring control authentication handlers

Configure control authentication handlers are configured by using the <control-
authentication-handler/> element. The value of the attribute handler-name is the name by
which the handler was registered by the control client. Control clients use the AuthenticationControl
feature to register the handler and passing the binding name as a parameter.

If no control client has registered a control authentication handler with the name defined in the
configuration file, the response for that handler is ABSTAIN.

Multiple control clients can register a control authentication handler with the same name. Registering
a control authentication handler from multiple clients gives the following advantages:

• If one of the control clients becomes unavailable, another can handle the authentication request.
• Control clients can be changed or updated without affecting the authentication behavior.
• Authentication requests can be load balanced between the control clients.

You can configure any number of distinct control authentication handlers in the Server.xml file.

Note: To register a control authentication handler, an authenticating client must first connect
to and authenticate with the server. We recommend that you configure a local authentication
handler or the system authentication handler in the Server.xml file to authenticate the
control client.

Related concepts
User-written authentication handlers on page 140
You can implement authentication handlers that authenticate clients that connect to the Diffusion
server or perform an action that requires authentication.

Local authentication handlers on page 495

Diffusion | 552

You can implement authentication handlers that authenticate client connections to the Diffusion
server.

Example: Register an authentication handler on page 391
The following examples use the Diffusion Unified API to register a control authentication handler with
the Diffusion server. The examples also include a simple or empty authentication handler.

Authenticating clients on page 391
A client can use the AuthenticationControl feature to authenticate other client sessions.

Related reference
System authentication handler on page 142
Diffusion provides an authentication handler that uses principal, credential, and roles information
stored in the Diffusion server to make its authentication decision.

Authentication API
Server.xml on page 552
This file specifies the schema for the server properties, as well as multiplexers, security, conflation,
client queues, and thread pools.

Configuring performance
Use the Server.xml configuration file to configure behaviors and parameters that affect the
performance of the Diffusion server.

For more information on the factors to consider when configuring the performance of your Diffusion
server, see the Tuning on page 783 section of this guide.

Server.xml
This file specifies the schema for the server properties, as well as multiplexers, security, conflation,
client queues, and thread pools.

server

All server properties

The following table lists the elements that an element of type server can contain:

Name Type Description Min
occurs

Max
occurs

server-name push:string The server name is used to identify
this server if running in a cluster. If not
specified, the local hostname is used.

0 1

max-message-
size

push:bytes The maximum message size in bytes.
This defines the maximum message size
(including headers) that can be received.

1 1

default-load-
message-
capacity

push:bytes The default capacity of a load message if
not explicitly specified. If not supplied, a
default of 4096 is used.

0 1

default-delta-
message-
capacity

push:bytes The default capacity of a delta message
if not explicitly specified. If not specified,
a default of 1024 is used.

0 1

log-message-
data

push:boolean Indicates whether the data part of
messages is logged as part of routine
diagnostic message logging (FINE and

0 1

Diffusion | 553

Name Type Description Min
occurs

Max
occurs

FINEST levels). If this is false, credentials
message headers are also hidden. If a
value is not specified, a default of true is
used.

message-
length-size

push:int DEPRECATED: since 5.2. This value is no
longer used.

0 1

charset push:string The default character set to use
for Diffusion message character
conversions. See Java Encodings for
the full list. If a value is not specified, a
default of "UTF-8" is used. DEPRECATED:
Since 5.9 - in future releases only UTF-8
will be supported.

0 1

multiplexers multiplexers DEPRECATED: These configuration
options are retained for backwards
compatibility. Using this element causes
a warning to be output in the logs. In
future, these configuration options will
be removed. The multiplexers used by
Diffusion can be configured using the
multiplexer element.

0 1

multiplexer multiplexer Properties that define the multiplexer. 0 1

write-selectors write-selectors DEPRECATED: These configuration
options are no-ops retained for
backwards compatibility. All types of
selector have now been unified. The
selectors used by Diffusion can be
configured using selector-thread-pool-
definition.

0 1

security security Properties relating to security (optional). 0 1

conflation conflation Conflation policies and topic to policy
mappings.

0 1

client-queues client-queues Definitions of client queues. 1 1

connection-
timeouts

connection-
timeouts

Timeout values relating to connections.
If a value is not specified, defaults are
used.

0 1

date-formats date-formats Date and time formats. If a value is not
specified, default formats are used.

0 1

thread-pools thread-pools Definitions of thread pools 1 1

selector-
thread-pools

selector-
thread-pools

Definitions of thread pools 0 1

whois whois Definition of the WhoIs lookup service. If
a value is not specified, no WhoIs service
runs.

0 1

Diffusion | 554

Name Type Description Min
occurs

Max
occurs

auto-
deployment

auto-
deployment

Automatic deployment properties
(optional).

0 1

geo-ip geo-ip Properties relating to the Geo IP lookup
facility. If a value is not specified,
defaults are used.

0 1

usr-lib usr-lib User libraries (optional). 0 1

hooks hooks User hooks used in the server (optional) 0 1

fanout fanout Properties relating to fan-out (optional).
If not specified then the server will not
be enabled as a fan-out secondary
server.

0 1

multiplexers

DEPRECATED: These configuration options are retained for backwards compatibility. Using this
element causes a warning to be output in the logs. In future, these configuration options will be
removed. The multiplexers used by Diffusion can be configured using the multiplexer element.

The following table lists the elements that an element of type multiplexers can contain:

Name Type Description Min
occurs

Max
occurs

client push:string Name of the client multiplexer
definition. If this is not specified, the first
multiplexer defined is used.

0 1

multiplexer-
definition

multiplexer-
definition

Multiplexer definition. 1 unbounded

multiplexer-definition

DEPRECATED: These configuration options are retained for backwards compatibility. Using this
element causes a warning to be output in the logs. In future, these configuration options will be
removed. The multiplexers used by Diffusion can be configured using the multiplexer element.

The following table lists the attributes that an element of type multiplexer-definition can
have:

Name Type Description Required

name push:string The multiplexer name. true

The following table lists the elements that an element of type multiplexer-definition can
contain:

Name Type Description Min
occurs

Max
occurs

size push:positiveInt This is the number of multiplexer
instances that start in readiness for
clients to be assigned to. If there are
going to be a large number of users,

0 1

Diffusion | 555

Name Type Description Min
occurs

Max
occurs

increase this number. If a value is not
specified, a default value equal to the
number of available processors is used.

thread-priority push:positiveInt DEPRECATED: Since 5.8. The multiplexer
thread priority can no longer be set.
This configuration option has no effect,
and is retained only for backwards
compatibility.

0 1

load-balancer push:string DEPRECATED: This is the load balancer
to use for for assigning connecting
clients to multiplexer instances.
There are currently two implemented
load balancers, 'RoundRobin' and
'LeastClients'. If a value is not specified,
a default of 'RoundRobin' is used. In
future, only the 'RoundRobin' load
balancing policy will be provided. If you
have found the 'LeastClients' algorithm
useful, contact Push Technology
Support and reference case 11098.

0 1

latency-
warning

push:millis Multiplexers are critical to the operation
of Diffusion. If there are too many
clients assigned to too few multiplexer
instances, there is a possibility of
message latency. This is an optional
flag which can be set to issue a warning
if the multiplexer instance is taking
too long in its operational cycle (see
ServerNotificationListener in the
publisher API). If this value is 0, this
feature is not enabled. If this value is not
supplied, a default of 0 is used.

0 1

max-event-
queue-size

push:positiveInt This specifies the maximum size of the
multiplexer event queue. This is the
queue on which events from publishers
are queued for multiplexers and the
default value is normally more than
adequate. If this queue fills, it can cause
the publisher threads to block until they
can enqueue events and in this case
it might be necessary to increase the
value. Typically, leave this value at the
default of 128k.

0 1

multiplexer

Multiplexer definition.

The following table lists the elements that an element of type multiplexer can contain:

Diffusion | 556

Name Type Description Min
occurs

Max
occurs

size push:positiveInt This is the number of multiplexer
instances that start in readiness for
clients to be assigned to. If there are
going to be a large number of users,
increase this number. If a value is not
specified, a default value equal to the
number of available processors is used.

0 1

thread-priority push:positiveInt DEPRECATED: Since 5.8. The multiplexer
thread priority can no longer be set.
This configuration option has no effect,
and is retained only for backwards
compatibility.

0 1

latency-
warning

push:millis The multiplexer latency warning
threshold. Multiplexers are critical
to the operation of Diffusion. If there
are too many clients assigned to too
few multiplexer instances, there is a
possibility of message latency. This is
an optional setting which can be set
to issue a warning if the multiplexer
instance is taking too long to complete
its operational cycle. If this value is not
supplied, a default of 1000 (1 second)
is used. Warnings are logged to the
server log and reported to the publisher
MultiplexerLatencyListener event API.

0 1

max-event-
queue-size

push:positiveInt This specifies the maximum size of the
multiplexer event queue. This is the
queue on which events from publishers
are queued for multiplexers and the
default value is normally more than
adequate. If this queue fills, it can cause
the publisher threads to block until they
can enqueue events and in this case
it might be necessary to increase the
value. Typically, leave this value at the
default of 128k.

0 1

write-selectors

DEPRECATED: These configuration options are no-ops retained for backwards compatibility. All types
of selector have now been unified. The selectors used by Diffusion can be configured using selector-
thread-pool-definition.

The following table lists the elements that an element of type write-selectors can contain:

Name Type Description Min
occurs

Max
occurs

thread-priority push:positiveInt DEPRECATED: This configuration setting
is a no-op.

0 1

Diffusion | 557

Name Type Description Min
occurs

Max
occurs

size push:positiveNonZeroIntDEPRECATED: This configuration setting
is a no-op.

0 1

timeout push:millis DEPRECATED: This configuration setting
is a no-op.

0 1

load-balancer push:string DEPRECATED: This configuration setting
is a no-op.

0 1

queue-size push:positiveNonZeroIntDEPRECATED: This configuration setting
is a no-op.

0 1

hooks

User hooks used in the server.

The following table lists the elements that an element of type hooks can contain:

Name Type Description Min
occurs

Max
occurs

startup-hook push:string This is the class name of a class
that implements the interface
com.pushtechnology.diffusion.api.publisher.ServerStartupHook.
If specified, the hook is instantiated and
the serverStarting method called when
the server is starting, before the loading
of publishers.

0 1

shutdown-
hook

push:string This is the class name of a class
that implements the interface
com.pushtechnology.diffusion.api.publisher.ServerShutdownHook.
If specified, the hook is instantiated and
the serverStopping method called when
the server is stopping.

0 1

security

Server security properties.

The following table lists the elements that an element of type security can contain:

Name Type Description Min
occurs

Max
occurs

authorisation-
handler-class

push:string This is the full name of a class, on
the classpath, that implements the
AuthorisationHandler interface in the
Java publisher API. If specified, the
handler is instantiated when the server
starts and is called to authorize client
connections, subscriptions, and fetch
requests.

0 1

authentication-
handlers

authentication-
handlers

0 1

Diffusion | 558

authentication-handlers

Authentication handlers, in order of decreasing precedence. The authentication handlers are called to
authenticate new connections and changes to the principal associated with a session. Authentication
handlers are configured in precedence order. Authentication succeeds if a handler returns "allow" and
all higher precedence handlers (earlier in the order) return "abstain". Authentication fails if a handler
returns "deny" and all higher precedence handlers return "abstain". If all authentication handlers
return "abstain", the request is denied. After the outcome is known, the server might choose not to call
the remaining handlers.

The following table lists the elements that an element of type authentication-handlers can
contain:

Name Type Description Min
occurs

Max
occurs

authentication-
handler

server-
authentication-
handler

An authentication handler hosted by the
server.

0 unbounded

control-
authentication-
handler

control-
authentication-
handler

An authentication handler registered by
a client.

0 unbounded

system-
authentication-
handler

system-
authentication-
handler

An authentication handler that uses
the configured system authentication
store to validate principals and to
define an action for anonymous logins.
The XSD does not prevent you from
configuring the system authentication
multiple times. However, the Diffusion
server restricts this and will not start if
you define the system authentication
handler more than once.

0 unbounded

server-authentication-handler

An authentication handler hosted by the server. The handler is instantiated when the server starts.

The following table lists the attributes that an element of type server-authentication-
handler can have:

Name Type Description Required

class push:string The class attribute specifies the
fully qualified name of a handler
implementation class that implements the
com.pushtechnology.diffusion.client.security.authentication.AuthenticationHandler
interface. The class must be available on the
classpath.

true

system-authentication-handler

The system authentication handler uses the configured system authentication store to validate
principals and to define an action for anonymous logins. If the system handler is specified then it
will check if a principal is specified in the store and if so will validate its credentials against the store.
The store may also specify additional assigned roles to be granted to a principal. If a principal is not
specified in the store then the handler will abstain. The store may indicate whether to allow, deny or
abstain for anonymous logins.

Diffusion | 559

control-authentication-handler

Client sessions register control authentication handlers using an identifying name. A <control-
authentication-handler> must be configured with a matching handler-name. Configure at most one
<control-authentication-handler> for a handler-name.

The following table lists the attributes that an element of type control-authentication-
handler can have:

Name Type Description Required

handler-name push:string The handler name attribute must match the
identifying name used by the client session to
register a control authentication handler.

true

conflation

Conflation policies and topic to policy mappings.

The following table lists the elements that an element of type conflation can contain:

Name Type Description Min
occurs

Max
occurs

default-
conflation-
policy

push:string The default conflation policy. This
specifies a conflation policy that is used
for any topics that do not have explicit
conflation policy mappings defined.
If this is not specified, conflation does
not occur for topics that do not have
a policy mapping defined. If this value
is specified, it must be the name of a
defined policy.

0 1

conflation-
policy

conflation-
policy

Conflation policy. 0 unbounded

topic-
conflation

topic-
conflation

A mapping between a topic (or topic
selector pattern) and a policy.

0 unbounded

conflation-policy

Conflation policy.

The following table lists the attributes that an element of type conflation-policy can have:

Name Type Description Required

name push:string The conflation policy name. true

The following table lists the elements that an element of type conflation-policy can contain:

Name Type Description Min
occurs

Max
occurs

mode push:string The conflation mode. This can have the
value 'replace' or 'append'. If a value
is not specified, a default of 'replace'
is assumed. The value 'replace' means
that when a matching message is found,
the message is replaced by the new (or

0 1

Diffusion | 560

Name Type Description Min
occurs

Max
occurs

merged) message in its current queue
position. The value 'append' means that
when a matching message is found, the
message is removed from its current
queue position and the new (or merged)
message is appended to the end of the
queue. This option preserves message
ordering but there is the danger that
messages are constantly sent to the end
of the queue.

matcher push:string The full class name of a
message matcher of type
com.pushtechnology.diffusion.api.conflation.MessageMatcher.
If a class is not supplied, a default
matcher that matches by topic name is
used.

0 1

merger push:string The full class name of a
message merger of type
com.pushtechnology.diffusion.api.conflation.MessageMerger.
If a class is not supplied, no merging
with the new message occurs. The latest
message either replaces the existing
one or the existing one is removed
and the new one appended to the
end of the queue depending upon the
mode. The default merging behavior
is suitable for single value topics, but
not for any topics that have a complex
structure, such as record topics. If the
messages being conflated are delta
messages, information can be lost when
intermediate deltas are discarded in
favor of the latest delta message.

0 1

topic-conflation

A mapping between a topic (or topic selector pattern) and conflation policy.

The following table lists the elements that an element of type topic-conflation can contain:

Name Type Description Min
occurs

Max
occurs

topic push:string The name of a topic or a topic selector
pattern that indicates the topic or topics
that the specified conflation policy is
applied to.

1 1

policy push:string The name of a configured conflation
policy that is applied to the specified
topic or topics.

1 1

Diffusion | 561

client-queues

Client queue definitions.

The following table lists the elements that an element of type client-queues can contain:

Name Type Description Min
occurs

Max
occurs

default-queue-
definition

push:string The name of the queue definition to
use by default. Connectors that do not
explicitly specify a queue definition use
the one specified here.

1 1

queue-
definition

queue-
definition

Queue definition. 1 unbounded

queue-definition

This defines the properties of a client queue.

The following table lists the attributes that an element of type queue-definition can have:

Name Type Description Required

name push:string The queue definition name. true

The following table lists the elements that an element of type queue-definition can contain:

Name Type Description Min
occurs

Max
occurs

max-depth push:positiveInt The maximum depth of the queue. If
the number of messages queued for a
client exceeds this number, the server
disconnects the client.

1 1

conflates push:boolean Specifies whether conflation is applied
to all clients using this queue definition.
If this value is not specified, conflation is
not applied by default.

0 1

upper-
threshold

push:percent This specifies a percentage of the
maximum queue size and if this value
is reached then any listeners (see
ClientListener in the publisher API)
are notified. Notification occurs only
once and does not occur again until
the queue has returned to the lower
threshold. If this value is not specified,
no upper limit notification occurs.

0 1

lower-
threshold

push:percent This specifies a percentage of the
maximum queue size and indicates
the level at which listeners (see
ClientListener in the publisher API) are
notified after an upper limit notification
has occurred and the queue size has

0 1

Diffusion | 562

Name Type Description Min
occurs

Max
occurs

dropped back to the specified lower
limit. If this value is not specified, no
lower limit notification occurs.

auto-fragment push:boolean DEPRECATED : since 5.1.6. Topic
message fragmentation has been
removed. This setting has no effect.

0 1

connection-timeouts

Connection-related timeouts.

The following table lists the elements that an element of type connection-timeouts can contain:

Name Type Description Min
occurs

Max
occurs

write-timeout push:millis The write timeout in milliseconds for
blocking write operations. Most write
operations are non-blocking and are
not affected by this timeout. Blocking
writes include connection responses
to new clients, and HTTP responses to
web server requests. If this value is not
specified, a default of 2 seconds is used.
If this exceeds one hour (3600000ms) a
warning will be logged and the time-out
will be set to one hour.

0 1

connection-
timeout

push:millis The time in milliseconds allowed for a
connection to complete its handshake
processing, including the time taken
to call any configured authentication
handlers and look up location details. If
this value is not specified, a default of 2
seconds is used. If this exceeds one hour
(3600000ms) a warning will be logged
and the time-out will be set to one hour.

0 1

date-formats

Date and time formats.

The following table lists the elements that an element of type date-formats can contain:

Name Type Description Min
occurs

Max
occurs

date push:string The format used when displaying dates.
Specify the format according to the
Java SimpleDateFormat specification.
If a format is not specified, a default of
"yyyy-MM-dd" is used.

0 1

Diffusion | 563

Name Type Description Min
occurs

Max
occurs

time push:string The format used when displaying times.
Specify the format according to the
Java SimpleDateFormat specification.
If a format is not specified, a default of
"HH:mm:ss" is used.

0 1

date-time push:string The format used when displaying date
and time. Specify the format according
to the Java SimpleDateFormat
specification. If a format is not specified,
a default of "yyyy-MM-dd HH:mm:ss" is
used.

0 1

timestamp push:string The format used when displaying
a timestamp - for example, in a log
- to millisecond precision. Specify
the format according to the Java
SimpleDateFormat specification. If a
format is not specified, a default of
"yyyy-MM-dd HH:mm:ss.SSS" is used.

0 1

thread-pools

Thread pools.

The following table lists the elements that an element of type thread-pools can contain:

Name Type Description Min
occurs

Max
occurs

inbound push:string Name of the inbound thread pool
definition.

1 1

outbound push:string DEPRECATED : This property is no longer
used.

0 1

background-
thread-size

push:int Number of threads to use for the
background thread pool. If a value is not
specified, a default of 10 is used.

0 1

thread-pool-
definition

thread-pool-
definition

Thread pool definition. 1 unbounded

thread-pool-definition

Thread pool definition.

The following table lists the attributes that an element of type thread-pool-definition can
have:

Name Type Description Required

name push:string Name of the thread pool definition. true

The following table lists the elements that an element of type thread-pool-definition can
contain:

Diffusion | 564

Name Type Description Min
occurs

Max
occurs

core-size push:positiveInt The core number of threads to have
running in the thread pool. Whenever
a thread is required a new thread is
created until this number is reached
even if there are idle threads already in
the pool.

1 1

max-size push:positiveInt The maximum number of threads that
can be created in the thread pool before
tasks are queued. Such threads are
released immediately after execution. If
not set, the value defaults to the core-
size.

0 1

queue-size push:positiveInt The thread pool queue size. When the
max-size is reached, tasks are queued. If
the value is 0, the queue is unbounded. If
the value is not 0, it must be at least 10.

1 1

keep-alive push:millis The time to keep inactive threads alive
for. This does not apply to core threads.
If this value is not specified, a default of
0 is used.

0 1

priority push:positiveInt DEPRECATED: Since 5.8. The thread
priority can no longer be set. This
configuration option has no effect,
and is retained only for backwards
compatibility.

0 1

thread-pool-
listener

thread-pool-
listener

DEPRECATED: Since 5.8 configuration of
thread pool listeners is not supported

0 1

rejection-
handler-class

push:string The name of a class implementing
the ThreadPoolRejectionHandler
interface which is called if a task
cannot be executed by the Thread
Pool. If this value is not specified, a
default rejection policy is used so that
rejected tasks are executed in the
calling thread. The default rejection
policy is implemented by the class
com.pushtechnology.diffusion.api.threads.ThreadService.CallerRunsRejectionPolicy.
A thread is rejected if all the threads are
in use and the queue is full.

0 1

thread-pool-listener

Thread pool listener details.

The following table lists the elements that an element of type thread-pool-listener can
contain:

Diffusion | 565

Name Type Description Min
occurs

Max
occurs

queue-
notification-
handler-class

push:string The name of a class implementing
the ThreadPoolNotificationHandler
interface which is instantiated to handle
notifications on the thread pool.

1 1

queue-upper-
threshold

push:percent The size of the thread pool queue at
which the notification handler is called
on the queueUpperThresholdReached
method. The method is called once only
until the queue size drops below the
specified lower threshold.

1 1

queue-lower-
threshold

push:percent The size of the thread pool queue at
which the notification handler is called
on the queueLowerThresholdReached
method if the upper threshold has
previously been breached.

1 1

selector-thread-pools

Thread pools.

The following table lists the elements that an element of type selector-thread-pools can
contain:

Name Type Description Min
occurs

Max
occurs

default push:string Name of the default selector thread pool
definition.

0 1

selector-
thread-pool-
definition

selector-
thread-pool-
definition

Selector thread pool definition. 1 unbounded

selector-thread-pool-definition

Selector thread pool definition.

The following table lists the attributes that an element of type selector-thread-pool-
definition can have:

Name Type Description Required

name push:string Name of the selector thread pool definition. true

The following table lists the elements that an element of type selector-thread-pool-
definition can contain:

Name Type Description Min
occurs

Max
occurs

size push:positiveInt The number of selector threads to
have running in the thread pool. The
number of selector threads created is
the maximum of the value defined here

0 1

Diffusion | 566

Name Type Description Min
occurs

Max
occurs

and the number of acceptors defined in
the Connectors.xml file. This number is
fixed and does not change at runtime.

whois

WhoIs service details.

The following table lists the elements that an element of type whois can contain:

Name Type Description Min
occurs

Max
occurs

provider push:string Name of the WhoIs provider class
that must be on the classpath
and must implement the API class
WhoIsProvider. If a provider is not
specified, WhoIsDefaultProvider is used.

0 1

threads push:int The number of background threads that
process WhoIs resolver requests. If a
value is not specified, a default of 2 is
used. If the value is set to 0, the service is
not started.

0 1

host push:string The hostname of a WhoIs provider that
adheres to the RFC3912 WhoIs protocol.
If a hostname is not specified, a default
of "whois.ripe.net" is used.

0 1

port push:port The port number that the WhoIs
provider listens on. If a value is not
specified, the normal value of 43 is used.

0 1

whois-cache whois-cache Details of the WhoIs service cache that is
used to cache WhoIs lookup results. If a
value is not specified, the default values
are used.

0 1

whois-cache

Details of the WhoIs service cache that is used to cache WhoIs lookup results.

The following table lists the elements that an element of type whois-cache can contain:

Name Type Description Min
occurs

Max
occurs

maximum push:int The maximum size of the WhoIs cache.
When the cache size exceeds this
number it is tidied. A value of 0 means
the cache grows indefinitely unless
entries are removed because they have
exceeded their retention time. If a value
is not specified, a default of 1000 is used.

0 1

Diffusion | 567

Name Type Description Min
occurs

Max
occurs

retention push:millis The time for which WhoIs cache entries
are retained before being deleted. A
value of 0 means entries are retained
indefinitely or until the cache reaches its
maximum size. If a value is not specified,
a default of 0 is used.

0 1

tidy-interval push:millis The interval at which the Whois cache
tidier task checks if any cache entries
have passed their retention time or if the
cache has exceeded its maximum size.
This is ignored if both maximum and
retention are 0. If a value is not specified,
a default of 1 minute is used.

0 1

auto-deployment

Auto deployment details.

The following table lists the elements that an element of type auto-deployment can contain:

Name Type Description Min
occurs

Max
occurs

directory push:string The name of the automatic deployment
directory.

1 1

scan-frequency push:millis The frequency at which the deployment
directory is scanned for new
deployments. If a value is not specified,
a default of 5 seconds is used.

0 1

geo-ip

GeoIP details.

The following table lists the attributes that an element of type geo-ip can have:

Name Type Description Required

enabled push:boolean Set to true to enable GeoIP lookup. This needs to
be set to true if you are going to use connection
or subscription validation policies. If a value is not
specified, a default of true is used.

false

The following table lists the elements that an element of type geo-ip can contain:

Name Type Description Min
occurs

Max
occurs

file-name push:string The name of the Maxmind GeoCityIP city
file. If a value is not specified, a default
of "../data/GeoLiteCity.dat" is used.

0 1

Diffusion | 568

usr-lib

A list of user libraries from which user code is loaded.

The following table lists the elements that an element of type usr-lib can contain:

Name Type Description Min
occurs

Max
occurs

directory push:string Directory to load classes from. When
the server starts, this folder is traversed,
including subdirectories and all jars or
zip files added to the class loader.

1 unbounded

fanout

Specifies fan-out connections to establish with primary servers. Typically there is a single connection
but it is possible to replicate topics from more than one primary server as long as they do not overlap.
All such connections are automatically established when the secondary server starts and will recover
as configured.

The following table lists the elements that an element of type fanout can contain:

Name Type Description Min
occurs

Max
occurs

connection fanout-
connection

A fan out connection. 0 unbounded

fanout-connection

Represents a fan-out connection from a secondary server to a primary server.

The following table lists the elements that an element of type fanout-connection can contain:

Name Type Description Min
occurs

Max
occurs

url push:string The connection URL which specifies the
primary server to connect to.

1 1

principal push:string The principal used to connect to the
primary server. If not specified, an
anonymous connection is assumed.

0 1

password push:string The password to use for the connection.
If not specified, no credentials are
assumed.

0 1

retry-delay push:millis This is the time to wait after failing to
connect or losing a connection before
trying to connect again. The value is
specified in milliseconds. If this value is
not specified, a default of 1s is used.

0 1

retry-interval push:int DEPRECATED : This value is no longer
used. Use retry-delay instead.

0 1

reconnect-
timeout

push:millis This is the total time in milliseconds that
will be allowed to reconnect a failed
connection to the primary server. For
reconnection to work the primary server

0 1

Diffusion | 569

Name Type Description Min
occurs

Max
occurs

connector must have been configured
to support reconnection. If this is not
specified, a value of 0 is assumed which
means that reconnection will not be
attempted (this does not affect retry).
If reconnection is configured and a
load balancer is in use then it must be
configured for sticky routing.

recovery-
buffer-size

push:int If the primary server is configured
to support reconnection, a session
established with a non-zero reconnect-
timeout retains a buffer of sent
messages. If the session disconnects
and reconnects, this buffer is used to
re-send messages that the server has
not received. The default value is 10,000
messages. If reconnect-timeout is 0 then
this value is ignored.

0 1

input-buffer-
size

push:bytes Specifies the size of the input buffer to
use for the connection with the primary
server. This is used to receive messages
from the primary server. Set this to the
same size as the output buffer used
at the primary server. If not specified,
maximum message size is assumed.

0 1

output-buffer-
size

push:bytes The size of the output buffer to use
for the connection with the primary
server. This is used to send messages
to the primary server. Set this to the
same size as the input buffer used by
the primary server. If not specified,
maximum message size is assumed.

0 1

maximum-
queue-size

push:int The maximum number of messages that
can be queued to send to the primary
server. If this number is exceeded, the
connection will be closed. This must
be sufficient to cater for messages that
may be queued whilst disconnected
(awaiting reconnect). The default value
is 10,000 messages.

0 1

connection-
timeout

push:millis This specifies the connection timeout
value (in milliseconds). If a value is not
specified, a default of 2s is used.

0 1

write-timeout push:millis This specifies the write timeout value (in
milliseconds). If a value is not specified,
a default of 2s is used.

0 1

Diffusion | 570

Name Type Description Min
occurs

Max
occurs

link fanout-link Specifies a link to a selection of topics
at the primary server that are to be
replicated at the secondary server.

1 unbounded

fanout-link

Represents a selection of topics from the primary topic tree to be replicated to the secondary server.

The following table lists the elements that an element of type fanout-link can contain:

Name Type Description Min
occurs

Max
occurs

selector push:string A topic selector specifying the topics
to be replicated. This must not overlap
(select the same topics as) any other
link within this or any other connection
configured for the secondary server.

1 1

Related concepts
User-written authentication handlers on page 140
You can implement authentication handlers that authenticate clients that connect to the Diffusion
server or perform an action that requires authentication.

Configuring connectors
A connector provides a connection point for external applications to connect to the Diffusion server
over a TCP connection. Use the Connectors.xml configuration file to configure your connectors.

Each connector has a socket server thread which reacts to an incoming connection. The socket
information is defined by the connector. Suitable connectors must be defined for inbound connections
expected by the Diffusion server.

The following properties are common to all connectors:

Table 57: Connectors properties

Name A name by which the connector can be identified.

Port A port number on which to accept requests (or policy requests).

Host The host to accept requests (only relevant on a multi-homed machine).

DEPRECATED:
Number of
acceptor threads

The number of acceptor threads. This can be tuned for performance reasons.

Input buffer size The size of the socket input buffer to use for each connection.

Output buffer size The size of the socket output buffer to use for each connection.

Socket buffer sizes are very important in achieving the best performance. For more information, see
Tuning on page 783.

Diffusion | 571

Restricting connection types

By default a connector can accept any type of connection handled by Diffusion, but you can configure
a connector so that it accepts only one type of connection as follows:

Table 58: Connection restrictions

client Client connections.

policy Policy file requests.

all Any type of connection.

Client connections

Connectors can accept connections from any type of client. Any number of connectors can be defined
to provide different connection points with different properties.

Each client connection has an input buffer to receive messages from the client. The configured input
buffer size must be large enough to accommodate the largest message expected from the client. If the
maximum message size and the input buffer size are configured as different values, the larger of the
two is used as the input buffer size.

The output buffer size is used to assign an output buffer per client multiplexer into which messages
are dequeued prior to transmission. This can have an important effect on performance. For more
information, see Tuning on page 783.

Enabling client reconnection

Specify a reconnection timeout, maximum queue depth, and recovery buffer size by using the
<reconnect> element in the etc/Connectors.xml configuration file.

Reconnection timeout (keep-alive)
How long a disconnected client's session remains available on the server before
being closed. By default, this is 60 seconds.

Maximum queue depth (max-depth)
Optional maximum limit on the number of messages to queue for a disconnected
client session. By default, this is the same as the queue depth for a connected
client session, which is defined by the queue definitions in Connectors.xml and
Server.xml.

Recovery buffer size (recovery-buffer-size)
The maximum number of sent messages to keep in a buffer. These messages can then
be recovered on reconnection.

<connector>
 ...
 <reconnect>
 <keep-alive>60s</keep-alive>
 <max-depth>1000</max-depth>
 <recovery-buffer-size>64</recovery-buffer-size>
 </reconnect>
 ...
</connector>

Diffusion | 572

A client can reconnect to the server through this connector within 60 seconds of becoming
disconnected. While the client is disconnected, up to 1000 messages are queued for it. These messages
are delivered to the client when it reconnects. A buffer of up to 64 sent messages are retained in the
recovery buffer. When a client reconnects, the Diffusion server use this buffer to re-send any messages
that the client has not received.

Policy connections

Connectors are used to serve policy file requests to plugin clients. Flash and Silverlight require policy
files to be served from different ports (Flash on 843 and Silverlight on 943) so if plugin clients are in use
it will be necessary to define a separate connector for each type of plugin client.

The connector configuration specifies the path of an XML policy file to be sent to the client.

Related reference
Connectors.xml on page 572
This file specifies the schema for the connectors properties.

Connectors.xml
This file specifies the schema for the connectors properties.

connectors

Connectors

The following table lists the elements that an element of type connectors can contain:

Name Type Description Min
occurs

Max
occurs

connector connector Connector definition 0 unbounded

connector

Connector definition

The following table lists the attributes that an element of type connector can have:

Name Type Description Required

name push:string The connector name true

The following table lists the elements that an element of type connector can contain:

Name Type Description Min
occurs

Max
occurs

required push:boolean This setting specifies if the connector is
required on server start-up. If set to true
and the connector does not start, the
server is shut down.

0 1

type connectorType The type of connection supported. By
default 'all' types are supported but the
connector can be restricted to one of the
following specific types - 'client' (Clients
only), or 'policy' (Policy File Requests
only).

0 1

Diffusion | 573

Name Type Description Min
occurs

Max
occurs

api-type connectorApiTypeThis setting constrains the API that
can be used with this connector. The
allowed values are 'all', 'classic', and
'unified'. The value 'unified' indicates
that clients must use the Unified API.
The value 'classic' indicates that clients
must use the Classic API. The value 'all'
indicates that clients can use either API.
The default value is 'all'. DEPRECATED:
since 5.9 as classic client APIs are also
deprecated.

0 1

host push:string The name or the IP address that the
connector binds to. This is optional.

0 1

port push:port The port on which the connector accepts
connections.

1 1

acceptors push:positiveNonZeroIntDEPRECATED: This value is no longer
used.

0 1

backlog push:positiveNonZeroIntThe maximum queue length for
incoming clients. If a connection
indication arrives when the queue is full,
the connection is refused. If a value is
not specified, a default of 1000 is used.

0 1

socket-
conditioning

socket-
conditioning

Describes the properties associated with
TCP socket connections.

1 1

web-server push:string If this connector is required to serve
HTTP requests, this element specifies
a web-server entry in WebServer.xml. If
a value is not specified, the connector
cannot serve HTTP requests.

0 1

policy-file push:string The location/name of the policy file if
this connector is required to act as a
policy file server (type='all' or 'policy').

0 1

validation-
policy-file

push:string The location/name of a connection
validation policy file to use for this
connector. Applies only to type 'all' or
'client'.

0 1

key-store key-store-
definition

Keystore details for any connector that
is to support secure (SSL) connections. If
this is not specified, SSL connections are
not supported.

0 1

queue-
definition

push:string An optional queue definition to use
for this connector. This applies only to
connectors of type 'all' or 'client'. The
definition must exist in Server.xml. If
this is not specified, the default queue
definition specified in Server.xml is used.

0 1

Diffusion | 574

Name Type Description Min
occurs

Max
occurs

reconnect reconnect Optional reconnection properties
which apply only to connectors that
accept 'client' connections. If this is
not specified, reconnection of client
connections is not supported.

0 1

ignore-errors-
from

ignore-errors-
from

Specifies addresses from which
connection errors can be ignored. This
is useful for masking errors that might
be reported due to the connector port
being pinged by some known external
entity.

0 1

thread-pool-
definition

push:string Optionally, this can be used to specify
a thread pool definition to be used for
this connector to create its own inbound
thread pool. If specified, the thread
pool definition must exist in Server.xml.
If a value is not specified, the default
inbound thread pool is used.

0 1

selector-
thread-pool-
definition

push:string Optionally, this can be used to specify
a selector thread pool definition to be
used for this connector to deal with NIO
operations. If specified, the selector
thread pool definition must exist in
Server.xml. If a value is not specified, the
default selector thread pool is used.

0 1

system-ping-
frequency

push:millis This indicates the interval at which
clients are pinged by the server to
ensure that they are still connected. If a
response is not received from the client
before the expiry of another interval
period, the client is assumed to be
disconnected. If this is not specified or
a value of 0 is supplied, clients are not
automatically pinged.

0 1

fetch-policy fetch-policy Specifies a policy for batching fetch
requests. If a value is not specified, no
policy is applied and fetches are not
batched.

0 1

proxy-protocol proxyProtocol Indicates the proxy protocol required
for connection. Can have the values
'NONE' or 'HA_PROXY'. The default
value is 'NONE'. Only connections with
the protocol specified are allowed.
On publicly accessible connectors,
ensure that this value is set to NONE.
'HA_PROXY' refers to the proxy protocol
that was first implemented by HAProxy

0 1

Diffusion | 575

Name Type Description Min
occurs

Max
occurs

but it is also supported by others
including Amazon's Elastic Load
Balancer.

connection-
timeout

push:millis This is the time in milliseconds allowed
for a connection to take place and
complete its handshake processing. If
not specified then 2s is assumed.

0 1

socket-conditioning

Describes properties associated with TCP socket connections.

The following table lists the elements that an element of type socket-conditioning can contain:

Name Type Description Min
occurs

Max
occurs

input-buffer-
size

push:bytes Specifies the size of the socket input
buffer to use for each connection. If a
value is not specified, a default of 128k
is used. The greater of this value and
the max-message-size set in Server.xml
is used when setting the socket input
buffer size.

0 1

output-buffer-
size

push:bytes This value specifies the size of
the output buffer to use for each
connection. This must be large enough
to accommodate the largest message to
be sent. Messages are 'batched' into this
buffer and so the larger the buffer, the
more messages can be sent in a single
write. If a value is not specified, a default
of 64k is used.

0 1

keep-alive push:boolean This enables or disables TCP keep-alive.
If a value is not specified, a default of
true is used.

0 1

no-delay push:boolean This enables or disables TCP_NODELAY
(disable/enable Nagle's algorithm). If a
value is not specified, a default of true is
used.

0 1

reuse-address push:boolean When a TCP connection is closed the
connection can remain in a timeout
state for a period of time after the
connection is closed (typically known
as the TIME_WAIT state or 2MSL wait
state). For applications using a well-
known socket address or port, it might
not be possible to bind a socket to
the required SocketAddress if there
is a connection in the timeout state
involving the socket address or port.

0 1

Diffusion | 576

Name Type Description Min
occurs

Max
occurs

Enabling this feature allows the socket
to be bound even though a previous
connection is in a timeout state. If this
value is not specified, the feature is
enabled.

reconnect

Reconnect properties.

The following table lists the elements that an element of type reconnect can contain:

Name Type Description Min
occurs

Max
occurs

keep-alive push:millis This specifies the reconnection timeout.
During this period a disconnected
client can reconnect to the same client
session. Messages for the client continue
to be queued during this period.

1 1

max-depth push:positiveInt As messages continue to be queued for
a client whilst it is disconnected, this
enables you to specify a larger maximum
queue size that is used during the period
that the client is disconnected. When
the client reconnects, the maximum
reverts back to its previous size (once
any backlog had been cleared). If the
specified size is not greater than the
current maximum size, this has no
effect. If this value is not specified, a
default of 0 is used which means that
no attempt is made to extend the queue
size when a client is disconnected.

0 1

recovery-
buffer-size

push:positiveInt If the keep-alive time is not zero, this
connector supports reconnection.
For each client connected via this
connector, the server will retain a
buffer of up to recovery-buffer-size sent
messages. If a client disconnects and
reconnects, the server uses the buffer
to re-send messages that the client
has not received. The default value is
128 messages. Higher values increase
the chance of successful reconnection,
but increase the per-client memory
footprint.

0 1

key-store-definition

The keystore definition that allows SSL connection to a connector.

The following table lists the attributes that an element of type key-store-definition can have:

Diffusion | 577

Name Type Description Required

mandatory push:boolean If this is set to true, all connections must use this
keystore and SSL connection is mandatory. If a
value is not specified, a default of false is used,
meaning that the connector accepts either SSL or
non-SSL connections.

false

The following table lists the elements that an element of type key-store-definition can
contain:

Name Type Description Min
occurs

Max
occurs

file push:string The keystore file path. 1 1

password push:string The password for the keystore. 1 1

ignore-errors-from

Some external monitors cause the Diffusion server to log errors, as it is not a valid Diffusion
connection. Adding the remote IP address to this list ensure that the errors are not logged.

The following table lists the elements that an element of type ignore-errors-from can contain:

Name Type Description Min
occurs

Max
occurs

ip-address push:string An IP address or unknown if the remote
IP address is being masked.

1 unbounded

fetch-policy

This is the policy for batching fetch requests. This can be used when fetches on topic sets might be
large and lead to an excessive number of fetch reply messages being queued for a client at one time.
The policy can define that the replies are sent in periodic batches to allow the client time to process
them and prevent client queues filling.

The following table lists the elements that an element of type fetch-policy can contain:

Name Type Description Min
occurs

Max
occurs

batch-size push:positiveInt Specifies the maximum number of fetch
reply messages to send per batch. If this
is set to 0, no batching occurs.

1 1

delay push:millis Specifies the time period between
submissions of batches. If a batch size is
specified, this must be a positive value.

1 1

Related reference
Configuring connectors on page 570

Diffusion | 578

A connector provides a connection point for external applications to connect to the Diffusion server
over a TCP connection. Use the Connectors.xml configuration file to configure your connectors.

Configuring user security
You can use the Security.store and SystemAuthentication.store files in the etc
directory of your Diffusion server to configure the security roles and how they are assigned.

These files can also be updated on the running Diffusion server by clients that provide
the capability to update the security settings. For more information, see #unique_70/
unique_70_Connect_42_managing_security on page .

Related concepts
Updating the security store on page 414
A client can use the SecurityControl feature to update the security store. The information in the
security store is used by the Diffusion server to define the permissions assigned to roles and the roles
assigned to anonymous sessions and named sessions.

Role-based authorization on page 127
Diffusion restricts the ability to perform actions to authorized principals. Roles are used to map
permissions to principals.

Security.store
The Security.store file defines the security roles and the permissions associated with them. It
also defines the default set of roles that are assigned to named or anonymous client sessions.

The following sections each describe the syntax for a single line of the script file.

Assigning global permissions to a role

Railroad diagram

Backus-Naur form
set " role_name " permissions [[global_permission [, global_permission]]]

Example

set "ADMINISTRATOR" permissions [CONTROL_SERVER, VIEW_SERVER,
 VIEW_SECURITY, MODIFY_SECURITY]
set "CLIENT_CONTROL" permissions [VIEW_SESSION, MODIFY_SESSION,
 REGISTER_HANDLER]

Assigning default topic permissions to a role

Railroad diagram

Diffusion | 579

Backus-Naur form
set " role_name " default topic permissions [[topic_permission [, topic_permission]]]

Example

set "CLIENT" default topic permissions [READ_TOPIC ,
 SEND_TO_MESSAGE_HANDLER]

Assigning topic permissions associated with a specific topic path to a role

Railroad diagram

Backus-Naur form
set " role_name " topic " topic_path " permissions [[topic_permission [, topic_permission]
]]

Example

set "CLIENT" topic "foo/bar" permissions [READ_TOPIC,
 SEND_TO_MESSAGE_HANDLER]
set "ADMINISTRATOR" topic "foo" permissions [MODIFY_TOPIC]
set "CLIENT_CONTROL" topic "foo" permissions []

Removing all topic permissions associated with a specific topic path to a role

Railroad diagram

Backus-Naur form
remove " role_name " permissions for topic " topic_path "

Example

remove "CLIENT" permissions for topic "foo/bar"

Including roles within another role

Railroad diagram

developerguide/client/security/securitycontrol/railroad_assign_topic.png
developerguide/client/security/securitycontrol/railroad_assign_topic.png

Diffusion | 580

Backus-Naur form
set " role_name " includes [[" role_name " [, " role_name "]]]

Example

set "ADMINISTRATOR" includes ["CLIENT_CONTROL" , "TOPIC_CONTROL"]
set "CLIENT_CONTROL" includes ["CLIENT"]

Assigning roles to a named session

Railroad diagram

Backus-Naur form
set roles for named sessions [[" role_name " [, " role_name "]]]

Example

set roles for named sessions ["CLIENT"]

Assigning roles to an anonymous session

Railroad diagram

Backus-Naur form
set roles for anonymous sessions [[" role_name " [, " role_name "]]]

Example

set roles for anonymous sessions ["CLIENT"]

SystemAuthentication.store
The SystemAuthentication.store file defines the roles that are assigned by the system
authentication handler to client sessions that have authenticated with a specific security principal. It
also defines whether anonymous connections are allowed or denied.

The following sections each describe the syntax for a single line of the file.

Adding a principal

Railroad diagram

Diffusion | 581

Backus-Naur form
add principal " principal_name " " password " [[" role " [" role "]]]

Example

add principal "user6" "passw0rd"
add principal "user13" "passw0rd" ["CLIENT" "TOPIC_CONTROL"]

The password is passed in as plain text, but is stored in the system authentication store as a secure
hash.

Removing a principal

Railroad diagram

Backus-Naur form
remove principal " principal_name "

Example

remove principal "user25"

Assigning roles to a principal

Railroad diagram

Backus-Naur form
assign roles " principal_name " [" role " [, " role "]]

Example

assign roles "agent77" ["CLIENT", "CLIENT_CONTROL"]

When you use this command to assign roles to a principal, it overwrites any existing roles assigned to
that principal. Ensure that all the roles you want the principal to have are listed in the command.

Setting the password for a principal

Railroad diagram

Diffusion | 582

Backus-Naur form
set password " principal_name " " password "

Example

set password "user1" "passw0rd"

The password is passed in as plain text, but is stored in the system authentication store as a secure
hash.

Verifying the password for a principal

Railroad diagram

Backus-Naur form
verify password " principal_name " " password "

Example

verify password "user1" "passw0rd"

The password is passed in as plain text, but is stored in the system authentication store as a secure
hash.

Allowing anonymous connections

Railroad diagram

Backus-Naur form
allow anonymous connections [[" role " [, " role "]]]

Example

allow anonymous connections ["CLIENT"]

Denying anonymous connections

Railroad diagram

Backus-Naur form
deny anonymous connections

Diffusion | 583

Example

deny anonymous connections

Abstaining from providing a decision about anonymous connections

Railroad diagram

Backus-Naur form
abstain anonymous connections

Example

abstain anonymous connections

Configuring logging on the Diffusion server
Your Diffusion installation provides a default logging framework and the log4j2 logging framework.
Configure the Diffusion server to use your preferred framework.

The Diffusion server uses the JAR file located at lib/slf4j-binding.jar as its logging
framework. When you first install your Diffusion server, the logging framework used is the Diffusion
default logging.

Use log4j2

The log4j-slf4j-impl-version.jar file controls the log4j2 logging. This file is included in the
Diffusion installation in the lib/thirdparty directory.

To use log4j2 instead of the default Diffusion logging implementation, copy lib/thirdparty/
log4j-slf4j-impl-version.jar to lib/slf4j-binding.jar.

Configure the log4j2 logging framework with the log4j2.xml configuration file.

Use the default logging

To revert to the standard Diffusion logging implementation, copy lib/diffusion-slf4j-
binding.jar to lib/slf4j-binding.jar.

Configure the default logging framework with the Logs.xml configuration file.

Use another SLF4J implementation

To use an alternative SLF4J implementation, remove the lib/slf4j-binding.jar and add the
appropriate classes for the alternative implementation to the Diffusion server classpath.

Note: Alternative implementations of SLF4J are not supported for production use.

Related reference
Logging on page 773
Diffusion uses the Simple Logging Facade for Java (SLF4J) API to log messages from the Diffusion
server or from publishers running on the Diffusion server. SLF4J separates the logging of messages
in the Diffusion server from the logging framework. This separation enables you to configure an
independent back-end implementation to format and write out the log messages.

Logging back-end on page 774

Diffusion | 584

The work of formatting and writing out messages logged by the Diffusion server and publishers
running on the Diffusion server is done by the logging back-end. The logging back-end is a logging
framework that is independent of the Diffusion server. Diffusion provides a default logging framework,
but you can configure the Diffusion server to use other SLF4J implementations.

Log messages
Logging reference on page 775
Messages logged by the Diffusion server are logged at different levels depending on their severity.

Configuring default logging
To use the default logging, ensure that the Diffusion logging JAR is at lib/slf4j-binding.jar.
The default logging implementation is already located here when you first install the Diffusion server.
Use the Logs.xml configuration file to configure the behavior of the Diffusion default logging.

Log messages created by the Diffusion server, and by publishers deployed to the server, are filtered by
the configuration in etc/Logs.xml .

You can configure the following aspects of logging:

• The level of logging to the console
• The level of logging to a file
• The name and location of the file
• Whether the log files rotate based on time or file size or both
• The time interval to use to rotate the files
• The file size to use to rotate the files
• The number of old log files to keep

Warning: Logging can use considerable CPU resources. In a production environment, enable
only significant log messages (INFO and above). Performance degrades significantly when
running at finer logging levels as more messages are produced, each requiring processing.

Logging on the Diffusion server cannot be configured using the configuration API. The
LoggingConfig object is read-only.

Related reference
Logging on page 773
Diffusion uses the Simple Logging Facade for Java (SLF4J) API to log messages from the Diffusion
server or from publishers running on the Diffusion server. SLF4J separates the logging of messages
in the Diffusion server from the logging framework. This separation enables you to configure an
independent back-end implementation to format and write out the log messages.

Logging back-end on page 774
The work of formatting and writing out messages logged by the Diffusion server and publishers
running on the Diffusion server is done by the logging back-end. The logging back-end is a logging
framework that is independent of the Diffusion server. Diffusion provides a default logging framework,
but you can configure the Diffusion server to use other SLF4J implementations.

Log messages
Logging reference on page 775

Diffusion | 585

Messages logged by the Diffusion server are logged at different levels depending on their severity.

Logs.xml
This file specifies the schema for the log properties used to configure the Diffusion default logging
back-end. If you use a different logging back-end, this file is ignored.

logs

Properties defining logging options.

The following table lists the elements that an element of type logs can contain:

Name Type Description Min
occurs

Max
occurs

console-log-
level

push:log-level The log level to start console logging
at. Can be ERROR, WARN, INFO, DEBUG,
or TRACE. If a value is not specified, a
default of INFO is used.

0 1

log-message-
data

push:boolean DEPRECATED since 5.5 : Use log-
message-data in Server.xml instead.

0 1

server-log push:string The log to use for the server. This must
specify the name of a configured log
definition.

1 1

default-log-
directory

push:string The default log folder for all logs,
although this can be over-ridden for
each log.

1 1

async-logging push:boolean Indicates whether logging is
asynchronous. Asynchronous logging
is performed by a separate thread as
opposed to being performed in-line
by the logging thread. This is normally
set to true for performance reasons,
but asynchronous logging might cause
problems in some OS environments.
This element provides the option to turn
asynchronous logging off, if so advised.
If a value is not specified, a default of
true is used.

0 1

logging-queue-
size

push:positiveInt The size of the asynchronous logging
queue. In normal cases, leave this value
at the default value of 128k entries.

0 1

thread-name-
logging

push:boolean Indicates whether the thread name
is logged with messages. If this is not
specified, thread names are logged.

0 1

log log A log definition. 0 unbounded

log

A log definition.

The following table lists the attributes that an element of type log can have:

Diffusion | 586

Name Type Description Required

name Name of the log definition true

rotation-
period

push:positiveNonZeroIntA time period that the log exists for before being
rotated. This is a positive non-zero integer, with
unit specified by rotation-unit. If a rotation-period
is specified, the value of file-append must be false.

false

rotation-unit push:timeunit A time unit to specify the unit used alongside
rotation-period. This can be "day(s)", "hour(s)",
"minute(s)".

false

The following table lists the elements that an element of type log can contain:

Name Type Description Min
occurs

Max
occurs

log-directory push:string The name of the directory to which
this log file is written. If a value of not
specified, the default-log-directory is
used.

0 1

file-pattern push:string This is used to specify the name of
the log file. The following values can
be used within the pattern. "/" - the
local pathname separator. "%t" - the
system temporary directory. "%g" -
the generation number to distinguish
rotated logs. "%h" - the value of the
"user.home" system property. "%u" -
a unique number to resolve conflicts.
"%s" - the system type - for example,
'Diffusion'. "%n" - the system name
as defined in Server.xml. "%d" - the
date as specified in diffusion.properties
(date.format), this is included when
using daily rotation. "%%" - translates
to a single percent sign "%". If a log
file name is not specified, a default of
"%s.log" is used.

0 1

level push:log-level Specifies the starting log level. This
can be ERROR, WARN, INFO, DEBUG,
or TRACE. If a value is not specified, a
default of INFO is used.

0 1

xml-format push:boolean Indicates whether the log file is output in
XML format. If a value is not specified, a
default of false is used.

0 1

date-format push:string Specifies a date format to name a log.
Specify the format according to the
Java SimpleDateFormat specification.
If a format is not specified, a default of
"yyyy-MM-dd" is used.

0 1

Diffusion | 587

Name Type Description Min
occurs

Max
occurs

file-limit push:bytes Specifies an approximate maximum
amount to write (in bytes) to any one
log file. If this is zero, there is no limit. If
a value is not specified, a default of 0 is
used.

0 1

file-append push:boolean Specifies whether log records are
appended to existing log files. If a
rotation-period is specified, the value of
file-append must be false. If a value is
not specified, a default of false is used
and log files are overwritten.

0 1

file-count push:positiveNonZeroIntSpecifies the number of log files to
use. Must be at least 1. If a value is not
specified, a default of 1 is used.

0 1

rotate-daily push:boolean DEPRECATED: Indicates whether the
log is to rotate on a daily basis. This is
superseded by rotation-period.

0 1

Configuring log4j2
To use log4j2, replace the default logging JAR file with the log4j2 JAR file. Use the log4j2.xml
configuration file to configure the behavior of log4j2.

When the Diffusion server is configured to use the log4j2 logging framework, the Diffusion server
ignores the configuration in the Logs.xml file. Instead, it uses the log4j2.xml configuration file.

The log4j2.xml configuration file is located in the etc directory of your Diffusion installation. For
more information about how to use this file to configure log4j2, see the log4j2 documentation: http://
logging.apache.org/log4j/2.x/manual/configuration.html

By default, the provided log4j2.xml file is configured to output log messages in the same format
as used by the default logging framework. In your configuration file, create a property that defines the
format to output log messages in:

<Property name="pattern">%date{yyyy-MM-dd HH:mm:ss.SSS}|%level|
%thread|%marker|%replace{%msg}{\|}{}|%logger%n%xEx</Property>

You can use this property to specify the format used by your appenders. The property %marker
indicates the message code. For more information, see Logging reference on page 775.

By default, the provided log4j2.xml file is configured to append log output to the console and to a
file. This is the same behavior as the default logging framework.

<Loggers>
 <AsyncRoot level="info" includeLocation="false">
 <AppenderRef ref="console" />
 <AppenderRef ref="file" />
 </AsyncRoot>
 </Loggers>

You can configure other appenders to output to the log messages to different destinations. For
more information about using appenders, see https://logging.apache.org/log4j/2.x/manual/
appenders.html.

http://logging.apache.org/log4j/2.x/manual/configuration.html
http://logging.apache.org/log4j/2.x/manual/configuration.html
https://logging.apache.org/log4j/2.x/manual/appenders.html
https://logging.apache.org/log4j/2.x/manual/appenders.html

Diffusion | 588

Related reference
Logging on page 773
Diffusion uses the Simple Logging Facade for Java (SLF4J) API to log messages from the Diffusion
server or from publishers running on the Diffusion server. SLF4J separates the logging of messages
in the Diffusion server from the logging framework. This separation enables you to configure an
independent back-end implementation to format and write out the log messages.

Logging back-end on page 774
The work of formatting and writing out messages logged by the Diffusion server and publishers
running on the Diffusion server is done by the logging back-end. The logging back-end is a logging
framework that is independent of the Diffusion server. Diffusion provides a default logging framework,
but you can configure the Diffusion server to use other SLF4J implementations.

Log messages
Logging reference on page 775
Messages logged by the Diffusion server are logged at different levels depending on their severity.

Log4j2.xml
Use the Log4j2.xml configuration file to configure the behavior of the log4j2 logging framework.

<Configuration status="warn" name="Diffusion">

 <Properties>
 <Property name="diffusion.log.dir">../logs</Property>

 <!-- The log directory can be be overridden using the
 system property 'diffusion.log.dir'. -->
 <Property name="log.dir">${sd:diffusion.log.dir}</
Property>

 <Property name="pattern">%date{yyyy-MM-dd HH:mm:ss.SSS}|
%level|%thread|%marker|%replace{%msg}{\|}{}|%logger%n%xEx
 </Property>
 </Properties>

 <Appenders>
 <Console name="console">
 <PatternLayout pattern="${pattern}" />
 </Console>

 <RollingRandomAccessFile name="file"
 immediateFlush="false" fileName="${log.dir}/diffusion.log"
 filePattern="${log.dir}/$${date:yyyy-MM}/diffusion-
%d{MM-dd-yyyy}-%i.log.gz">

 <PatternLayout pattern="${pattern}" />

 <Policies>
 <OnStartupTriggeringPolicy />
 <TimeBasedTriggeringPolicy />
 <SizeBasedTriggeringPolicy size="250 MB" />
 </Policies>

 <DefaultRolloverStrategy max="20" />
 </RollingRandomAccessFile>
 </Appenders>

 <Loggers>

Diffusion | 589

 <AsyncRoot level="info" includeLocation="false">
 <AppenderRef ref="console" />
 <AppenderRef ref="file" />
 </AsyncRoot>
 </Loggers>
</Configuration>

Related reference
Logging on page 773
Diffusion uses the Simple Logging Facade for Java (SLF4J) API to log messages from the Diffusion
server or from publishers running on the Diffusion server. SLF4J separates the logging of messages
in the Diffusion server from the logging framework. This separation enables you to configure an
independent back-end implementation to format and write out the log messages.

Logging back-end on page 774
The work of formatting and writing out messages logged by the Diffusion server and publishers
running on the Diffusion server is done by the logging back-end. The logging back-end is a logging
framework that is independent of the Diffusion server. Diffusion provides a default logging framework,
but you can configure the Diffusion server to use other SLF4J implementations.

Log messages
Logging reference on page 775
Messages logged by the Diffusion server are logged at different levels depending on their severity.

Logging using another SLF4J implementation
You can use other implementations of SLF4J for your logging. However, this is not supported for
production use.

To use an alternative SLF4J implementation, remove the lib/slf4j-binding.jar and add the
appropriate classes for the alternative implementation to the Diffusion server classpath.

Alternative implementations of SLF4J are not supported for production use.

Related reference
Logging on page 773
Diffusion uses the Simple Logging Facade for Java (SLF4J) API to log messages from the Diffusion
server or from publishers running on the Diffusion server. SLF4J separates the logging of messages
in the Diffusion server from the logging framework. This separation enables you to configure an
independent back-end implementation to format and write out the log messages.

Logging back-end on page 774
The work of formatting and writing out messages logged by the Diffusion server and publishers
running on the Diffusion server is done by the logging back-end. The logging back-end is a logging
framework that is independent of the Diffusion server. Diffusion provides a default logging framework,
but you can configure the Diffusion server to use other SLF4J implementations.

Log messages
Logging reference on page 775

Diffusion | 590

Messages logged by the Diffusion server are logged at different levels depending on their severity.

Configuring JMX
Use the Management.xml configuration file to configure Diffusion to be manageable through JMX.
Use the Publishers.xml configuration file to configure the JMX adapter to make MBeans available
through topics.

Configuring the Diffusion JMX connector server
Connect to JMX through the Diffusion connector server. This connector server is integrated with the
Diffusion server and enables you to use role-based access control to define how connecting users can
use the MBeans.

About this task
Diffusion binds to the specified ports to listen for connections from JMX clients such as JConsole and
Java VisualVM.

Procedure

1. Optional: If you are running Diffusion on a Linux server, check that the host name is not
127.0.1.1.
You can do this my running the following command:

hostname -i

If the output to this command is 127.0.1.1, add an entry to /etc/hosts that defines the host
name.

2. Edit the etc/Management.xml configuration file to enable and configure the management
features:
a) Set the value of the enabled attribute in the management element to true.

<management enabled="true">

b) Specify the hostname to allow JMX connections on in the host element.

<host>localhost</host>

The default value is localhost. If you set the contents of the host element to a value,
connections are only allowed to that value. For example, a JMX connection to localhost is
allowed, but connecting to the same system by IP address is not.
To allow JMX connections on any applicable hostname or IP address, leave the host element
blank.

c) Optional: Specify the ports to use for the JMX service.

 <!-- The RMI Registry port -->
 <registry-port>1099</registry-port>
 <!-- The JMX service port -->
 <connection-port>1100</connection-port>

These two ports can be set to the same value, which can simplify firewall configuration.

You can use the default values:

• 1099 The RMI registry port

Diffusion | 591

• 1100 The JMX service port
3. Configure the principals that are allowed to use the JMX service. You can do this in one of the

following ways.

• Update the system authentication store to assign a role with the required permissions to the
principal and configure the Diffusion server to call the system authentication handler.

For more information, see System authentication handler on page 142.
• Implement a custom authentication handler that assigns a role with the required permissions

to the principal and configure the Diffusion server to call your custom authentication handler.

For more information, see User-written authentication handlers on page 140.
4. Note: If you are using a firewall that employs NAT, you might still be unable to connect to

Diffusion even when the JMX ports are left open.

Optional: To make a secure connection or a connection through a firewall, you can use SSH
tunnelling:
a) Establish an SSH connection to the fire-walled Diffusion server.
b) Tunnel the RMI registry port and JMX service port through SSH.
c) Use JMX to connect to the local ends of the tunneled ports.

Results

Use the ports you have configured to connect a JMX management console to the Diffusion server.

This connection cannot be made through SSL. However, you can use SSH tunnelling to secure your
connection. For more information, see step 4 on page 591.

Related concepts
JMX on page 724
You can use JMX to manage Diffusion. By default, the RMI registry port is 1099 and the JMX service port
is 1100.

Related reference
Using Java VisualVM on page 725
You can manage Diffusion using the JMX system management console Java VisualVM.

Using JConsole on page 727
You can manage Diffusion using the JMX system management console JConsole.

Configuring a remote JMX server connector
Connect to JMX through a remote connector to the JVM that runs the Diffusion. This connector is not
integrated with the Diffusion server security and you must configure additional security in the JVM.

About this task

Important: We recommend that you use the Diffusion connector server to connect to the JMX
service. For more information, see Configuring the Diffusion JMX connector server on page
590.

The JVM that runs Diffusion accepts remote connections from JMX clients such as JConsole and Java
VisualVM.

Procedure

1. Configure security for your remote JMX connection.

Diffusion | 592

For more information, see https://docs.oracle.com/javase/8/technotes/guides/management/
agent.html.
The security users and roles defined for the JVM do not integrate with the security provided by the
Diffusion server

2. When starting Diffusion, set the properties required for your remote JMX connection.
For more information, see https://docs.oracle.com/javase/8/technotes/guides/management/
agent.html.

3. Note: If you are using a firewall that employs NAT, you might still be unable to connect to
Diffusion even when the JMX ports are left open.

Optional: To make a secure connection or a connection through a firewall, you can use SSH
tunnelling:
a) Establish an SSH connection to the fire-walled Diffusion server.
b) Tunnel the RMI registry port and JMX service port through SSH.
c) Use JMX to connect to the local ends of the tunneled ports.

Results
Use the ports you have configured to connect a JMX management console to the Diffusion server.
These connections can be made over SSL.

Related concepts
JMX on page 724
You can use JMX to manage Diffusion. By default, the RMI registry port is 1099 and the JMX service port
is 1100.

Related reference
Using Java VisualVM on page 725
You can manage Diffusion using the JMX system management console Java VisualVM.

Using JConsole on page 727
You can manage Diffusion using the JMX system management console JConsole.

Configuring a local JMX connector server
Connect to JMX through a local connector to the JVM that runs the Diffusion. This connector is not
integrated with the Diffusion server security and you must configure additional security in the JVM.

About this task
The JVM that runs Diffusion accepts local connections from JMX clients such as JConsole and Java
VisualVM.

Procedure

Review the JVM documentation for any actions to take before connecting your JMX client.
For more information, see https://docs.oracle.com/javase/8/technotes/guides/management/
agent.html.

Results
You can connect a JMX management console running on the same server as Diffusion to the JVM.

Related concepts
JMX on page 724

https://docs.oracle.com/javase/8/technotes/guides/management/agent.html
https://docs.oracle.com/javase/8/technotes/guides/management/agent.html
https://docs.oracle.com/javase/8/technotes/guides/management/agent.html
https://docs.oracle.com/javase/8/technotes/guides/management/agent.html
https://docs.oracle.com/javase/8/technotes/guides/management/agent.html
https://docs.oracle.com/javase/8/technotes/guides/management/agent.html

Diffusion | 593

You can use JMX to manage Diffusion. By default, the RMI registry port is 1099 and the JMX service port
is 1100.

Related reference
Using Java VisualVM on page 725
You can manage Diffusion using the JMX system management console Java VisualVM.

Using JConsole on page 727
You can manage Diffusion using the JMX system management console JConsole.

Management.xml
This file specifies the schema for the management properties that enable JMX access over an RMI
JMXConnectorServer.

management

The management configuration.

The following table lists the attributes that an element of type management can have:

Name Type Description Required

enabled push:boolean Specifies if an RMI JMXConnectorServer is enabled,
making JMX remotely available.

true

The following table lists the elements that an element of type management can contain:

Name Type Description Min
occurs

Max
occurs

host push:string The local interface used for the RMI
registry and the JMX service. Empty
values declare that the RMI registry
binds to all local network interfaces.

0 1

registry-port push:port The RMI registry port. If a value is not
specified, a default of 1099 is used.

0 1

connection-
port

push:port The JMX service port. If a value is not
specified, a default of 1100 is used.

0 1

assigned-roles assigned-roles Additional roles granted to principals
that authenticate successfully.
Configuring roles for JMX-only users
here is DEPRECATED since 5.9. Used
to grant JMX-only users a base set of
permissions.

0 1

users users The management users. Registering
JMX-only users here is DEPRECATED.
Instead configure appropriate users
in the system authentication store,
or with a custom authentication
handler, and assign the users the role
ADMINISTRATOR or VIEW_SERVER based
upon whether they need full access to
JMX operations or only to monitor the
server.

0 1

Diffusion | 594

assigned-roles

Assigned security roles.

The following table lists the elements that an element of type assigned-roles can contain:

Name Type Description Min
occurs

Max
occurs

role push:string A security role. 1 unbounded

users

Management users.

The following table lists the elements that an element of type users can contain:

Name Type Description Min
occurs

Max
occurs

user user A user that can use the JMX interface. 0 unbounded

user

Management user.

The following table lists the elements that an element of type user can contain:

Name Type Description Min
occurs

Max
occurs

name push:string User name for JMX credentials. 1 1

password push:string Password for JMX credentials. 1 1

read-only push:boolean Specify if user has read-only access.
If this value is false, the user is
assigned their standard roles, the roles
configured for assigned-roles, and the
JMX_ADMINISTRATOR role. By default,
JMX_ADMINISTRATOR is configured
to provide full administrator access.
Otherwise, the user is assigned only
their standard roles and the assigned-
roles, which may not grant sufficient
permissions to perform operations that
affect the state of the server.

1 1

Configuring the JMX adapter
The JMX adapter can reflect JMX MBeans their properties and notifications as topics. Configure the
JMX adapter using the Publishers.xml configuration file.

Before you begin
The JMX adapter is packaged in the Diffusion publisher. The Diffusion publisher must be running for
the JMX adapter be enabled.

Diffusion | 595

About this task

You can configure the adapter to reflect the state of JMX MBeans and MXBeans as topics. These
MBeans can be built-in, Diffusion, or third-party in origin.

Many statistics are available as MBean properties, for example, CPU load, OS version, number of file-
descriptors, threads. Making these statistics available as topics to Diffusion clients makes possible the
implementation of system monitoring solutions to the web, and all other Diffusion platforms.

Note: Publishing MBean data to topics can constitute a security risk. Ensure that crucial
information about your Diffusion server is protected by permissions.

Procedure

1. Add the following properties to the <publisher name="Diffusion"> section of the
Publishers.xml configuration file located in the etc directory of your Diffusion installation.
a) Use the JMSAdapter.enabled property to enable the JMX adapter.

<property name="JMXAdapter.enabled">true</property>

b) Use the JMSAdapter.refreshFrequency property to specify how often, in milliseconds,
the data on the topics is updated.

<property name="JMXAdapter.refreshFrequency">3000</property>

The default value is 3 seconds.
c) Use the JMSAdapter.mbeans property to specify which MBeans to reflect as topics.

Specify the MBeans using ObjectName format. For more information, see https://
docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html

Specify each ObjectName on a new line.

<property name="JMXAdapter.mbeans">java.nio:*
 java.lang:*
 java.util.logging:*
 com.pushtechnology.diffusion:*</property>

2. Restart the Diffusion server to reload the configuration.

Results
The specified MBeans and MXBeans are reflected as topics in the Diffusion/MBeans branch of the topic
tree.

Related concepts
The JMX adapter on page 740
The JMX adapter reflects JMX MBeans and their properties and notifications as topics.

Publishers.xml
This file specifies the schema for the publisher properties.

publishers

The set of publishers that the Diffusion server is aware of at startup.

The following table lists the elements that an element of type publishers can contain:

https://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html
https://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html

Diffusion | 596

Name Type Description Min
occurs

Max
occurs

publisher publisher A publisher definition. 0 unbounded

publisher

A publisher definition.

The following table lists the attributes that an element of type publisher can have:

Name Type Description Required

name push:string The publisher name. true

The following table lists the elements that an element of type publisher can contain:

Name Type Description Min
occurs

Max
occurs

topics push:string An optional, comma-separated list
of topic names specifying topics to
be automatically created for the
publisher as it is started. This technique
does not allow for topics to be set up
with data and so it is more usual to
define the topics you require in the
initialLoad method of the Publisher. This
property remains mostly for backwards
compatibility.

0 1

class push:string The full class name of a Java class that
implements the publisher. This class
must extend the Java API Publisher
class and provide implementations of
methods as required. The class file must
be available on the classpath of the
Diffusion server (or in the configured usr-
lib or ext folder).

1 1

enabled push:boolean By default, the publisher is loaded as the
server starts. By setting this to false, the
publisher is not loaded.

0 1

start push:boolean By default, the publisher is started after
it is loaded. By specifying this as false,
the publisher can be loaded but not
started and then can be started later
using JMX.

0 1

topic-aliasing push:boolean Specifies whether topic aliasing is
turned on for all topics created by
the publisher. If the value is true, a
short topic alias is transmitted in delta
messages instead of the full topic name.
By default, this is true, but because there
are certain limitations when using topic
aliasing there might be situations where
you might want to turn it off.

0 1

Diffusion | 597

Name Type Description Min
occurs

Max
occurs

ack-timeout push:millis This specifies the default ACK (message
acknowledgment) timeout value (in
milliseconds) to use for messages
sent from the publisher that require
acknowledgment and do not have a
timeout explicitly specified. If a value is
not specified, a default of 1s is used.

0 1

auto-ack push:boolean Indicates whether to automatically
acknowledge messages sent from
clients to the publisher requiring
acknowledgment. By default, this is false
so messages requiring acknowledgment
must be manually acknowledged by the
publisher.

0 1

subscription-
policy-file

push:string Path of a subscription validation policy
file. If this value is specified, the file is
used to validate client subscriptions to
topics owned by the publisher.

0 1

stop-server-if-
not-loaded

push:boolean If this is set to true and the publisher
fails to load, the Diffusion server stops.
By default, this is false.

0 1

log-level push:log-level Specifies the log level for the publisher.
If this value is not specified, the
publisher logs at the default log level.

0 1

server server A specification of a server that is
automatically connected to by the
publisher when it starts. DEPRECATED :
Since 5.9 - will be removed at a future
release.

0 unbounded

web-server web-server If the publisher has associated web
content, it can be deployed with the
publisher by specifying this property.

0 1

launch launch Launch detail describes how the
publisher might be accessed externally,
if it has an associated webpage.

0 unbounded

property property A property available to the publisher.
This can be used to configure publisher-
specific variables or parameters.

0 unbounded

launch

Launch detail.

The following table lists the attributes that an element of type launch can have:

Name Type Description Required

name push:string The launcher name. true

Diffusion | 598

Name Type Description Required

category push:string An optional category to which this launcher
belongs. For example, "demo" for the Diffusion
demo landing page.

false

The following table lists the elements that an element of type launch can contain:

Name Type Description Min
occurs

Max
occurs

description push:string A short description of this launcher. 0 1

url push:string The URL at which a webpage associated
with this publisher can be found.

1 1

icon push:string A URL or path at which an icon
representing this launcher can be
reached.

0 1

property

A publisher property.

The following table lists the attributes that an element of type property can have:

Name Type Description Required

name push:string The property value true

type push:string An optional property type. Usage of this is
implementation specific.

false

credentials

Credentials for server connection.

The following table lists the elements that an element of type credentials can contain:

Name Type Description Min
occurs

Max
occurs

username push:string User name. 0 1

password push:string Password. 0 1

server

The following table lists the attributes that an element of type server can have:

Name Type Description Required

name push:string Server definition name. true

The following table lists the elements that an element of type server can contain:

Name Type Description Min
occurs

Max
occurs

host push:string The host name or IP address of the
server.

1 1

Diffusion | 599

Name Type Description Min
occurs

Max
occurs

port push:port The port number that the server
is listening on for publisher client
connections from other publishers.

1 1

ssl push:boolean If this value is true, the connection to
the server is a secure connection over
SSL. In this case the specified port must
represent an SSL client connector at the
server. The keystore properties must
also be supplied for secure connections.
By default, this is false.

0 1

keystore-file-
location

push:string The path of the keystore file defining the
SSL context. This is ignored if ssl=false,
but mandatory if it is true.

0 1

keystore-
password

push:string The keystore password. This is ignored if
ssl=false, but mandatory if it is true.

0 1

input-buffer-
size

push:bytes Specifies the size of the input buffer to
use for the connection with the server.
This is used to receive messages from
the server. Set this to the same size as
the output buffer used at the server.

1 1

output-buffer-
size

push:bytes The size of the output buffer to use for
the connection with the server. This is
used to send messages to the server. Set
this to the same size as the input buffer
used by the server.

1 1

fail-policy push:string This specifies what happens if the
publisher fails to connect to the server.
'default' means that if unable to
connect, no action is taken and it is the
publisher's responsibility to handle this.
'close' means that if unable to connect
to the server, the publisher closes. 'retry'
means that if unable to connect, the
connection is automatically retried
at intervals as specified by the retry-
interval property.

1 1

retry-interval push:millis If the fail-policy for a server is 'retry', this
is the interval at which the connection
to the server is retried. If this value is not
specified, a default of 5s is used.

0 1

credentials credentials Credentials to use for the server
connection. If this value is not
specified, no credentials are passed on
connection.

0 1

queue-
definition

push:string Optional outbound queue definition for
this server connection. The definition
must exist in Server.xml. This defines the

0 1

Diffusion | 600

Name Type Description Min
occurs

Max
occurs

queue to use for outbound messages
from the publisher to the server. If this
value is not specified, the default queue
definition in Server.xml is used.

web-server

A web server definition.

The following table lists the elements that an element of type web-server can contain:

Name Type Description Min
occurs

Max
occurs

virtual-host push:string The name of the virtual host to deploy
to. If this value is not supplied, default-
files-default is used.

0 1

alias-file push:string The alias file to use for this publisher 1 1

Configuring replication
Use the Replication.xml configuration file to configure the Diffusion server to replicate sessions
and topics.

You can also use the hazelcast.xml configuration file to configure your datagrid provider.

Topic aliasing

Topic aliasing is not supported with replication. Ensure that it is disabled on all servers in the cluster.

When starting any servers in the cluster ensure that
diffusion.publishers.v5.topic.aliasing.disabled is set to true. Edit the
diffusion.sh or diffusion.bat file to set it as a system property when starting the Diffusion
server:

-Ddiffusion.publishers.v5.topic.aliasing.disabled=true

Configuring the Diffusion server to use replication
You can configure replication by editing the etc/Replication.xml files of your Diffusion servers.

About this task
Ensure that you use the same replication configuration on all of the Diffusion servers in your cluster.

Procedure

1. Edit the Replication.xml file to configure replication.

<replication enabled="true">
 <provider>HAZELCAST</provider>
 <sessionReplication enabled="true" />
 <topicReplication enabled="true">
 <topics>
 <topicPath>foo/bar</topicPath>

Diffusion | 601

 </topics>
 </topicReplication>
</replication>

• In the replication element, set enabled to true to enable replication.
• In the sessionReplication element, set enabled to true to configure the server to

reflect client session information into the datagrid.
• In the topicReplication element, set enabled to true to configure the server to reflect

topic information and topic data into the datagrid.
• Inside the topics element, use one or more topicPath elements to define the topics to

which to apply topic replication and failover of the active update source.

The content of the topicPath element is a path to a single topic. Topic replication and
failover of the active update source are applied to the topic defined by the path and all topics
below it in the topic tree.

Unlike a topic selector, the topic path does not contain any leading or trailing characters. For
example, use <topicPath>foo/bar</topicPath> to select the topic foo/bar.

The topicPath elements also define which sections of the topic tree are have update sources
created for them by the server.

2. Restart the Diffusion server to load the configuration.
3. Ensure that your clients are configured to reconnect if they lose their connection to the server.

Related reference
Session replication on page 103
You can use session replication to ensure that if a client connection fails over from one server to
another the state of the client session is maintained.

Topic replication on page 106
You can use topic replication to ensure that the structure of the topic tree, topic definitions, and topic
data are synchronized between servers.

Failover of active update sources on page 107
You can use failover of active update sources to ensure that when a server that is the active update
source for a section of the topic tree becomes unavailable, an update source on another server is
assigned to be the active update source for that section of the topic tree. Failover of active update
sources is enabled for any sections of the topic tree that have topic replication enabled.

Configuring your datagrid provider on page 601
You can configure how the built-in Hazelcast datagrid replicates data within your solution
architecture.

Replication.xml on page 603
This file specifies the schema for the replication properties.

Configuring your datagrid provider
You can configure how the built-in Hazelcast datagrid replicates data within your solution
architecture.

Configuring Hazelcast

By default, the Hazelcast node in your Diffusion server multicasts to all other Hazelcast nodes in your
network.

Diffusion | 602

We recommend that in a production environment you disable multicast and explicitly define the
nodes in your Hazelcast cluster. This configuration is more secure and removes the risk of nodes in
your development environment connecting to the production environment and interfering with the
production data.

To define which Hazelcast nodes can communicate with each other, use the hazelcast.xml
configuration file.

The following example shows the structure of the hazelcast.xml file:

<hazelcast xsi:schemaLocation="http://www.hazelcast.com/schema/config
 http://www.hazelcast.com/schema/config/hazelcast-config-3.5.xsd"
 xmlns="http://www.hazelcast.com/schema/config" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">

 <properties>
 <property name="hazelcast.logging.type">slf4j</property>
 <property name="hazelcast.version.check.enabled">false</
property>
 </properties>

 <network>
 <join>
 <!-- <multicast enabled="true" /> -->
 <tcp-ip enabled="true">
 <member>node1.example.com</member>
 <member>203.0.113.1</member>
 <member>203.0.113.2:5757</member>
 <member>203.0.113.3-7</member>
 </tcp-ip>
 </join>

 </network>
</hazelcast>

This example configuration disables the multicast capability and defines the Hazelcast nodes that can
be connected to.

The Hazelcast nodes can be defined by hostname, by IP address, or by IP range. The default port used
by Hazelcast is 5701. If you want to connect on a different port, you can specify this when you define
the node, using the format host:port.

Ensure that the hazelcast.xml file is on the Diffusion server classpath. For example, by putting
the file in the diffusion_installation/data directory. Restart the Diffusion server to load the
configuration.

For more information about using the hazelcast.xml file to configure Hazelcast, see the Hazelcast™

Reference Manual.

Diagnosing problems with Hazelcast

If you enable logging for Hazelcast, you can use the log files to diagnose problems with Hazelcast.

To enable logging, include the following line in your hazelcast.xml file:

<property name="hazelcast.logging.type">slf4j</property>

Ensure that the hazelcast.xml file is on the Diffusion server classpath. For example, by putting
the file in the diffusion_installation/data directory. Restart the Diffusion server to load the
configuration.

http://www.hazelcast.org/docs/latest/manual/html-single/
http://www.hazelcast.org/docs/latest/manual/html-single/

Diffusion | 603

You can also enable logging by starting the Diffusion server that contains the node with the following
parameter -Dhazelcast.logging.type=slf4j

You can enable JMX for your Hazelcast nodes and use a JMX tool to examine the MBeans.

To enable JMX for a Hazelcast node, include the following line in your hazelcast.xml file:

<property name="hazelcast.jmx">true</property>

Ensure that the hazelcast.xml file is on the Diffusion server classpath. For example, by putting
the file in the diffusion_installation/data directory. Restart the Diffusion server to load the
configuration.

You can also enable JMX by starting the Diffusion server that contains the node with the following
parameter -Dhazelcast.jmx=true

For more information about using Hazelcast, see the Hazelcast™ Reference Manual.

Related tasks
Configuring the Diffusion server to use replication on page 600
You can configure replication by editing the etc/Replication.xml files of your Diffusion servers.

Related reference
Session replication on page 103
You can use session replication to ensure that if a client connection fails over from one server to
another the state of the client session is maintained.

Topic replication on page 106
You can use topic replication to ensure that the structure of the topic tree, topic definitions, and topic
data are synchronized between servers.

Failover of active update sources on page 107
You can use failover of active update sources to ensure that when a server that is the active update
source for a section of the topic tree becomes unavailable, an update source on another server is
assigned to be the active update source for that section of the topic tree. Failover of active update
sources is enabled for any sections of the topic tree that have topic replication enabled.

Replication.xml on page 603
This file specifies the schema for the replication properties.

Replication.xml
This file specifies the schema for the replication properties.

replication

Properties defining replication.

The following table lists the attributes that an element of type replication can have:

Name Type Description Required

enabled push:boolean Specifies whether replication is enabled for this
server.

true

The following table lists the elements that an element of type replication can contain:

http://www.hazelcast.org/docs/latest/manual/html-single/

Diffusion | 604

Name Type Description Min
occurs

Max
occurs

provider push:string The type of replication provider to use
to replicate the data. Currently only
Hazelcast is supported.

1 1

sessionReplicationsessionReplicationThe definition for session replication 1 1

topicReplication topicReplication The definition for topic replication 1 1

sessionReplication

Properties defining session replication.

The following table lists the attributes that an element of type sessionReplication can have:

Name Type Description Required

enabled push:boolean Specifies whether session replication is enabled for
this server.

true

topicReplication

Properties defining topic replication.

The following table lists the attributes that an element of type topicReplication can have:

Name Type Description Required

enabled push:boolean Specifies whether topic replication is enabled for
this server.

true

The following table lists the elements that an element of type topicReplication can contain:

Name Type Description Min
occurs

Max
occurs

topics topics The topics that are configured to use
replication.

1 1

topics

Properties defining the topics to replicate.

The following table lists the elements that an element of type topics can contain:

Name Type Description Min
occurs

Max
occurs

topicPath push:string A topic path that identifies the root of a
tree that will be replicated by this server.

0 unbounded

Related tasks
Configuring the Diffusion server to use replication on page 600
You can configure replication by editing the etc/Replication.xml files of your Diffusion servers.

Related reference
Session replication on page 103

Diffusion | 605

You can use session replication to ensure that if a client connection fails over from one server to
another the state of the client session is maintained.

Topic replication on page 106
You can use topic replication to ensure that the structure of the topic tree, topic definitions, and topic
data are synchronized between servers.

Failover of active update sources on page 107
You can use failover of active update sources to ensure that when a server that is the active update
source for a section of the topic tree becomes unavailable, an update source on another server is
assigned to be the active update source for that section of the topic tree. Failover of active update
sources is enabled for any sections of the topic tree that have topic replication enabled.

Configuring your datagrid provider on page 601
You can configure how the built-in Hazelcast datagrid replicates data within your solution
architecture.

Configuring the Diffusion web server
Use the WebServer.xml and Aliases.xml configuration files to configure the behavior of the
Diffusion web server.

Diffusion can act as a web server by modifying the Connectors.xml configuration file to add
a web-server definition to a connector. If a connector is required to serve HTTP requests, the
connector requires a web-server definition. A valid web-server entry must also exist in the
WebServer.xml configuration file.

The Diffusion web server is a lightweight web server with very basic features. It hosts the Diffusion
landing page, monitoring console, and demos.

The Diffusion web server also provides the endpoint for clients connecting to the Diffusion server using
HTTP-based transports.

Note: Do not use the Diffusion web server as the host for your production website. Instead use
a third-party web server.

For more information about using Diffusion with third-party web servers, see Web servers on page
637.

Related concepts
Configuring Diffusion web server security on page 606
When configuring your Diffusion web server, consider the security of your solution.

Running the Diffusion server inside of a third-party web application server on page 641
Diffusion can run as a Java servlet inside any Java application server.

Hosting Diffusion web clients in a third-party web server on page 640
Host Diffusion web clients — clients written using the JavaScript, Flash, or Silverlight APIs — on a third-
party web server to enable your customers to access them.

Web servers on page 637
Diffusion incorporates its own basic web server for a limited set of uses. The Diffusion server also
interacts with third-party web servers that host Diffusion web clients. The Diffusion server is also
capable of being run as a Java servlet inside a web application server.

Diffusion web server on page 638
Diffusion incorporates its own web server. This web server is required to enable a number of Diffusion
capabilities, but we recommend that you do not use it to host your production web applications.

Web servers on page 118

Diffusion | 606

Consider how to use web servers as part of your Diffusion solution.

Related reference
WebServer.xml on page 606
This file specifies the schema for the web server properties.

Configuring Diffusion web server security
When configuring your Diffusion web server, consider the security of your solution.

Digest authentication

Digest authentication can be utilized to negotiate credentials with a user's web browser. It is applied
to specific directories on your web site. The protection of one directory automatically applies
protection to all lower directories as well.

Use the realms element in the WebServer.xml configuration file to add new realms to a virtual
host and to store the user's name and the passwords.

HTTP deployment

You can deploy DAR files to a Diffusion server through a web service. This web service does not run
by default, but can be enabled for your test environment by editing the provided WebServer.xml
configuration file to include the commented out deploy-service.

Warning: Access to the deploy web service is not restricted. Do not enable this web service in
your production environment unless you restrict access to the diffusion-url/deploy
URL by other means, for example through your firewall setup.

Related concepts
Configuring the Diffusion web server on page 605
Use the WebServer.xml and Aliases.xml configuration files to configure the behavior of the
Diffusion web server.

Web servers on page 637
Diffusion incorporates its own basic web server for a limited set of uses. The Diffusion server also
interacts with third-party web servers that host Diffusion web clients. The Diffusion server is also
capable of being run as a Java servlet inside a web application server.

Diffusion web server on page 638
Diffusion incorporates its own web server. This web server is required to enable a number of Diffusion
capabilities, but we recommend that you do not use it to host your production web applications.

Web servers on page 118
Consider how to use web servers as part of your Diffusion solution.

Related reference
WebServer.xml on page 606
This file specifies the schema for the web server properties.

WebServer.xml
This file specifies the schema for the web server properties.

web-servers

Definitions of one or more web servers.

The following table lists the elements that an element of type web-servers can contain:

Diffusion | 607

Name Type Description Min
occurs

Max
occurs

web-server web-server Web server definition. 0 unbounded

web-server

Web server definition.

The following table lists the attributes that an element of type web-server can have:

Name Type Description Required

name push:string Name of the web server definition. true

The following table lists the elements that an element of type web-server can contain:

Name Type Description Min
occurs

Max
occurs

client-service client-service Optional client service. 0 1

http-service http-service HTTP service. 0 unbounded

file-service file-service Optional file service. 0 1

virtual-host

Virtual host definiton.

The following table lists the attributes that an element of type virtual-host can have:

Name Type Description Required

name push:string Virtual host name. true

debug push:boolean Debug flag. Set to true for debugging. Default is
false.

false

The following table lists the elements that an element of type virtual-host can contain:

Name Type Description Min
occurs

Max
occurs

host push:string Specifies the host which the virtual
host is to serve, for example,
download.pushtechnology.com or * for
all.

1 1

document-root push:string The physical directory for this virtual
host. If a relative path is configured, it is
resolved relative to the Diffusion home
directory.

1 1

home-page push:string The default home page. This file is used
with directory browsing.

1 1

error-page push:string This is used to control the 404 response.
The server looks for one of these files
in the directory of the request. If the
file does not exist, it looks for this file
in the virtual directory. If the file is not

0 1

Diffusion | 608

Name Type Description Min
occurs

Max
occurs

supplied or the file does not exist, a
standard 404 response HTML document
is sent.

static push:boolean If this is set to true, after loading
the resource once, the file system
is not checked again. This improves
performance for simple static usage. By
default this is false.

0 1

minify push:boolean Set to true to minify the html. This
happens before the file is compressed.
By default this is false.

0 1

cache cache The virtual host cache configuration. 1 1

compression-
threshold

push:bytes All HTTP responses over this size are
compressed. If not specified, a default
value of 512 is used.

0 1

alias-file push:string Optionally specifies an alias file. This
allows for URL aliasing if required. If a
relative path is configured, it is resolved
relative to the Diffusion configuration
directory.

0 1

realms realms Virtual host realms. 0 1

realms

Virtual host realms.

The following table lists the elements that an element of type realms can contain:

Name Type Description Min
occurs

Max
occurs

realm realm A virtual host realm. 0 unbounded

realm

A virtual host realm.

The following table lists the attributes that an element of type realm can have:

Name Type Description Required

name push:string Virtual host realm name. true

path push:string Virtual host realm path. true

The following table lists the elements that an element of type realm can contain:

Name Type Description Min
occurs

Max
occurs

users users Virtual host realm users. 0 1

Diffusion | 609

users

Virtual host realm users.

The following table lists the elements that an element of type users can contain:

Name Type Description Min
occurs

Max
occurs

user user Virtual host realm user. 1 unbounded

user

Virtual host realm user.

The following table lists the attributes that an element of type user can have:

Name Type Description Required

name push:string Virtual host realm user name. true

password push:string Virtual host realm user password. true

cache

Virtual host cache.

The following table lists the attributes that an element of type cache can have:

Name Type Description Required

debug push:boolean Set true to debug the cache. If a value is not
specified, a default of false is used.

false

The following table lists the elements that an element of type cache can contain:

Name Type Description Min
occurs

Max
occurs

file-size-limit push:bytes If the file to be served is over this size, do
not cache the entire contents, but map
the file instead. If a size is not specified,
a default value of 1m is used.

0 1

cache-size-limit push:bytes Total size of the cache for this web
server definition. If a size is not specified,
a default value of 10m is used.

0 1

file-life-time push:millis If the file has not been accessed within
the time specified, remove the entry
from the cache. If a time is not specified,
a default value of 1d is used.

0 1

http-service

HTTP service.

The following table lists the attributes that an element of type http-service can have:

Name Type Description Required

name push:string HTTP service name. true

Diffusion | 610

Name Type Description Required

debug push:boolean Set true to debug the HTTP service. If a value is not
specified, a default of false is used.

false

The following table lists the elements that an element of type http-service can contain:

Name Type Description Min
occurs

Max
occurs

class push:string The user HTTP service class name.
This class must implement the
HTTPServiceHandler interface in the
web server API.

1 1

url-pattern push:string The pattern that the URL must match for
this service to be invoked.

1 1

log push:string An optional log file can be specified and,
if so, HTTP access can be logged. The log
definition must exist in Logs.xml.

0 1

max-inbound-
request-size

push:bytes The maximum number of bytes that
the HTTP request can have. If this is not
specified, a default of the maximum
message size is used.

0 1

property property HTTP service property. 0 unbounded

property

A property.

The following table lists the attributes that an element of type property can have:

Name Type Description Required

name push:string Property name. true

type push:string Optional property type. false

file-service

File service.

The following table lists the attributes that an element of type file-service can have:

Name Type Description Required

name push:string File service name. true

The following table lists the elements that an element of type file-service can contain:

Name Type Description Min
occurs

Max
occurs

virtual-host virtual-host Virtual host. 1 unbounded

write-timeout push:millis Write timeout for serving files. This does
not affect HTTP clients. If a value is not
specified, a default value of 3s is used.

0 1

Diffusion | 611

client-service

Client service.

The following table lists the attributes that an element of type client-service can have:

Name Type Description Required

name push:string Client service name. true

debug push:boolean Set true to debug the client service. If a value is not
specified, a default of false is used.

false

The following table lists the elements that an element of type client-service can contain:

Name Type Description Min
occurs

Max
occurs

message-
sequence-
timeout

push:millis This is used with HTTP clients to indicate
how long to wait for a missing message
in a sequence of messages before
assuming it has been lost and closing
the client session. If a value is not
specified, a default of 2 seconds is used.
If this exceeds one hour (3600000ms) a
warning will be logged and the time-out
will be set to one hour.

0 1

websocket-
origin

push:string This is used to control access from client
web socket to Diffusion. This is a regular
expression pattern that matches the
origin of the request. A value of ".*"
matches anything, so all requests are
allowed. If this is not specified, the
service is unable to handle web socket
requests.

0 1

cors-origin push:string This is used to control access from client
web (XHR) to Diffusion. This element will
enable Cross Origin Resource Sharing
(CORS). This is a regular expression
pattern that matches the origin of
the request. A value of ".*" matches
anything, so all requests are allowed. If a
value is not specified, the service cannot
handle CORS requests.

0 1

websocket-
secure-
response

push:boolean DEPRECATED: the value is ignored.
This configuration applied to behavior
defined by draft versions of the
WebSocket specification that is no
longer supported.

0 1

close-callback-
requests

push:boolean For Diffusion client requests this
specifies whether to obey the keep-alive
header or close all requests. If this is
set to true, all requests are closed. If a
value is not specified, a default of false is

0 1

Diffusion | 612

Name Type Description Min
occurs

Max
occurs

used. DEPRECATED: since Diffusion 5.7.
This setting will be removed in a future
release.

compression-
threshold

push:bytes Enable compression for HTTP client
responses over this size. If a value is not
specified, a default of 512 bytes is used.

0 1

max-inbound-
request-size

push:bytes The maximum number of bytes that
the HTTP request can have. If a value is
not specified, a default of the maximum
message size is used.

0 1

comet-bytes-
before-new-
poll

push:bytes This parameter enables you to specify
the number of bytes after which a
Comet connection is forced to re-
establish itself. This can help to reduce
the potential for memory leaks in the
browser due to the long-lived nature
of a Comet connection, at the expense
of degraded performance due to more
frequent HTTP handshakes. If this is not
specified, a default value of 30 kilobytes
is used.

0 1

comet-initial-
message-
padding

push:bytes Some browsers do not pass on data
received through a Comet connection
until a minimum number of bytes have
been received. This means that in the
case where an initial topic load message
is small, the client might never receive
it. To work around this restriction, you
can set a value here which ensures that
the first message received is padded
with extra bytes that are automatically
discarded by the client library. If a value
is not specified, a default of 1k is used.

0 1

disable-cookies push:boolean Set true to disable session cookie from
being in the "Set-Cookie" header. If
a value is not specified, cookies are
enabled.

0 1

Related concepts
Configuring the Diffusion web server on page 605
Use the WebServer.xml and Aliases.xml configuration files to configure the behavior of the
Diffusion web server.

Configuring Diffusion web server security on page 606
When configuring your Diffusion web server, consider the security of your solution.

Web servers on page 637

Diffusion | 613

Diffusion incorporates its own basic web server for a limited set of uses. The Diffusion server also
interacts with third-party web servers that host Diffusion web clients. The Diffusion server is also
capable of being run as a Java servlet inside a web application server.

Diffusion web server on page 638
Diffusion incorporates its own web server. This web server is required to enable a number of Diffusion
capabilities, but we recommend that you do not use it to host your production web applications.

Web servers on page 118
Consider how to use web servers as part of your Diffusion solution.

 Aliases.xml
This file specifies the schema for the aliases properties used in a web server.

aliases

List of aliases

The following table lists the elements that an element of type aliases can contain:

Name Type Description Min
occurs

Max
occurs

alias alias An alias definition 0 unbounded

alias

An alias definition

The following table lists the attributes that an element of type alias can have:

Name Type Description Required

name push:string A name for the alias. true

The following table lists the elements that an element of type alias can contain:

Name Type Description Min
occurs

Max
occurs

source push:string The source URL, which can be expressed
as a regular expression.

1 1

destination push:string The destination path. 1 1

ConnectionValidationPolicy.xml
This file specifies the schema for the connection validation policy.

connection-validation-policies

Connection validation policies

The following table lists the elements that an element of type connection-validation-
policies can contain:

Diffusion | 614

Name Type Description Min
occurs

Max
occurs

policy policy A connection validation policy. 0 unbounded

policy

A connection validation policy.

The following table lists the attributes that an element of type policy can have:

Name Type Description Required

name push:string Each policy must be supplied with a unique name
for easy reference.

true

type push:string The policy type should be either "blacklist" or
"whitelist". A blacklist indicates that if any of the
policy rules in this policy match the incoming
connection, that connection is to be rejected.
A whitelist requires that at least one policy rule
matches for the connection to be accepted.

true

automatic push:boolean Policies which are set to automatic are applied by
Diffusion and the publishers do not need to perform
any checks themselves. If this attribute is set to
false, the policy is not applied unless it is done so by
the publisher. If a value is not specified, a default of
true is used.

false

The following table lists the elements that an element of type policy can contain:

Name Type Description Min
occurs

Max
occurs

addresses addresses Connection validation policy
addresses. These are addresses that are
blacklisted/whitelisted.

0 1

locale locale Connection validation policy locale. This
is locale details that are blacklisted/
whitelisted.

0 unbounded

addresses

The following table lists the elements that an element of type addresses can contain:

Name Type Description Min
occurs

Max
occurs

address push:string An IP address (or regular expression) of a
connecting client.

0 unbounded

hostname push:string The hostname (or regular expression) of
a connecting client.

0 unbounded

resolved-name push:string The resolved hostname (or regular
expression) of a connecting client, as
returned by the WhoIs service.

0 unbounded

Diffusion | 615

locale

The following table lists the elements that an element of type locale can contain:

Name Type Description Min
occurs

Max
occurs

country push:string The ISO country code of the connecting
client, as returned by the WhoIs service.

0 1

language push:string The ISO language code of the connecting
client, as returned by the WhoIs service.

0 1

Env.xml
This file specifies the schema for the environment properties.

env

The following table lists the elements that an element of type env can contain:

Name Type Description Min
occurs

Max
occurs

property property Environment variable value 0 unbounded

property

The following table lists the attributes that an element of type property can have:

Name Type Description Required

name xsd:token Name of the environment variable. true

Mime.xml
This file specifies the schema for the mime properties.

mimes

The following table lists the elements that an element of type mimes can contain:

Name Type Description Min
occurs

Max
occurs

mime mime Mime. 0 unbounded

mime

The following table lists the attributes that an element of type mime can have:

Name Type Description Required

type push:string Mime type. true

Diffusion | 616

Name Type Description Required

extension push:string Mime extension. true

Publishers.xml
This file specifies the schema for the publisher properties.

publishers

The set of publishers that the Diffusion server is aware of at startup.

The following table lists the elements that an element of type publishers can contain:

Name Type Description Min
occurs

Max
occurs

publisher publisher A publisher definition. 0 unbounded

publisher

A publisher definition.

The following table lists the attributes that an element of type publisher can have:

Name Type Description Required

name push:string The publisher name. true

The following table lists the elements that an element of type publisher can contain:

Name Type Description Min
occurs

Max
occurs

topics push:string An optional, comma-separated list
of topic names specifying topics to
be automatically created for the
publisher as it is started. This technique
does not allow for topics to be set up
with data and so it is more usual to
define the topics you require in the
initialLoad method of the Publisher. This
property remains mostly for backwards
compatibility.

0 1

class push:string The full class name of a Java class that
implements the publisher. This class
must extend the Java API Publisher
class and provide implementations of
methods as required. The class file must
be available on the classpath of the
Diffusion server (or in the configured usr-
lib or ext folder).

1 1

enabled push:boolean By default, the publisher is loaded as the
server starts. By setting this to false, the
publisher is not loaded.

0 1

Diffusion | 617

Name Type Description Min
occurs

Max
occurs

start push:boolean By default, the publisher is started after
it is loaded. By specifying this as false,
the publisher can be loaded but not
started and then can be started later
using JMX.

0 1

topic-aliasing push:boolean Specifies whether topic aliasing is
turned on for all topics created by
the publisher. If the value is true, a
short topic alias is transmitted in delta
messages instead of the full topic name.
By default, this is true, but because there
are certain limitations when using topic
aliasing there might be situations where
you might want to turn it off.

0 1

ack-timeout push:millis This specifies the default ACK (message
acknowledgment) timeout value (in
milliseconds) to use for messages
sent from the publisher that require
acknowledgment and do not have a
timeout explicitly specified. If a value is
not specified, a default of 1s is used.

0 1

auto-ack push:boolean Indicates whether to automatically
acknowledge messages sent from
clients to the publisher requiring
acknowledgment. By default, this is false
so messages requiring acknowledgment
must be manually acknowledged by the
publisher.

0 1

subscription-
policy-file

push:string Path of a subscription validation policy
file. If this value is specified, the file is
used to validate client subscriptions to
topics owned by the publisher.

0 1

stop-server-if-
not-loaded

push:boolean If this is set to true and the publisher
fails to load, the Diffusion server stops.
By default, this is false.

0 1

log-level push:log-level Specifies the log level for the publisher.
If this value is not specified, the
publisher logs at the default log level.

0 1

server server A specification of a server that is
automatically connected to by the
publisher when it starts. DEPRECATED :
Since 5.9 - will be removed at a future
release.

0 unbounded

web-server web-server If the publisher has associated web
content, it can be deployed with the
publisher by specifying this property.

0 1

Diffusion | 618

Name Type Description Min
occurs

Max
occurs

launch launch Launch detail describes how the
publisher might be accessed externally,
if it has an associated webpage.

0 unbounded

property property A property available to the publisher.
This can be used to configure publisher-
specific variables or parameters.

0 unbounded

launch

Launch detail.

The following table lists the attributes that an element of type launch can have:

Name Type Description Required

name push:string The launcher name. true

category push:string An optional category to which this launcher
belongs. For example, "demo" for the Diffusion
demo landing page.

false

The following table lists the elements that an element of type launch can contain:

Name Type Description Min
occurs

Max
occurs

description push:string A short description of this launcher. 0 1

url push:string The URL at which a webpage associated
with this publisher can be found.

1 1

icon push:string A URL or path at which an icon
representing this launcher can be
reached.

0 1

property

A publisher property.

The following table lists the attributes that an element of type property can have:

Name Type Description Required

name push:string The property value true

type push:string An optional property type. Usage of this is
implementation specific.

false

credentials

Credentials for server connection.

The following table lists the elements that an element of type credentials can contain:

Diffusion | 619

Name Type Description Min
occurs

Max
occurs

username push:string User name. 0 1

password push:string Password. 0 1

server

The following table lists the attributes that an element of type server can have:

Name Type Description Required

name push:string Server definition name. true

The following table lists the elements that an element of type server can contain:

Name Type Description Min
occurs

Max
occurs

host push:string The host name or IP address of the
server.

1 1

port push:port The port number that the server
is listening on for publisher client
connections from other publishers.

1 1

ssl push:boolean If this value is true, the connection to
the server is a secure connection over
SSL. In this case the specified port must
represent an SSL client connector at the
server. The keystore properties must
also be supplied for secure connections.
By default, this is false.

0 1

keystore-file-
location

push:string The path of the keystore file defining the
SSL context. This is ignored if ssl=false,
but mandatory if it is true.

0 1

keystore-
password

push:string The keystore password. This is ignored if
ssl=false, but mandatory if it is true.

0 1

input-buffer-
size

push:bytes Specifies the size of the input buffer to
use for the connection with the server.
This is used to receive messages from
the server. Set this to the same size as
the output buffer used at the server.

1 1

output-buffer-
size

push:bytes The size of the output buffer to use for
the connection with the server. This is
used to send messages to the server. Set
this to the same size as the input buffer
used by the server.

1 1

fail-policy push:string This specifies what happens if the
publisher fails to connect to the server.
'default' means that if unable to
connect, no action is taken and it is the
publisher's responsibility to handle this.
'close' means that if unable to connect

1 1

Diffusion | 620

Name Type Description Min
occurs

Max
occurs

to the server, the publisher closes. 'retry'
means that if unable to connect, the
connection is automatically retried
at intervals as specified by the retry-
interval property.

retry-interval push:millis If the fail-policy for a server is 'retry', this
is the interval at which the connection
to the server is retried. If this value is not
specified, a default of 5s is used.

0 1

credentials credentials Credentials to use for the server
connection. If this value is not
specified, no credentials are passed on
connection.

0 1

queue-
definition

push:string Optional outbound queue definition for
this server connection. The definition
must exist in Server.xml. This defines the
queue to use for outbound messages
from the publisher to the server. If this
value is not specified, the default queue
definition in Server.xml is used.

0 1

web-server

A web server definition.

The following table lists the elements that an element of type web-server can contain:

Name Type Description Min
occurs

Max
occurs

virtual-host push:string The name of the virtual host to deploy
to. If this value is not supplied, default-
files-default is used.

0 1

alias-file push:string The alias file to use for this publisher 1 1

 Statistics.xml
This file specifies the schema for the properties defining statistics collection. The statistics are broken
into sections: client, topic, server and publisher.

statistics

Properties defining statistics collection.

The following table lists the attributes that an element of type statistics can have:

Name Type Description Required

enabled push:boolean A global switch to toggle collection of all statistics. true

The following table lists the elements that an element of type statistics can contain:

Diffusion | 621

Name Type Description Min
occurs

Max
occurs

client-statistics client-statistics Optional client statistics: configures
Diffusion to periodically output client
statistics to a log file defined in Logs.xml
It gives a count of all of the different
client types. Each counter is reset
according to the configured frequency.

0 1

topic-statistics topic-statistics Optional topic statistics. 0 1

server-statistics server-statistics Optional server statistics. 0 1

publisher-
statistics

publisher-
statistics

Optional publisher statistics. 0 1

reporters reporters Optional set of StatisticsReporters
to be loaded with Diffusion, which
are registered with the internal
StatisticsService and used to generate
output.

0 1

client-statistics

The following table lists the attributes that an element of type client-statistics can have:

Name Type Description Required

enabled push:boolean Specifies if aggregate client statistics are enabled. true

The following table lists the elements that an element of type client-statistics can contain:

Name Type Description Min
occurs

Max
occurs

log-name push:string Definition of the log in Logs.xml. 0 1

output-
frequency

push:millis Specifies the output frequency of the
log. There is one entry per specified
interval. If this is not specified, a default
of 1h is used.

0 1

reset-frequency push:millis Specifies when the counters are reset.
The reset interval must be a multiple of
the output frequency. Zero specifies that
the counters are never reset. If this is not
specified, a default of 1h is used.

0 1

monitor-
instances

push:boolean Specifies if individual client statistics are
enabled.

0 1

topic-statistics

The following table lists the attributes that an element of type topic-statistics can have:

Name Type Description Required

enabled push:boolean Specifies if aggregate topic statistics are enabled. true

Diffusion | 622

The following table lists the elements that an element of type topic-statistics can contain:

Name Type Description Min
occurs

Max
occurs

monitor-
instances

push:boolean Specifies if individual topic statistics are
enabled.

0 1

publisher-statistics

The following table lists the attributes that an element of type publisher-statistics can have:

Name Type Description Required

enabled push:boolean Specifies if aggregate publisher statistics are
enabled.

true

The following table lists the elements that an element of type publisher-statistics can
contain:

Name Type Description Min
occurs

Max
occurs

monitor-
instances

push:boolean Specifies if individual publisher statistics
are enabled.

0 1

server-statistics

The following table lists the attributes that an element of type server-statistics can have:

Name Type Description Required

enabled push:boolean Specifies whether to enable server statistics. This
enables high-level aggregate statistics for the
system.

true

reporters

The set of StatisticsReporters that the Diffusion server is aware of at startup. Used to output the
statistics gathered for clients, publishers, or topics.

The following table lists the elements that an element of type reporters can contain:

Name Type Description Min
occurs

Max
occurs

reporter reporter A reporter definition. 0 unbounded

reporter

A StatisticsReporter definition.

The following table lists the attributes that an element of type reporter can have:

Name Type Description Required

name push:string The reporter name. true

Diffusion | 623

Name Type Description Required

enabled push:boolean Whether the reporter is enabled. If this is set to
true, the reporter is automatically loaded when
Diffusion starts. Otherwise, you must manually load
the reporter config at run-time using the statistics
API.

true

The following table lists the elements that an element of type reporter can contain:

Name Type Description Min
occurs

Max
occurs

type push:string The type of reporter to be used.
Currently options are: TOPIC - exposes
metrics in the Diffusion topic tree; JMX -
exposes metrics on the local JMX server.

1 1

property property A property available to the reporter.
This can be used to configure reporter-
specific variables or parameters.

0 unbounded

property

A StatisticsReporter property. Currently accepted values: 'interval' - used by the topic reporter.
Specifies an integer value, in seconds, used to set the period of update publishing.

The following table lists the attributes that an element of type property can have:

Name Type Description Required

name push:string The property value true

type push:string An optional property type. Usage of this is
implementation specific.

false

SubscriptionValidationPolicy.xml
This file specifies the schema for the subscription validation policy.

subscription-validation-policies

Subscription validation policies

The following table lists the elements that an element of type subscription-validation-
policies can contain:

Name Type Description Min
occurs

Max
occurs

topics topics A map of topics to policies. 0 1

policy policy A subscription validation policy. 0 unbounded

topics

A map of topics to policies.

The following table lists the elements that an element of type topics can contain:

Diffusion | 624

Name Type Description Min
occurs

Max
occurs

topic topic A topic to policy mapping. 0 unbounded

topic

The following table lists the attributes that an element of type topic can have:

Name Type Description Required

policy push:string The name of the policy to apply to this topic. true

policy

A subscription validation policy.

The following table lists the attributes that an element of type policy can have:

Name Type Description Required

name push:string Each policy must be supplied with a unique name
for easy reference.

true

type push:string The policy type is either "blacklist" or "whitelist".
A blacklist indicates that if any of the policy rules
in this policy match the incoming connection,
that connection is to be rejected. A whitelist
requires that at least one policy rule matches for
the connection to be accepted.

true

automatic push:boolean Policies which are set to automatic are applied
by Diffusion and the publishers do not need to
perform any checks themselves. If this is set to
false, the policy is not applied unless it is done by
the publisher. If this value is not specified, a default
of true is used.

false

validate-
children

xsd:boolean Controls whether to perform validation on child
topics if the parent topic fails validation. If a value is
not specified, a default of false is used.

false

The following table lists the elements that an element of type policy can contain:

Name Type Description Min
occurs

Max
occurs

addresses addresses Subscription validation policy
addresses. These are addresses that are
blacklisted/whitelisted.

0 1

locale locale Connection validation policy locale. This
is locale details that are blacklisted/
whitelisted.

0 unbounded

addresses

The following table lists the elements that an element of type addresses can contain:

Diffusion | 625

Name Type Description Min
occurs

Max
occurs

address push:string An IP address (or regular expression) of a
subscribing client.

0 unbounded

hostname push:string The hostname (or regular expression) of
a subscribing client.

0 unbounded

resolved-name push:string The resolved hostname (or regular
expression) of a subscribing client, as
returned by the WhoIs service.

0 unbounded

locale

The following table lists the elements that an element of type locale can contain:

Name Type Description Min
occurs

Max
occurs

country push:string The ISO country code of the subscribing
client, as returned by the WhoIs service.

0 1

language push:string The ISO language code of the
subscribing client, as returned by the
WhoIs service.

0 1

Additional XML files
The etc directory contains additional XML files. The format of these XML files is not defined by Push
Technology.

The following XML files are included in the etc directory. For more information, see Cross domain
policies on page 645.

crossdomain.xml
FlashMasterPolicy.xml
FlashPolicy.xml

Use these files to grant a web client permission to handle data across multiple
domains.

Starting the Diffusion server

After you have installed and configured your Diffusion server, you can start it using one of a number of
methods.

Use the provided Diffusion start scripts

Your Diffusion installation includes The diffusion.sh or diffusion.bat command (issued in
the bin directory) starts Diffusion. An optional properties directory can be specified as a parameter to
be used instead of the default ../etc directory.

Important: Do not run your Diffusion server as root on Linux or UNIX. To run the Diffusion
server on a port number of 1024 or lower, use another means. For some examples of ways of
doing this, see http://www.debian-administration.org/articles/386.

http://www.debian-administration.org/articles/386

Diffusion | 626

Use a script in init.d

On Linux, Diffusion can be started using a script in your /etc/init.d folder that starts your
Diffusion server when the host server starts.

If you installed your Diffusion server using RPM, this script already exists in your /etc/init.d folder.

If you installed your Diffusion using another method, you can use the sample script files in the
tools/init.d directory of your Diffusion. Edit the sample script file to include the location of
your installation and make any other changes that are required. Copy the edited script file to /etc/
init.d. Ensure that the file is executable.

When your host server starts, it starts your Diffusion server.

Use Docker

Diffusion is provided as a Docker image on DockerHub. When you use Docker to run this image, the
Diffusion server inside the image is started.

For more information, see Installing the Diffusion server using Docker on page 529.

Run embedded in a Java process

You can run the Diffusion server from within a Java process by including the diffusion.jar on the
classpath of the Java process.

For more information, see Running from within a Java application on page 626.

Running from within a Java application
To run Diffusion from within a Java application instantiate, configure and start a DiffusionServer
object.

Creating a server

DiffusionServer is available in the com.pushtechnology.diffusion.api.server. You
can instantiate it with one of the following constructors:

Default configuration

DiffusionServer server = new DiffusionServer();

This instantiates the server with default configuration options. The default
configuration is read from the XML configuration files in the etc directory of your
Diffusion installation. Required aspects of the server must be configured before it
is started. These can be configured programmatically. For more information, see
Programmatic configuration on page 541.

Bootstrap properties

DiffusionServer server = new
 DiffusionServer(bootstrapProperties);

This specifies a set of properties inside a Properties object. The following
properties are supported:

Diffusion | 627

Property Description Default

diffusion.home The base installation
directory

Calculated from
the location of the
diffusion.jar file.

diffusion.config.dir The configuration
directory, where the XML
configuration files are
located.

diffusion.home/etc

diffusion.license.file The license file diffusion.config.dir/
licence.lic

diffusion.keystore.file The keystore file required
to decrypt the license

diffusion.config.dir/
licence.keystore

These properties can also be set as system properties.

Whichever approach to instantiation that you use, a full set of XML configuration files can be present in
the configuration directory and tuned as required or just a partial set of the files can be present and all
missing configuration supplied programmatically.

Configuring the Diffusion server

Once the server object has been instantiated some properties can be configured. The root
configuration object can be obtained from the server object as follows:

ServerConfig config = server.getConfig();

Alternatively the root can be obtained using ConfigManager.getServerConfig().

The configuration is populated from the XML configuration files in the installation or in the
configuration directory specified by diffusion.config.dir. You can further customize the configuration to
fit your requirements. For an example, see the following sample code:

DiffusionServer server = new DiffusionServer();

ServerConfig config = server.getConfig();

// Publisher
PublisherConfig publisher = config.addPublisher("My
 Publisher","com.company.MyPublisherClass");

// Connector ConnectorConfig connector = config.addConnector("Client
 Connector");
// Configure connector as required....

// Thread Pools
ThreadsConfig threads = config.getThreads();
ThreadPoolConfig inbound = threads.addPool("Inbound");
inbound.setCoreSize(3);
inbound.setMaximumSize(10);
inbound.setQueueSize(2000);
threads.setInboundPool(inbound.getName());
threads.setBackgroundPoolSize(2);

// Queues QueuesConfig queues = config.getQueues();
QueueConfig queue = queues.addQueue("DefaultQueue");
queue.setMaximumDepth(10000);
queues.setDefaultQueue("DefaultQueue");

Diffusion | 628

// Multiplexer MultiplexerConfig multiplexer =
 config.addMultiplexer("Multiplexer");
multiplexer.setSize(4);

Note: The logging configuration cannot be changed using the ServerConfig object. By the
time the configuration objects are available to your Java application, the logging properties
are locked. The LoggingConfig object is read-only.

Monitoring the Diffusion server lifecycle

The DiffusionServer class provides methods to add and remove a lifecycle listener on the server
instance.

addLifecycleListener(LifecycleListener stateCallback);

removeLifecycleListener(LifecycleListener stateCallback);

The lifecycle listener is a callback that is called whenever the server state changes. The Diffusion server
can have the following states:

INITIAL
An instance of the DiffusionServer exists, but has not been started.

STARTING
The server is starting.

STARTED
The server has started and all publishers are deployed.

STOPPING
The server is stopping.

STOPPED
The server has stopped.

Starting the server

After the server configuration has been completed, the server can be started using
server.start().

The declared publishers are then loaded and connectors start to listen on the configured ports.

Stopping the server

The server can be stopped using server.stop() at which point the server is no longer available.

Run requirements

A simple way to use Diffusion as a library within your application is to install Diffusion and include the
path to diffusion.jar in your CLASSPATH.

If you want to repackage the Diffusion code more extensively, be aware of the following concerns:

• diffusion.jar depends on other library files in the installation's lib directory and are
referenced in the jar's manifest Class-Path entry. You must also make the code in these libraries
available.

Diffusion | 629

• You still require a Diffusion installation. The installation provides the configuration, licence, and
log directories. The installation directory is calculated from the location of diffusion.jar.
If diffusion.jar is not loaded from a URL classloader, or has been moved from the product
installation, use the bootstrap properties constructor and set the diffusion.home system property
to the installation directory.

Limitations

Currently only one Diffusion server can be instantiated in a Java VM and it can be started only once.

Deploying publishers on your Diffusion server

If you developed a publisher as part of your Diffusion solution, you must deploy the publisher on the
Diffusion server for it to run.

All publishers that run on the Diffusion server must be defined in the Publishers.xml configuration
file located in the etc directory

If a publisher is defined in the Diffusion server configuration, you can deploy it on the Diffusion server
by using either classic deployment or hot deployment. Classic deployment is deploying a publisher to a
stopped Diffusion server. The publisher then starts when the Diffusion server starts. Hot deployment is
deploying a publisher to a running Diffusion server.

Classic deployment
Installing publishers into a stopped Diffusion instance.

The publishers that are started when Diffusion starts must be defined in the configuration file etc/
Publishers.xml. Publishers that do not start with Diffusion can also be defined in the etc/
Publishers.xml and these can be started later using JMX.

The publishers must be present on the classpath of the Diffusion server. The recommended way to do
this is to compile the publisher source code with the diffusion.jar they run with on the classpath.
Package the publisher class files into a JAR file. This JAR file must be deployed to the ext/ directory of
the Diffusion installation. The Diffusion server will search the ext/ directory and load all the JAR files
it finds.

Related concepts
Writing a publisher on page 479
How to approach writing a publisher

Build server application code with Maven on page 506
The Diffusion API for server application code is not available in the Push Technology public Maven
repository. To build server components, you must install the product locally and depend on
diffusion.jar using a Maven system scope.

Build publishers with Maven on page 502
The Diffusion API for publishers is not available in the Push Technology public Maven repository. To
build publishers, you must install the product locally and depend on diffusion.jar using a Maven
system scope.

Related tasks
Building a publisher with mvndar on page 503

Diffusion | 630

Use the Maven plugin mvndar to build and deploy your publisher DAR file. This plugin is available from
the Push Public Maven Repository.

Hot deployment
Installing publishers into a running Diffusion instance.

In addition to starting publishers by defining them in etc/Publishers.xml, you can install them
into an already running Diffusion instance by a process known as hot deployment. Publishers can
also be undeployed and redeployed, providing they implement the isStoppable method, and it
returns true. You can also deploy dependent JAR files, configuration files and associated web pages for
a publisher. All artifacts required for deployment are packaged within a DAR file.

Related concepts
Build server application code with Maven on page 506
The Diffusion API for server application code is not available in the Push Technology public Maven
repository. To build server components, you must install the product locally and depend on
diffusion.jar using a Maven system scope.

Build publishers with Maven on page 502
The Diffusion API for publishers is not available in the Push Technology public Maven repository. To
build publishers, you must install the product locally and depend on diffusion.jar using a Maven
system scope.

Related tasks
Building a publisher with mvndar on page 503
Use the Maven plugin mvndar to build and deploy your publisher DAR file. This plugin is available from
the Push Public Maven Repository.

Deployment methods
There are two ways to deploy a DAR file: file copy or HTTP.

File copy

To use this method, copy your DAR file to the deployment directory on the file system. If you enable
auto-deployment in the Server.xml configuration file, Diffusion periodically scans a directory for
new or updated DAR files and deploys them. In the case of an updated DAR, the existing publisher is
undeployed (if possible) before being redeployed.

HTTP

If the deploy web service is running, you can POST the DAR file over HTTP. For example, you can use
command line tools such as curl to deploy the publisher:

curl --data-binary @MyPublisher.dar http://localhost:8080/deploy

Warning: We recommend you use the HTTP method of deployment in your test environments
only. If you enable the deploy web service in your production environment, you must take
additional security measures to prevent unauthorized or malicious access to the web service
URL. For example, by setting up restrictions in your firewall.

Diffusion | 631

To enable deployment through HTTP, you must enable the web service in the WebServer.xml
configuration file. For example, include the following XML:

<http-service name="deploy-service" debug="true”>
 <class>com.pushtechnology.diffusion.service.DeploymentService</
class>
 <url-pattern>^/deploy.*</url-pattern>
 <max-inbound-request-size>128m</max-inbound-request-size>
</http-service>

Ensure that the HTTP connector is configured to have an input buffer large enough to contain the
entire DAR file. You can configure this in the Connectors.xml configuration file.

Undeployment

For publishers deployed using the file copy method, you can delete the DAR file from the deployment
directory and on the next scan the server undeploys the publisher. A DAR file can be undeployed
only if all of the publishers it contains are stoppable. If a DAR file fails to be undeployed, any future
modifications to it are ignored.

It is important that any files that the deployment process has extracted from the DAR are not deleted
until the publisher has been successfully undeployed. Publishers can also be undeployed through JMX
by invoking the undeploy operation on associated MBean, for example

localhost/Server/com.pushtechnology.diffusion - Publisher -
 MyPublisher - undeploy()

Related concepts
Build server application code with Maven on page 506
The Diffusion API for server application code is not available in the Push Technology public Maven
repository. To build server components, you must install the product locally and depend on
diffusion.jar using a Maven system scope.

Build publishers with Maven on page 502
The Diffusion API for publishers is not available in the Push Technology public Maven repository. To
build publishers, you must install the product locally and depend on diffusion.jar using a Maven
system scope.

Related tasks
Building a publisher with mvndar on page 503
Use the Maven plugin mvndar to build and deploy your publisher DAR file. This plugin is available from
the Push Public Maven Repository.

Load balancers

Load balancers provide many capabilities that are key to creating a seamless Diffusion solution. We
recommend that you use a load balancer with Diffusion.

In addition to balancing client connections across multiple Diffusion servers, you can use load
balancers to composite URL spaces or do SSL offloading.

Connections between Diffusion clients and Diffusion servers have specific requirements. If your load
balancer handles Diffusion connections incorrectly, this can cause problems for your solution.

Ensure that you fully review this section of the user guide when using load balancers with Diffusion.

Diffusion | 632

Routing strategies at your load balancer
Your load balancer can present a number of different strategies for choosing which Diffusion server
a new client connection is routed to. After a client connection has been routed to a Diffusion server,
ensure that the client is always routed to the Diffusion server that its session exists on.

The routing strategies that are available to you depend on the load balancer that you choose to use.
The following table lists some examples of routing strategies:

Table 59: Examples of routing strategies

Name Description

Round-robin Each available Diffusion server is chosen in turn, with none favored.

Fewest clients The Diffusion server with the fewest number of client connections in progress is
chosen.

Least loaded The Diffusion server with the lowest CPU load is chosen.

Routing connection that use HTTP protocols

To route HTTP traffic, the load balancer must be able to inspect the HTTP headers and extract session
information.

Diffusion sets an HTTP cookie named session with a connection-specific ID specifically for this
purpose. Your load balancer can use this cookie to maintain a table of client to server mappings.

The session cookie is flagged with HttpOnly, which prevents scripts accessing the cookie. The
session cookie is not flagged with Secure, which prevents the cookie from being sent over non-secure
connections.

Sample HTTP conversation, cookie highlighted:

POST /diffusion/ HTTP/1.1
Host: localhost:8080
Connection: keep-alive
Content-Length: 0
tt: 90
Origin: http://localhost:8080
User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
 (KHTML, like Gecko) Ubuntu Chromium/48.0.2564.82 Chrome/48.0.2564.82
 Safari/537.36
m: 0
ty: B
v: 4
Content-Type: text/plain;charset=UTF-8
Accept: */*
Referer: http://localhost:8080/tools/DhtmlClient.html
Accept-Encoding: gzip, deflate
Accept-Language: en-GB,en-US;q=0.8,en;q=0.6

HTTP/1.1 200 OK
Set-Cookie: session=c04815df73a1646d-0000000000000000; HttpOnly
Access-Control-Allow-Origin:http://localhost:8080
Cache-Control:no-store, no-cache
Content-Type:text/plain; charset=UTF-8
Content-Length:41

4.100.4.c04815df73a1646d-0000000000000000

Diffusion | 633

POST /diffusion/ HTTP/1.1
Host: localhost:8080
Connection: keep-alive
Content-Length: 0
Origin: http://localhost:8080
c: c04815df73a1646d-0000000000000000
User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
 (KHTML, like Gecko) Ubuntu Chromium/48.0.2564.82 Chrome/48.0.2564.82
 Safari/537.36
m: 1
Content-Type: text/plain;charset=UTF-8
Accept: */*
Referer: http://localhost:8080/tools/DhtmlClient.html
Accept-Encoding: gzip, deflate
Accept-Language: en-GB,en-US;q=0.8,en;q=0.6
Cookie: session=c04815df73a1646d-0000000000000000

Diffusion uses a session ID for the cookie. This enables the load balancer to maintain a map of each
session ID to its target Diffusion server.

Instead, you can disable the Diffusion cookie and configure the load balancer to set a cookie that
identifies the target server instead of the session. While the overhead of transmitting a cookie is still
present between client and load balancer, the identifier can be smaller because there are a smaller
number of servers than client sessions. Load balancers that use the cookie to identify the Diffusion
server can send less data down the wire and consume fewer resources.

If you want to configure your load balancer to inject its own cookie, you can disable this
Diffusion cookie. To disable the Diffusion cookie, set the <disable-cookie> element in the
WebServer.xml configuration file of your Diffusion to true.

Routing connections that use streaming protocols

Streaming protocols that open a single socket and remain connected until they are no longer required
appear immune to requiring any special routing considerations. However, in the event that connection
keep-alive is enabled to handle reconnections in case of temporary connection loss, it is important
that the reconnection attempt is routed to the original server.

Without the ability to parse headers (and indeed, the absence of a session ID at all), the most common
method for routing a streaming protocol such as WebSocket is to create a client/server mapping based
on the IP addresses of the endpoints. This technique is generally referred to as Sticky-IP, and has the
advantage of also working with HTTP transports, if required.

For F5®'s Sticky IP, ensure that the Source Address Translation option is set to Auto Map.

Figure 40: Sticky-IP in F5 BIG-IP

The drawback of this approach is that multiple users masquerading behind a proxy or access point can
have the same IP address, and all requests from clients with that IP address are routed to the same
Diffusion instance. Load balancing still occurs, but some hosts might be unfairly loaded.

Diffusion | 634

Monitoring available Diffusion servers from your load balancer
To route your client connections most effectively, your load balancer must know which Diffusion
servers are available to accept connections.

There are a number of ways to determine the availability of a Diffusion server:

• Implement a custom monitor using a scripting language that is supported by your load balancer.

For example, create a custom Diffusion client that connects and subscribes to a status topic.

This is the most effective way of determine availability as can check the connector used by your
client applications.

• Use a TCP probe against the client connector.

A TCP probe checks whether the Diffusion server is able to accept new connections without doing
any processing.

If your load balancer's TCP probe does not complete the full 3-way handshake and instead
responds with a TCP reset after the server acks the probe, you might see IO exceptions on the
the Diffusion server. You can use the ignore-error-from element in the Connectors.xml
configuration file to tell Diffusion to ignore these errors.

• Use an HTTP probe against the built-in web server.

This has the advantage of being simple; most system administrators are familiar with HTTP
requests. In the simplest case, a GET request can be made against the root context of the web
server, for example:

GET / HTTP/1.0\r\n

However, this only tests the availability of the Diffusion server as a whole, and not the applications
within it.

• Implement an http-service on your Diffusion servers.

This service can query the state of the topic tree or any publishers, and return availability on
receipt of a GET request.

Compositing URL spaces using your load balancer
If your Diffusion servers are located at a different URL to the Diffusion browser clients hosted by your
web servers, you can use a load balancer to composite the URL spaces.

Security features in some browsers prevent web-based Diffusion clients from making requests to your
Diffusion server if your Diffusion server is in a different URL space to the web server you use to host
your client.

Diffusion | 635

• Your web content is hosted on web.example.com and your Diffusion servers are hosted on
diffusion.example.com.

• The Diffusion servers are configured to serve policy files that specify they are being served from the
domain web.example.com

For more information about serving policy files, see Configuring connectors on page 570.
• The load balancer composites the URL space so that requests to Diffusion at web.example.com

are routed to Diffusion servers hosted on diffusion.example.com
• To the client, both the web and the Diffusion content appear to be hosted on web.example.com.

This avoids any cross-domain security issues.

If you choose not to use your load balancer to composite the URL spaces, you can set up cross-domain
policy files that allow requests to the different URL spaces.

For more information about serving policy files, see Configuring connectors on page 570.

Secure Sockets Layer (SSL) offloading at your load balancer
Diffusion clients can connect to your solution using TLS or SSL. The TLS/SSL can terminate at your
load balancer or at your Diffusion server.

Note: If you have sensitive client data that you must secure, use a secure connection all the
way from the client to the Diffusion server. Either do not perform SSL offloading at the load
balancer or re-encrypt the connection between load balancer and the Diffusion server.

designguide/solution/thirdpartycomponents/crossdomain.png
administratorguide/loadbalancers/ssl_offload.png

Diffusion | 636

SSL offloading is when you terminate the TLS at the load balancer. The processing burden of
encrypting and/or decrypting a Diffusion client connection made over SSL can then be is offloaded to a
component that can perform SSL termination more efficiently.

After the SSL connection has been decrypted, the client connection can travel between the load
balancer and the Diffusion server using an unsecured transport. Doing this reduces CPU cost on your
Diffusion servers.

Using load balancers for resilience
An important part of creating your Diffusion solution is ensuring that it is resilient if one of its
components fails.

Load balancer redundancy

If you only have one load balancer in your Diffusion solution, this load balancer can become a single
point of failure. For a more resilient solution, have more than one load balancer.

You can have a cluster of active load balancers, each with a different IP address, behind a DNS that
uses a round-robin strategy to direct client connections to a hostname to the IP of each load balancer
in turn. With a round-robin routing strategy at your DNS, there can be a lag between a load balancer
becoming unavailable and this being detected.

Alternatively, you can configure your network so that all of your load balancers are available on the
same IP address.

If you use multiple load balancers, ensure that all load balancers have access to any client/server
mapping information.

Refer to the documentation for your load balancer for further information about load balancer
redundancy.

Using load balancers with Diffusion replication

Diffusion replication is designed to be used with Diffusion servers that are load balanced. If a Diffusion
server in your solution becomes unavailable, your load balancer must re-route any of that server's
client connections to other Diffusion servers in your solution.

For more information, see High availability on page 102.

Common issues when using a load balancer
There are some configuration options on you load balancer that can cause problems or inefficient
behavior in you Diffusion solution.

Connection pooling

Many load balancers include a connection pooling feature where connections between the load
balancer and the Diffusion server are kept alive and reused by other clients. In fact, multiple clients can
be multiplexed through a single server-side connection.

In Diffusion, a client is associated with a single TCP/HTTP connection for the lifetime of that
connection. If a Diffusion server closes a client, the connection is also closed. Diffusion makes no
distinction between a single client connection and a multiplexed connection, so when a client sharing
a multiplexed connection closes, the connection between the load balancer and Diffusion is closed,
and subsequently all of the client-side connections multiplexed through that server-side connection
are closed.

Diffusion | 637

For this reason, it is required that load balancers are not configured to pool connections when working
with Diffusion.

Reuse TCP connection

If your load balancer is configured to create a new TCP connection between the load balancer and
the Diffusion server for each request from a specific client, this can be expensive. Creating a new TCP
connection per request, increases the time each request takes to be processed and increases the
amount of traffic between the load balancer and the Diffusion server.

To avoid this, ensure that your load balancer is configured to reuse a TCP connection for requests from
the same client.

Sticky-IP

We recommend that you use the sticky-by-IP routing strategy when your clients connect using
streaming protocols. This ensures that client connections are always routed to the Diffusion server
where their sessions are located.

However, the drawback of this approach is that multiple users masquerading behind a proxy or access
point can have the same IP address, and all requests from clients with that IP address are routed to the
same Diffusion server. Load balancing still occurs, but some hosts might be unfairly loaded.

TCP retransmission timeout

If you use Diffusion failover, the TCP retransmission timeout on your load balancer's host server can
cause long waits for clients whose connections failover from one Diffusion server to another. When a
Diffusion server becomes unavailable, the load balancer can hold open existing client connections to
this server. These connections can continue to receive and buffer data from the client for the duration
of the timeout, before being closed. This data is discarded when the connection closes.

You can avoid this problem by changing the TCP retransmission timeout of the host server of your load
balancer or by configuring the load balancer to shutdown connections to Diffusion servers it knows are
unhealthy.

Web servers

Diffusion incorporates its own basic web server for a limited set of uses. The Diffusion server also
interacts with third-party web servers that host Diffusion web clients. The Diffusion server is also
capable of being run as a Java servlet inside a web application server.

Related concepts
Diffusion web server on page 638
Diffusion incorporates its own web server. This web server is required to enable a number of Diffusion
capabilities, but we recommend that you do not use it to host your production web applications.

Web servers on page 118
Consider how to use web servers as part of your Diffusion solution.

Running the Diffusion server inside of a third-party web application server on page 641
Diffusion can run as a Java servlet inside any Java application server.

Hosting Diffusion web clients in a third-party web server on page 640
Host Diffusion web clients — clients written using the JavaScript, Flash, or Silverlight APIs — on a third-
party web server to enable your customers to access them.

Configuring the Diffusion web server on page 605

Diffusion | 638

Use the WebServer.xml and Aliases.xml configuration files to configure the behavior of the
Diffusion web server.

Configuring Diffusion web server security on page 606
When configuring your Diffusion web server, consider the security of your solution.

Related reference
WebServer.xml on page 606
This file specifies the schema for the web server properties.

Diffusion web server
Diffusion incorporates its own web server. This web server is required to enable a number of Diffusion
capabilities, but we recommend that you do not use it to host your production web applications.

Any Diffusion connector can be configured to act as a web server and provide the following
capabilities:

• Providing an endpoint for the HTTP-based transports used by Diffusion clients
• Hosting the Diffusion server landing page
• Hosting the Diffusion demos
• Hosting the Diffusion monitoring console
• Serving policy files
• Optionally, hosting a static page you can use the check the status of the Diffusion server

For more information about configuring the Diffusion web server for these uses, see Configuring the
Diffusion web server on page 605.

Related concepts
Web servers on page 637
Diffusion incorporates its own basic web server for a limited set of uses. The Diffusion server also
interacts with third-party web servers that host Diffusion web clients. The Diffusion server is also
capable of being run as a Java servlet inside a web application server.

Web servers on page 118
Consider how to use web servers as part of your Diffusion solution.

Running the Diffusion server inside of a third-party web application server on page 641
Diffusion can run as a Java servlet inside any Java application server.

Hosting Diffusion web clients in a third-party web server on page 640
Host Diffusion web clients — clients written using the JavaScript, Flash, or Silverlight APIs — on a third-
party web server to enable your customers to access them.

Configuring the Diffusion web server on page 605
Use the WebServer.xml and Aliases.xml configuration files to configure the behavior of the
Diffusion web server.

Configuring Diffusion web server security on page 606
When configuring your Diffusion web server, consider the security of your solution.

Related reference
WebServer.xml on page 606

Diffusion | 639

This file specifies the schema for the web server properties.

Server-side processing
A basic level of server-side processing can be utilized with any file hosted on the Diffusion web server
that has a text mime type and JavaScript.

There are three server-side tags: Include, Publisher and Topic Data. These tags are stored in HTML
comments so as to not interfere with normal HTML

Include Tag

Include stubs load the file specified in the file attribute and are loaded as is into the parent HTML
document. They do not necessarily have to be valid HTML. They can be positioned anywhere within
the HTML file.

These includes are synonymous with #Include statements of ANSI C.

Below is an example of the syntax:

<!--@DiffusionTag type="Include" file="stub.html" -->

Include files can be nested so an include file can contain an include tag

Publisher tag
Publisher tags enable a publisher to interact with the web page during the serving process. Again
these tags can appear anywhere within the HTML document. In the case below the publisher method
processHTMLTag of the Trade publisher is called with the tag argument of table The publisher
can return a String of HTML that is inserted into the document at the position of the tag and the tag is
removed. The processHTMLTag method is also called with the HTTP Request, although the request
cannot be written to. Below is an example of the syntax

<!--@DiffusionTag type="publisher" publisher="Trade" tagid="table" --
>

TopicData

Topic data tags allow for SingleValueTopicData items to be rendered in the HTML page. Again
these tags can appear anywhere within the HTML document. The following example shows the syntax:

<!--@DiffusionTag type="TopicData" name="Assets/FX/EURUSD/O" -->

HTTP listener

Publishers can listen to all file HTTP requests by registering as a HTTPRequestListener. This
exposes the interface

void handleHTTPRequest(HTTPVirtualHost virtualHost,HTTPRequest
 request)

This enables for more detailed statistics to be captured from the HTTP request

Diffusion | 640

Hosting a status page on the Diffusion web server
You can host a simple status page on the Diffusion.

When setting up your Diffusion server to act as a web server for a status page, ensure that the web
service uses a different connector to the Diffusion clients. This enables the web server to use a different
thread pool and ensures that requests for status are not slowed by heavy client traffic.

You can use server-side tags to include topic data or call on publisher methods from within the status
page. For more information, see Server-side processing on page 639.

Receiving no response from the status page might not indicate that the server hosting it is down. If you
use a non-response from the status page as an indicator for failing over to another Diffusion server,
ensure that you kill all processes belonging to the non-responsive Diffusion server before failing over.

Hosting Diffusion web clients in a third-party web server
Host Diffusion web clients — clients written using the JavaScript, Flash, or Silverlight APIs — on a third-
party web server to enable your customers to access them.

If your Diffusion clients are web clients, they must be hosted on a web server to enable your customers
to access them. We recommend that you use a third-party web server to host your clients instead of
the built-in web server provided by Diffusion.

This approach requires additional configuration of your solution to account for cross-origin requests.

Cross-origin requests

Cross-origin requests occur when your web client requests resources (for example, data from the
Diffusion server) that are hosted on a different domain, or in some cases a different port on the same
domain, to your web client.

Some browsers do not support cross-origin resource sharing. For more information, see Cross-origin
resource sharing limitations on page 56.

You can use one of the following approaches to enable cross-origin requests for your solution:

• Define a cross domain policy. For more information, see Cross domain policies on page 645.
• Use a load balancer to composite the URL spaces.

Related concepts
Web servers on page 637
Diffusion incorporates its own basic web server for a limited set of uses. The Diffusion server also
interacts with third-party web servers that host Diffusion web clients. The Diffusion server is also
capable of being run as a Java servlet inside a web application server.

Diffusion web server on page 638
Diffusion incorporates its own web server. This web server is required to enable a number of Diffusion
capabilities, but we recommend that you do not use it to host your production web applications.

Running the Diffusion server inside of a third-party web application server on page 641
Diffusion can run as a Java servlet inside any Java application server.

Configuring the Diffusion web server on page 605
Use the WebServer.xml and Aliases.xml configuration files to configure the behavior of the
Diffusion web server.

Web servers on page 118

Diffusion | 641

Consider how to use web servers as part of your Diffusion solution.

Running the Diffusion server inside of a third-party web application
server

Diffusion can run as a Java servlet inside any Java application server.

When running the Diffusion server inside a third-party web application server, the Diffusion server
can have a different port number to clients that are hosted on the same server. This can cause cross-
origin .

Some browsers do not support cross-origin resource sharing. For more information, see Cross-origin
resource sharing limitations on page 56.

You can use one of the following approaches to enable cross-origin requests for your solution:

• Define a cross domain policy. For more information, see Cross domain policies on page 645.
• Use a load balancer to composite the URL spaces.

When using a third-party web server at least some of the functionality of the built-in Diffusion web
server can be disabled. The file-service, and two http-service entries can be removed as Tomcat™

provides this functionality. The client-service is needed to support WebSocket, HTTPC and HTTP
connection protocols. If these are not used, the client-service can be disabled as well.

Related concepts
Web servers on page 637
Diffusion incorporates its own basic web server for a limited set of uses. The Diffusion server also
interacts with third-party web servers that host Diffusion web clients. The Diffusion server is also
capable of being run as a Java servlet inside a web application server.

Diffusion web server on page 638
Diffusion incorporates its own web server. This web server is required to enable a number of Diffusion
capabilities, but we recommend that you do not use it to host your production web applications.

Hosting Diffusion web clients in a third-party web server on page 640
Host Diffusion web clients — clients written using the JavaScript, Flash, or Silverlight APIs — on a third-
party web server to enable your customers to access them.

Configuring the Diffusion web server on page 605
Use the WebServer.xml and Aliases.xml configuration files to configure the behavior of the
Diffusion web server.

Web servers on page 118
Consider how to use web servers as part of your Diffusion solution.

Example: Deploying the Diffusion server within Tomcat
Run the Diffusion server inside Tomcat as a Java servlet.

About this task

The Tomcat servlet container and the Diffusion server run in the same Java process and can
communicate directly through shared memory. Tomcat and the Diffusion server listen on different
ports. Clients can connect directly to the Diffusion server without going through Tomcat.

Diffusion | 642

Procedure

1. Configure an installation of the Diffusion server for how you want your Diffusion servlet to behave.
Ensure, when editing the configuration files in the etc directory, that all paths are expressed as
absolute paths.
Ensure that a valid license file is present in the etc directory.
Place any additional JARs that are required by your servlet in the ext directory of your Diffusion
installation.

2. Use the war.xml Ant script in the tools directory of your Diffusion to package the Diffusion
server as a WAR file.

ant -f war.xml

The script creates the diffusion.war file in the build directory of your Diffusion installation.

The diffusion.war file includes the following files and directories:

META-INF/manifest.xml

The manifest file for the WAR

WEB-INF/web.xml

This file contains information about the servlet.

WEB-INF/classes

This directory contains the configuration files for the Diffusion server. These files are
copied from the etc directory of the Diffusion installation.

WEB-INF/lib/diffusion.jar

The diffusion.jar file contains the Diffusion server

WEB-INF/lib

This directory also contains JAR files copied from the ext directory of the Diffusion
installation.

WEB-INF/lib/thirdparty

This directory contains the third-party libraries that are required by the Diffusion
server. These files are copied from the lib/thirdparty directory of the Diffusion
installation.

lib/DIFFUSION

This directory contains the browser API libraries. These files are copied from the
html/lib/DIFFUSION directory of the Diffusion installation.

Additional files and directories
The WAR file contains additional files and directories that are not listed here.

The top level of the WAR file contains resources that can be served by Tomcat.
3. Verify the WAR file.

a) Check that the WAR structure is the same as described in the previous step and that all
necessary files have been copied into the WAR structure.

b) Check that the WEB-INF/web.xml file contains the following information.

<servlet>
 <servlet-name>Diffusion</servlet-name>
 <display-name>Diffusion Servlet</display-name>
 <servlet-
class>com.pushtechnology.diffusion.servlet.DiffusionServlet</
servlet-class>
 <load-on-startup>1</load-on-startup>

Diffusion | 643

</servlet>

The WAR is now ready to be deployed inside a Java web application server. The rest of this task
describes how to run the WAR inside of Tomcat, but you can use any Java web application server.
4. Define the Tomcat connectors for incoming connections in the Server.xml file.

A connector defines the port, protocol, and various properties of how the connection is handled.
The following is an example connector for handling HTTP 1.1 connections on port 8080:

<Connector port="8080"
 connectionTimeout="20000"
 URIEncoding="UTF-8"
 maxThreads="3"
 protocol="HTTP/1.1" />

See the Tomcat documentation for more information.
5. When starting Tomcat, ensure that the following parameters are set:

a) Set the diffusion.home parameter to the path to the Diffusion JAR file.
-Ddiffusion.home=diffusion_installation/lib

Tomcat must be aware of Diffusion.
b) Set the java.util.prefs.userRoot parameter to a directory that Tomcat can write to.

For example:

-Djava.util.prefs.userRoot=/var/lib/tomcat/diffusion/prefs/user

Diffusion uses the java.utils.prefs mechanism to store preference information. If
Tomcat, does not set this parameter, the Diffusion server logs warning messages.

What to do next
Accessing publishers from Tomcat

Diffusion started within Tomcat allows Tomcat to access the publishers. Tomcat can be used to
serve JSP files providing dynamically generated content. These files can access publishers using the
publishers class static methods.

<%@ page import="java.util.List,com.pushtechnology.api.publisher.*"
 %>
<html>
 <head>
 <title>Publisher Information</title>
 </head>
 <body>
 <table>
 <tr>
 <th>Publisher Name</th>
 <th>Topics</th>
 </tr>
 <% for (Publisher pub : Publishers.getPublishers()) { %>
 <tr>
 <td><%= pub.getPublisherName() %></td>
 <td><%= pub.getNumberOfTopics() %></td>
 </tr>
 <% } %>
 </table>
 </body>
</html>

Diffusion | 644

The above is the content of a JSP file that return a list of the publisher Diffusion is running with the
number of topics each publisher owns.

Other considerations when running the Diffusion server inside of a third-party
web application server

Diffusion can run as a Java servlet inside any Java application server.

Apache Mod Proxy installation

Apache Mod Proxy can be used to forward HTTP requests from an Apache web server to Diffusion.
It does not support persistent connections orWebSocket so the WebSocket and HTTPC connections
do not work. Make sure that you include the following into the Apache configuration file (Virtual host
setting).

ProxyPass /diffusion/ http://localhost:8080/diffusion/

For more information, see the Apache Mod Proxy documentation.

Apache AJP13 Installation

Apache AJP can be used to forward requests from an Apache web server to Tomcat. In the Apache
virtual host configuration, mount the path

JkMount /diffusion/*dfnjetty

Workers definition file

worker.dfnjetty.port=8009
worker.dfnjetty.host=(host IP)
worker.dfnjetty.type=ajp13
worker.dfnjetty.lbfactor=1
worker.dfnjetty.cachesize=50
worker.dfnjetty.socket_keepalive=1

worker.list=dfnjetty

A connector that handles the AJP/1.3 protocol is needed running on port 8009 (because of the Workers
file described above). See the Tomcat documentation for more information on this.

IIS Installation

Use an ISAPI_Rewrite tool. For example, http://www.helicontech.com/isapi_rewrite

The rewrite rule is as follows:

RewriteEngine on RewriteRule ^diffusion/ http://localhost:8080/
diffusion/ [p]

Diffusion home directory

The servlet container must be aware of Diffusion. Add the path to the directory that contains the
Diffusion JAR file to the Java VM arguments that you use to start the servlet container.

-Ddiffusion.home=diffusion_installation/lib

http://www.helicontech.com/isapi_rewrite

Diffusion | 645

Cross domain policies
Cross domain policies grant permission to communicate with servers other than the one the client is
hosted on.

Cross-domain XML file

The cross-domain policy is defined in an XML file

A cross-domain policy file is an XML document that grants a web client – such as Adobe® Flash Player,
Adobe Reader, Silverlight Player – permission to handle data across multiple domains. When a client
hosts content from a particular source domain and that content makes requests directed towards a
domain other than its own, the remote domain must host a cross-domain policy file that grants access
to the source domain, allowing the client to continue with the transaction. Policy files grant read
access to data, permit a client to include custom headers in cross-domain requests, and are also used
with sockets to grant permissions for socket-based connections.

For example, say that the Diffusion client is loaded from static.example.com and the connection URL
to the Diffusion client is http://streaming.example.com, a crossdomain.xml file must be
loaded from static.example.com

A crossdomain.xml is required if one of the following is true:

• You are using Diffusion as a streaming data server and a separate web server which are on different
domains

• The Diffusion connection type is HTTP, HTTPS, HTTPC, or HTTPCS
• You are not using a load balancer to HTTP rewrite Diffusion traffic

Note: You cannot use the iframe streaming transport with cross-domain requests. This is not
supported by Diffusion.

Installing the crossdomain.xml file for Flash/Silverlight HTTP request

• If you use Diffusion as a web server, copy the crossdomain.xml file from the Diffusion install /
etc folder to the root of the html folder

• If you do not use Diffusion as a web server, copy the crossdomain.xml file from the Diffusion
install /etc folder to the virtual root of the web server hosting the Diffusion html lib folder

By default, Diffusion does not have crossdomain.xml installed. We shipped an example which
allow all domains and all ports to access the Diffusion server. This must be edited to include the
correct security details for your installation.

Flash security model
Flash interacts with remote services to establish security according to the restrictions defined in the
Flash policy file.

If a socket-based connection is to be used, for example Diffusion DPT type connection, the Flash player
tries to get a policy file from the same host as you are trying to connect to but on port 843. If this port
is not open through your firewalls or is not configured within the Diffusion connectors, the Flash player
waits 2 seconds before requesting a policy file from the same port that you are trying to connect to. If
the policy file request is not responded to correctly or the policy file has restricted the connection, the
Flash player generates a security exception and the connection attempt stops.

If an HTTP connection is to be used, for example Diffusion HTTP type connection, a socket-based
policy file is not required but a crossdomain.xml file might be required before the Diffusion
connection is made.

Diffusion | 646

Official Adobe documentation is available at the following location: Cross-domain policy file
specification.

Note: Ensure that none of the other services on the same system as your Diffusion server use
port 843. If they do, the Flash policy connector is unable to bind to the port and cannot serve
the required policy file.

FlashPolicy.xml file

When is the FlashPolicy.xml used?

When a Diffusion DPT connection is used a socket connection is made, in order that the socket
connection can be established a socket policy file must be acquired from port 843 or from the port that
the Diffusion client is trying to connect to.

Again this is part of the cross-domain schema, but this time the to-ports attribute on the allow-
access-from element is particularly important.

FlashMasterPolicy.xml file

Use of the FlashMasterPolicy file

FlashMasterPolicy is used for requests on port 843. It is a normal crossdomain.xml with an extra
element of

<site-control permitted-cross-domain-policies="master-only" />

The site-control element here specifies that only this master policy file is considered valid on this
domain

Related concepts
Silverlight security model on page 646
Silverlight interacts with remote services to establish security according to the restrictions defined in
the Silverlight policy file.

JavaScript security model on page 647
When a JavaScript client uses the XHR transport, this imposes security constraints on using cross
domain requests.

Silverlight security model
Silverlight interacts with remote services to establish security according to the restrictions defined in
the Silverlight policy file.

How Silverlight interacts with remote services to establish security

If a socket-based connection is to be used, for example Diffusion DPT type connection, the Silverlight
player tries to get a policy file from the 943. If this port is not open through your firewalls or is not
configured within the Diffusion connectors the Silverlight player generates a security exception and
the connection attempt ceases.

If an HTTP connection is to be used, for example. Diffusion HTTP type connection, a socket-based
policy file is not required but a crossdomain.xml file might be required before the Diffusion
connection is made.

Official Microsoft documentation

Network security access restrictions (Silverlight)

http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://msdn.microsoft.com/en-us/library/cc645032(v=vs.95).aspx

Diffusion | 647

Silverlight clientaccesspolicy.xml file

When is the clientaccesspolicy.xml used?

When a Diffusion DPT connection is used a socket connection is made, in order that the socket
connection can be established a socket policy file must be acquired from port 943.

Related concepts
Flash security model on page 645
Flash interacts with remote services to establish security according to the restrictions defined in the
Flash policy file.

JavaScript security model on page 647
When a JavaScript client uses the XHR transport, this imposes security constraints on using cross
domain requests.

JavaScript security model
When a JavaScript client uses the XHR transport, this imposes security constraints on using cross
domain requests.

The Diffusion JavaScript client library, unless otherwise configured, cascades downward through a set
of transports starting with WebSocket and working its way down toward XmlHttpRequest (also known
as Ajax Long Poll), and finally to hidden frames.

WebSocket, Flash, and Silverlight have few security constraints, however XHR is subject to the
same origin policy. Simply put, if JavaScript code executes within a web page sourced from
www.example.com it is only permitted to make XHR requests back to www.example.com. If your
Diffusion server is at push.example.com this presents a problem when only XHR is available.

The catch-all solution

The set of web browsers in current use is both broad and heterogeneous. Rather than catering to
each special case browser, this approach contains all complexity to one place: the load balancer. This
presumes there is a load-balancer however, though in all reasonable production circumstances this is
true. All XHR requests to Diffusion use a URL that starts /diffusion. Routing all such requests to one of
the servers in the Diffusion pool will make available both regular and Diffusion functionality from one
apparent host. This approach is suitable to all web browsers.

Diffusion | 648

Figure 41: Using a load balancer to composite two URL spaces into one.

In circumstances where clients of Diffusion solutions cannot be depended upon to have a single IP
address (for example: users with multiple aDSL connections, or smart-phones migrating between
providers), each HTTP request made from a Diffusion client to a Diffusion server holds a cookie named
session holding the unique session ID of that client. This gives load balancers an alternative means
of distributing a request to one of their Diffusion servers.

Software alternatives

For test and development purposes a hardware load balancer might be an expensive means of
compositing the URL-spaces of two (or more) web servers into one. Alternatives such a mod_proxy for
the Apache web server, and an ISAPI_Rewrite tool can be employed to achieve the same for a lower (or
zero) price-tag. Diffusion can be configured to run as a servlet with Tomcat. For more information, see
Example: Deploying the Diffusion server within Tomcat on page 641.

CORS

CORS is a standard formed to address circumstances where www.example.com uses XHR to access
resources on alternate host push.whatnot.com, and aims to provide sensible constraints and
avoid a free-for-all.

CORS uses HTTP headers to enable the Diffusion server to indicate if it accepts traffic from web
pages served from other servers. When a CORS request is made, Diffusion must respond with certain
response HTTP headers for the browser to treat the request as successful. CORS requests can result
in the browser sending a pre-flight request to Diffusion using the OPTIONS method to determine if
the origin, headers, and methods of the request it is about to make are permitted. Diffusion responds
with the correct values for headers and methods but the actual request is not made until the pre-flight
request succeeds. The allowed origins can be configured in the client-service element of the
WebServer.xml configuration file. For more information, see WebServer.xml on page 606.

Diffusion | 649

Client-Side

Include the XHRURL attribute in the arguments to the DiffusionClientConnectionDetails constructor.
For example:

var connectionDetails = {
 debug : true,
 onDataFunction : onDataEvent,
 XHRURL: "http://www.example.com:8080"
 topic : 'SYMBOLS/QUOTES/NIFTY~INDEX',
}

Server side

CORS filtering is governed on the server side using the cors-origin attribute found in etc/
WebServer.xml. By default this is a very permissive .* regular expression, and must be set to
something more specific in production. In the above example, push.example.com will limit
requests to push.example.com to only those from www.example.com. Full details about this
feature are found in the web server section of the Diffusion manual.

Related concepts
Flash security model on page 645
Flash interacts with remote services to establish security according to the restrictions defined in the
Flash policy file.

Silverlight security model on page 646
Silverlight interacts with remote services to establish security according to the restrictions defined in
the Silverlight policy file.

Related reference
Cross-origin resource sharing limitations on page 56
CORS allows resources to be accessed by a web page from a different domain. Some browsers do not
support this capability.

Push Notification Bridge

The Push Notification Bridge is a Diffusion client that subscribes to topics on behalf of other Diffusion
clients and uses a push notification network to relay topic updates to the device where the client
application is located.

The Push Notification Bridge comprises the following files all located in the pushnotification
directory of your Diffusion installation:

pn_bridge.jar

This JAR file contains the Diffusion Java client that acts as a bridge between Diffusion
and push notification networks.

pn_bridge.bat and pn_bridge.sh
These scripts can be used to start the Push Notification Bridge.

PushNotifications.xml

This XML file is used to configure the Push Notification Bridge.

PushNotifications.xsd

This XSD file defines the schema of the PushNotifications.xml file.

Diffusion | 650

How the Push Notification Bridge works

A client sends a JSON message through a request topic to the Push Notification Bridge, requesting
push notifications for a specific topic.

The topic that notifications are received for must be a single value topic.

Figure 42: Requests to the Push Notification Bridge

1. The client sends a request message to the service topic path that the bridge listens on.

This topic path is defined in the PushNotifications.xml configuration file. For more
information, see Configuring your Push Notification Bridge on page 652.

The request message is in JSON format. For more information about the request message format,
see Request and response JSON formats on page 660.

2. The Push Notification Bridge receives the message through the service topic path.
3. The bridge attempts to subscribe to the topic.
4. If the subscription is successful, the bridge stores the association between the topic and the

push notification destination. This can be represented by either an APNS device token or a GCM
registration ID. The destination is the combination of the client application and the device on which
the client is hosted. It is not the same as a client session.

The association between topic and destination is stored in memory, by default. You can persist
this information by implementing your own persistence solution. For more information, see Push
Notification Bridge persistence plugin on page 499.

5. The bridge sends a response message to the client through its service topic path.

The response message is in JSON format. For more information about the response message
format, see Request and response JSON formats on page 660.

6. The client receives the response message and can act on it.

administratorguide/pushnotifications/pnb_request.png

Diffusion | 651

The client can also request to be unsubscribed from receiving push notifications for a topic.

When an update is received on a subscribed topic, the bridge sends a push notification to the
destinations associated with that topic.

Figure 43: Notifications from the Push Notification Bridge

1. The topic is updated.
2. The Push Notification Bridge receives topic update and transforms the update into JSON according

to the template that is configured for the topic.

For more information about the JSON format of notifications, see Push notification JSON format
on page 663. For more information about configuring templates, see PushNotifications.xml on
page 654.

3. The bridge looks up the destinations that have subscribed to receive push notifications for this
topic.

4. The bridge sends the push notifications to the push notification network.

The push notification network that the bridge uses depends on the transport prefix in the
destination URI provided in the subscription request message.

5. The push notification network sends the notification to the destination.

If the client is active when the topic update occurs and is subscribed to that topic, the update is
received twice: once through the Diffusion server and once through the push notification network. It is
the responsibility of the client to handle any duplication.

Related concepts
Configuring your Push Notification Bridge on page 652

administratorguide/pushnotifications/pnb_notify.png

Diffusion | 652

Use the PushNotification.xml configuration file to define the behavior of your Push Notification
Bridge.

Running the Push Notification Bridge on page 659
The Diffusion installation includes scripts that you can use to start the Push Notification Bridge.

Push notification networks on page 120
Consider whether your solution will interact with push notification networks.

Push Notification Bridge persistence plugin on page 499
The Push Notification Bridge stores subscription information in memory. To persist this information
past the end of the bridge process, implement a persistence plugin.

Example: Send a request message to the Push Notification Bridge on page 368
The following examples use the Unified API to send a request message on a topic path to communicate
with the Push Notification Bridge. The request message is in JSON and can be used to subscribe or
unsubscribe from receiving push notifications when specific topics are updated.

Related reference
JSON formats used by the Push Notification Bridge on page 659
Requests and responses sent between clients and the Push Notification Bridge on the bridge's service
topic and the push notifications sent by the bridge to devices are all JSON format.

Push notification JSON format on page 663
When a topic is updated. The Push Notification Bridge sends a notification through either APNS or
GCM. This message is in JSON format. You can define the format of the message in a template in the
PushNotifications.xml configuration file. If the update is in the correct JSON format, you can
relay the update verbatim to the push notification network.

Request and response JSON formats on page 660
A client sends push notification requests to the topic path that the Push Notification Bridge listens on.
The bridge responds through the same topic path. The default topic path is push/notifications. These
requests and responses are in JSON format.

PushNotifications.xml on page 654
This file specifies the schema for the configuration required by the Push Notification Bridge.

Configuring your Push Notification Bridge
Use the PushNotification.xml configuration file to define the behavior of your Push Notification
Bridge.

Configuring the Diffusion server connection

Consider the following when configuring the server connection:

• The URL to the Diffusion server must include both the prefix for the transport that the bridge uses
to connect to the Diffusion server and the port number that the Diffusion server accepts client
connections on.

The following transport prefixes are supported:

• ws://

• wss://

• http://

• https://

• DEPRECATED: dpt://
• DEPRECATED: dpts://

Diffusion | 653

• The principal you use to connect to the Diffusion server must have a role that includes the following
permissions:

• select_topic and read_topic permissions for all topics that the bridge sends push notifications
for and for the topic path that the bridge receives requests through.

• send_to_session permission for the topic path that the bridge sends responses through.
• register_handler permission

Configuring templates

You can define template notification messages within the configuration file that are associated with
one or more topics. When an update is received on a topic, the associated template is used to format
the update information into the JSON that is passed to the push notification networks.

Because the templates are defined in an XML configuration file, ensure that the configuration file
remains valid by escaping any characters that are not valid XML. (For example, use & to escape &.)

You can also specify that topic updates be passed to the push notification network verbatim. In this
case, it is the responsibility of the client or publisher updating the topic to ensure that the update
content is in the correct JSON format. If the update content is not in the correct JSON format, the Push
Notification Bridge logs an error.

If there is no matching template, verbatim relay is the default.

For more information about the JSON format of push notifications, see Push notification JSON format
on page 663.

Configuring persistence

The Push Notification Bridge stores its data in memory. If you want the bridge to persist the
notification requests your clients set up after the bridge has restarted, you must persist the data.

Use the persistence element to specify the implementation of the
com.pushtechnology.diffusion.pushnotifications.persistence API to use.

For more information about implementing a persistence solution for your Push Notification Bridge,
see Push Notification Bridge persistence plugin on page 499.

Configuring authentication

The Push Notification Bridge must authenticate with the push notification network you are using.
Google Cloud Messaging uses an API key to authenticate your requests. Apple Push Notification
Service uses a certificate. You must acquire these credentials before you can configure your Push
Notification Bridge to use the push notification network.

For more information about getting the required credentials, see Getting an Apple certificate for the
Push Notification Bridge on page 658 and Getting a Google API key for the Push Notification Bridge
on page 658.

Related concepts
Push Notification Bridge on page 649
The Push Notification Bridge is a Diffusion client that subscribes to topics on behalf of other Diffusion
clients and uses a push notification network to relay topic updates to the device where the client
application is located.

Running the Push Notification Bridge on page 659
The Diffusion installation includes scripts that you can use to start the Push Notification Bridge.

Related reference
JSON formats used by the Push Notification Bridge on page 659

Diffusion | 654

Requests and responses sent between clients and the Push Notification Bridge on the bridge's service
topic and the push notifications sent by the bridge to devices are all JSON format.

Push notification JSON format on page 663
When a topic is updated. The Push Notification Bridge sends a notification through either APNS or
GCM. This message is in JSON format. You can define the format of the message in a template in the
PushNotifications.xml configuration file. If the update is in the correct JSON format, you can
relay the update verbatim to the push notification network.

Request and response JSON formats on page 660
A client sends push notification requests to the topic path that the Push Notification Bridge listens on.
The bridge responds through the same topic path. The default topic path is push/notifications. These
requests and responses are in JSON format.

PushNotifications.xml on page 654
This file specifies the schema for the configuration required by the Push Notification Bridge.

PushNotifications.xml
This file specifies the schema for the configuration required by the Push Notification Bridge.

PNRootConfig

The mandatory root node of the Push Notification bridge.

The following table lists the elements that an element of type PNRootConfig can contain:

Name Type Description Min
occurs

Max
occurs

server PNDiffusionConfigDiffusion server connection details. 1 1

apns PNAPNSConfig Apple Push Notification Service
connection and configuration details.

0 1

gcm PNGCMConfig Google Cloud Messaging connection and
configuration details.

0 1

transformation PNTransformationConfigTransformation from topic updates to
Push notifications.

1 1

persistence PNPersistenceConfigOptional Java plugin to persist topic
subscriptions between bridge process
lifetimes.

0 1

delivery PNDeliveryConfigOptions relating to the delivery of
notifications to all Push Notification
networks.

1 1

PNDeliveryConfig

Options relating to the delivery of notifications to all Push Notification networks.

The following table lists the attributes that an element of type PNDeliveryConfig can have:

Name Type Description Required

threads xs:int The number of threads used for notification
delivery, processing client requests and collecting
feedback from APNS.

true

Diffusion | 655

PNTransformationConfig

Transformation from topic updates to Push notifications.

The following table lists the attributes that an element of type PNTransformationConfig can
have:

Name Type Description Required

default xs:string true

The following table lists the elements that an element of type PNTransformationConfig can
contain:

Name Type Description Min
occurs

Max
occurs

templates PNTemplatesConfigThe set of uniquely named templates. 1 1

map PNTemplatesMappingConfigRelates topics to one or more templates. 1 1

PNTemplatesConfig

The set of uniquely named templates.

The following table lists the elements that an element of type PNTemplatesConfig can contain:

Name Type Description Min
occurs

Max
occurs

template PNTemplateConfigA named template. 1 unbounded

PNTemplateConfig

A named template. May contain placeholders ${topic.name} and/or ${topic.update} which are replaced
with real values at run time.

The following table lists the attributes that an element of type PNTemplateConfig can have:

Name Type Description Required

name xs:string Name for this template, e.g. "london-underground-
status-updates".

true

PNTemplatesMappingConfig

Establishes the relations between topic paths and templates. Alternatively updates can be passed
through 'verbatim', meaning the topic update must be a valid push notification message.

The following table lists the elements that an element of type PNTemplatesMappingConfig can
contain:

Name Type Description Min
occurs

Max
occurs

from PNTemplatesMappingFromRelates updates from topics covered by
a topic-selector to interpolation with a
named template.

1 unbounded

verbatim PNTemplatesMappingVerbatimRelates a single topic-path to straight-
through processing.

1 unbounded

Diffusion | 656

PNAPNSConfig

Apple Push Notification Service connection and configuration details.

The following table lists the attributes that an element of type PNAPNSConfig can have:

Name Type Description Required

certificate xs:string Name of a PKCS12 format file containing the
certificate. The certificate needs to be of PKCS12
format and the keystore needs to be encrypted
using the SunX509 algorithm. Both of these settings
are the default.

true

passphrase xs:string Mandatory certificate passphrase. true

servers PNAPNSServers A choice of "production", "sandbox" or
"hostname:gatewayport:feedbackport"

true

PNGCMConfig

Google Cloud Messaging connection and configuration details.

The following table lists the attributes that an element of type PNGCMConfig can have:

Name Type Description Required

apiKey xs:string The Google provided GCM API Key. true

retryMax xs:int The number of attempts to make following an
HTTP 50x response on posting. An increasing pause
occurs prior to each repeated attempt.

false

PNDiffusionConfig

Diffusion server connection details.

The following table lists the attributes that an element of type PNDiffusionConfig can have:

Name Type Description Required

url xs:string URL for a Diffusion connector configured to accept
Unified clients.

true

principal xs:string The optional principal used when authenticating.
The principal requires permissions
'send_to_session', 'read_topic' and
'register_handler'.

false

credentials xs:string The credentials matching the principal used when
authenticating.

false

topicPath xs:string The topic path used by the Push Notification bridge
to receive subscription and other service requests.

true

PNPersistenceConfig

Optional Java plugin to persist topic subscriptions between processes lifetimes.

The following table lists the attributes that an element of type PNPersistenceConfig can have:

Diffusion | 657

Name Type Description Required

saverFactory xs:string Name of the class present on the
JVM classpath used to build a
com.pushtechnology.diffusion.pushnotifications.persistence.Saver
object.

true

PNTemplatesMappingFrom

Relates updates from topics covered by a topic-selector to interpolation with a named template.

The following table lists the attributes that an element of type PNTemplatesMappingFrom can
have:

Name Type Description Required

selector xs:string Diffusion topic selector expression. true

toTemplate xs:string Name of a defined template. true

PNTemplatesMappingVerbatim

The following table lists the attributes that an element of type PNTemplatesMappingVerbatim
can have:

Name Type Description Required

selector xs:string Relates a single topic-path to straight-through
processing.

true

Related concepts
Push Notification Bridge on page 649
The Push Notification Bridge is a Diffusion client that subscribes to topics on behalf of other Diffusion
clients and uses a push notification network to relay topic updates to the device where the client
application is located.

Configuring your Push Notification Bridge on page 652
Use the PushNotification.xml configuration file to define the behavior of your Push Notification
Bridge.

Running the Push Notification Bridge on page 659
The Diffusion installation includes scripts that you can use to start the Push Notification Bridge.

Related reference
JSON formats used by the Push Notification Bridge on page 659
Requests and responses sent between clients and the Push Notification Bridge on the bridge's service
topic and the push notifications sent by the bridge to devices are all JSON format.

Push notification JSON format on page 663
When a topic is updated. The Push Notification Bridge sends a notification through either APNS or
GCM. This message is in JSON format. You can define the format of the message in a template in the
PushNotifications.xml configuration file. If the update is in the correct JSON format, you can
relay the update verbatim to the push notification network.

Request and response JSON formats on page 660

Diffusion | 658

A client sends push notification requests to the topic path that the Push Notification Bridge listens on.
The bridge responds through the same topic path. The default topic path is push/notifications. These
requests and responses are in JSON format.

Getting an Apple certificate for the Push Notification Bridge
For the Push Notification Bridge to connect to APNS, it must authenticate with a certificate. You can
get a certificate from the Apple Developer Center.

About this task

Note:

These steps relate to the original APNS Provider API, where sandbox and production services
each require a different certificate.

The Push Notification Bridge does not yet support the new APNS Provider API, which is based
on HTTP/2 and requires only a single certificate for both sandbox and production roles.

Procedure

1. In the Apple Developer Center, go to the Member Center.
https://developer.apple.com

2. Go to Certificates, Identities & Profiles.
3. Click the plus sign (+) to add a new certificate.
4. From the Development section, select Apple Push Notification service SSL (Sandbox).

After you have developed and tested your solution, you can get a production certificate.
5. Click Continue. Follow the instructions provided to generate a certificate.

What to do next

For more information, see iOS Developer Library – App Distribution Guide.

Getting a Google API key for the Push Notification Bridge
For the Push Notification Bridge to connect to GCM, it must authenticate with an API key. You can get
an API key from the Google Developers Console.

Procedure

1. In the Google Developers Console, create or select a project.
https://console.developers.google.com/home/

2. Go to Use Google APIs.
3. Select Cloud Messaging for Android.
4. Click Enable API.

You are prompted to create credentials.
5. Choose to skip the step and create an API key.
6. In the Create a new key dialog, select Server key.
7. Type a name for the key.

You can choose at this time to restrict the IP addresses that requests the use this API key can come
from. If possible, restrict the key to the IP address your Push Notification Bridge uses.

8. Click OK.
A dialog displays your new API key.

https://developer.apple.com/membercenter/index.action
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW11
https://console.developers.google.com/home/

Diffusion | 659

Running the Push Notification Bridge
The Diffusion installation includes scripts that you can use to start the Push Notification Bridge.

System requirements

The Push Notification Bridge is a Java application. The bridge requires at least Java version 7.
However, we recommend you use Java version 8 or above.

Starting with the scripts

The following startup scripts are provided in the pushnotification directory of your Diffusion
installation:

• pn_bridge.bat for use on Windows platforms
• pn_bridge.sh for use on Linux and UNIX platforms

Related concepts
Push Notification Bridge on page 649
The Push Notification Bridge is a Diffusion client that subscribes to topics on behalf of other Diffusion
clients and uses a push notification network to relay topic updates to the device where the client
application is located.

Configuring your Push Notification Bridge on page 652
Use the PushNotification.xml configuration file to define the behavior of your Push Notification
Bridge.

Related reference
JSON formats used by the Push Notification Bridge on page 659
Requests and responses sent between clients and the Push Notification Bridge on the bridge's service
topic and the push notifications sent by the bridge to devices are all JSON format.

Push notification JSON format on page 663
When a topic is updated. The Push Notification Bridge sends a notification through either APNS or
GCM. This message is in JSON format. You can define the format of the message in a template in the
PushNotifications.xml configuration file. If the update is in the correct JSON format, you can
relay the update verbatim to the push notification network.

Request and response JSON formats on page 660
A client sends push notification requests to the topic path that the Push Notification Bridge listens on.
The bridge responds through the same topic path. The default topic path is push/notifications. These
requests and responses are in JSON format.

PushNotifications.xml on page 654
This file specifies the schema for the configuration required by the Push Notification Bridge.

JSON formats used by the Push Notification Bridge
Requests and responses sent between clients and the Push Notification Bridge on the bridge's service
topic and the push notifications sent by the bridge to devices are all JSON format.

Related concepts
Push Notification Bridge on page 649

Diffusion | 660

The Push Notification Bridge is a Diffusion client that subscribes to topics on behalf of other Diffusion
clients and uses a push notification network to relay topic updates to the device where the client
application is located.

Configuring your Push Notification Bridge on page 652
Use the PushNotification.xml configuration file to define the behavior of your Push Notification
Bridge.

Running the Push Notification Bridge on page 659
The Diffusion installation includes scripts that you can use to start the Push Notification Bridge.

Related reference
Push notification JSON format on page 663
When a topic is updated. The Push Notification Bridge sends a notification through either APNS or
GCM. This message is in JSON format. You can define the format of the message in a template in the
PushNotifications.xml configuration file. If the update is in the correct JSON format, you can
relay the update verbatim to the push notification network.

Request and response JSON formats on page 660
A client sends push notification requests to the topic path that the Push Notification Bridge listens on.
The bridge responds through the same topic path. The default topic path is push/notifications. These
requests and responses are in JSON format.

PushNotifications.xml on page 654
This file specifies the schema for the configuration required by the Push Notification Bridge.

Request and response JSON formats
A client sends push notification requests to the topic path that the Push Notification Bridge listens on.
The bridge responds through the same topic path. The default topic path is push/notifications. These
requests and responses are in JSON format.

The following pieces of information are included in request messages:

destination_token
Push notification networks use binary tokens to represent an app installed on a
device. This token combined with the transport prefix for the push notification
network is the URI that the Push Notification Bridge uses to identify the device to
send push notifications to.

topic_selector
The topic selector that the client subscribes to receive push notifications from or
unsubscribes from receiving push notifications.

Note: This is not the same as the topic path that the request and
response messages are sent through.

correlation_id
This value is passed through the Push Notification Bridge without being altered. The
requesting client can use this to correlate a response message with its associated
request message.

The results of including the contents of a subscription request with an unsubscription request are
undefined.

Destination tokens

The destination token associated with the device and application to send a push notification to is
provided to the application when the application registers with the push notification network.

Google Cloud Messaging

Diffusion | 661

The destination token used by GCM is called registration token or instance ID. To get
the instance ID for GCM, your client registers with the GCM connection servers using
instanceId.getToken.

For more information, see the GCM documentation.

Apple Push Notification service

The destination token used by APNs is called device token. Use the
registerForRemoteNotifications method on your UIApplication
instance to get a device token.

For more information, see the APNs documentation.

When your app has successfully registered with the APNs, your
UIApplicationDelegate instance is supplied with a device token through
application:didRegisterForRemoteNotificationsWithDeviceToken.

Encode the device token in base 64 before you supply it to the Push Notification
Bridge as an apns:// URI in a bridge subscription request:

-(void)application:(UIApplication *)application
 didRegisterForRemoteNotificationsWithDeviceToken:(NSData
 *)deviceToken {
 NSString * base64 = [deviceToken
 base64EncodedStringWithOptions:0];
 NSString * destination = [@"apns://"
 stringByAppendingString:base64];
 [self sendRequestWithDestination:destination];
}

Subscription request

The following message requests that updates to the topic at topic_selector be sent by APNs to the
device identified by destination_token. The destination token is encoded in base64.

{
 "request": {
 "content": {
 "pnsub": {
 "destination": "apns://destination_token",
 "topic": "topic_selector"
 }
 },
 "correlation": "correlation_id"
 }
}

The following message requests that updates to the topic at topic_selector be sent by GCM to the
device identified by destination_token.

{
 "request": {
 "content": {
 "pnsub": {
 "destination": "gcm://destination_token",
 "topic": "topic_selector"
 }
 },
 "correlation": "correlation_id"
 }

https://developers.google.com/instance-id/
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html#//apple_ref/doc/uid/TP40008194-CH100-SW12

Diffusion | 662

}

Unsubscription request

The following message requests that updates to the topic at topic_selector be no longer sent to the
device identified by destination_token.

{
 "request": {
 "content": {
 "pnunsub": {
 "destination": "apns://destination_token",
 "topic": "topic_selector"
 }
 },
 "correlation": "correlation_id"
 }
}

The following message requests that updates to the topic at topic_selector be no longer sent to the
device identified by destination_token.

{
 "request": {
 "content": {
 "pnunsub": {
 "destination": "gcm://destination_token",
 "topic": "topic_selector"
 }
 },
 "correlation": "correlation_id"
 }
}

Response

The following message is the response that the bridge sends to a requesting client if the request is
successful.

{
 "response": {
 "content": result_json,
 "correlation": "correlation_id"
 }
}

If the response message contains a content element, the request was successful.

The correlation_id is the same value that the requesting client provided in the correlation field of
the associated request.

Error response

The following message is the response that the bridge sends to a requesting client if an error occurs
when processing the request.

{
 "response": {
 "error": "exception_text",
 "correlation": "correlation_id"

Diffusion | 663

 }
}

If the response message contains an error element, the request was not successful. More
information about the reason for the failure, is available in the exception_text

The correlation_id is the same value that the requesting client provided in the correlation field of
the associated request.

Related concepts
Push Notification Bridge on page 649
The Push Notification Bridge is a Diffusion client that subscribes to topics on behalf of other Diffusion
clients and uses a push notification network to relay topic updates to the device where the client
application is located.

Configuring your Push Notification Bridge on page 652
Use the PushNotification.xml configuration file to define the behavior of your Push Notification
Bridge.

Running the Push Notification Bridge on page 659
The Diffusion installation includes scripts that you can use to start the Push Notification Bridge.

Related reference
JSON formats used by the Push Notification Bridge on page 659
Requests and responses sent between clients and the Push Notification Bridge on the bridge's service
topic and the push notifications sent by the bridge to devices are all JSON format.

Push notification JSON format on page 663
When a topic is updated. The Push Notification Bridge sends a notification through either APNS or
GCM. This message is in JSON format. You can define the format of the message in a template in the
PushNotifications.xml configuration file. If the update is in the correct JSON format, you can
relay the update verbatim to the push notification network.

PushNotifications.xml on page 654
This file specifies the schema for the configuration required by the Push Notification Bridge.

Push notification JSON format
When a topic is updated. The Push Notification Bridge sends a notification through either APNS or
GCM. This message is in JSON format. You can define the format of the message in a template in the
PushNotifications.xml configuration file. If the update is in the correct JSON format, you can
relay the update verbatim to the push notification network.

Using templates

Templates are configured in the PushNotification.xml file. These templates are associated with
specific topics. When a topic is updated, the associated template is applied to that update before the
update is sent through the push notification network. The template uses the following placeholders to
include topic and update information in the notification message:

${topic.path}

The path that the update is received on.

${topic.update}

The content of the update.

A template notification message can include both an apns section and a gcm section. The size of the
data within each of these sections is restricted by the push notification network and currently cannot
be greater than 2 KB.

Diffusion | 664

After the update is transformed by the template, only the section of the notification message that is in
the appropriate format for that push notification network is passed to the push notification network to
be sent on to the client.

Verbatim relay

You can also specify that topic updates be passed to the push notification network verbatim. In this
case, it is the responsibility of the client or publisher updating the topic to ensure that the update
content is in the correct JSON format. If the update content is not in the correct JSON format, the Push
Notification Bridge logs an error.

If there is no matching template, verbatim relay is the default.

APNS

The apns section wraps Apple's JSON format for an APNS message. For more information,
see https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/
RemoteNotificationsPG/Chapters/ApplePushService.html

The apns section of the transformed notification message is used when the destination URI starts
with apns:// and the notification is sent through the Apple Push Notification Service

 "apns": {
 "aps": {
 "alert": {
 "title": "notification_title",
 "body": "notification_content"
 }
 },
 User-defined key-value pairs
 }

GCM

The gcm segment is a representation of Google's package com.google.android.gcm.server,
which defines the following headers:

collapseKey

A unique identifier for a group of notifications that can be collapsed. When an idle
device becomes active again, only the most recent notification for any given collapse
key is sent.

For example, the topic path of the topic that the bridge subscribes to can be used as
the collapse key and inactive devices are sent only the most recent update to that
topic when they become active again.

Note: A maximum of 4 different collapse keys are stored
simultaneously by GCM.

delayWhileIdle

When the value of this field is set to true, notifications are not be sent until the device
becomes active. The default value is false.

dryRun

When the value of this field is set to true, you can test a request without actually
sending a message. The default value is false.

timeToLive

How long in seconds the notification is kept in GCM storage if the device is offline. The
maximum time to live supported is 4 weeks.

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html

Diffusion | 665

The gcm segment also contains a data section that contains a JSON payload. This JSON payload
must be a dictionary of key-value pairs where both the key and the value are strings.

The gcm section of the transformed notification message is used when the destination URI starts with
gcm:// and the notification is sent through the Google Cloud Messaging

 "gcm": {
 "collapseKey": "group_identifier",
 "delayWhileIdle": boolean,
 "timeToLive": integer,
 "data": {
 User-defined key-value pairs
 }
 }

Notification message example

The following example shows the results of an online auction being sent as a push notification in both
APNS and GCM format.

{
 "apns": {
 "aps": {
 "alert": {
 "title": "Auction Result",
 "body": "You won the auction for 'Antique oak table'"
 }
 },
 "auctionID": "abc123xyz789",
 "auctionConclusion": 123456789
 },
 "gcm": {
 "collapseKey": "abc123xyz789",
 "delayWhileIdle": false,
 "timeToLive": 60,
 "data": {
 "result": "You won the auction for 'Antique oak table'",
 "auctionID": "abc123xyz789",
 "auctionConclusion": 123456789
 }
 }
}

Related concepts
Push Notification Bridge on page 649
The Push Notification Bridge is a Diffusion client that subscribes to topics on behalf of other Diffusion
clients and uses a push notification network to relay topic updates to the device where the client
application is located.

Configuring your Push Notification Bridge on page 652
Use the PushNotification.xml configuration file to define the behavior of your Push Notification
Bridge.

Running the Push Notification Bridge on page 659
The Diffusion installation includes scripts that you can use to start the Push Notification Bridge.

Related reference
JSON formats used by the Push Notification Bridge on page 659

Diffusion | 666

Requests and responses sent between clients and the Push Notification Bridge on the bridge's service
topic and the push notifications sent by the bridge to devices are all JSON format.

Request and response JSON formats on page 660
A client sends push notification requests to the topic path that the Push Notification Bridge listens on.
The bridge responds through the same topic path. The default topic path is push/notifications. These
requests and responses are in JSON format.

PushNotifications.xml on page 654
This file specifies the schema for the configuration required by the Push Notification Bridge.

JMS adapter

The JMS adapter for Diffusion, enables Diffusion clients to transparently send data to and receive data
from destinations (topics and queues) on a JMS server.

The JMS adapter can be run within the Diffusion server or as a standalone client application.

JMS adapter

The JMS adapter comprises the following files all located in your Diffusion installation:

adapters/jmsadapter.jar

This JAR file contains the Diffusion Java application that links the Diffusion server and
a JMS server.

adapters/JMSAdapter.xml

This XML file is used to configure the JMS adapter. For more information, see
JMSAdapter.xml on page 684.

xsd/JMSAdapter.xsd

This XSD file defines the schema of the JMSAdapter.xml file.

adapters/jms_adapter.sh and adapters/jms_adapter.bat
These executable files can be used to start the JMS adapter when running it as a
standalone client on UNIX, Linux, or Windows systems.

The JMS adapter can be run as a client on any system that has a Java 7 JRE installed on it.

Using the JMS adapter

To use the JMS adapter, first configure it by editing the JMSAdapter.xml to define the adapter
behavior. For more information, see Configuring the JMS adapter on page 675.

The method for running the JMS adapter differs depending on whether you run it within the . For more
information, see Running the JMS adapter on page 694.

DEPRECATED: JMS adapter v5.1

A legacy JMS adapter is also included in the Diffusion server installation. This adapter is provided only
for customers already using it. We recommend that you use the JMS adapter to create any new JMS
solutions.

Diffusion | 667

Transforming JMS messages into Diffusion messages or updates
JMS messages are more complex than Diffusion content. A transformation is required between the two
formats.

The following modes of transformation are provided:

Basic
Only the textual content of a message is relayed.

JSON
All JMS headers and properties are relayed, in addition to the textual content of
the message. These values are expressed as JSON in the corresponding Diffusion
message.

You can configure which one of these transformation modes your JMS adapter uses at the per topic
level.

JMS message structure

JMS messages comprise headers, properties, and a payload. Currently, only JMS TextMessages are
supported by the JMS adapter.

Figure 44: JMS message structure

Headers
This is a fixed set of properties whose names all begin with 'JMS'. Some, such as
JMSDestination, are mandatory. Others are optional. For more information, see
https://docs.oracle.com/javaee/7/api/javax/jms/Message.html.

Properties
A set of name-value pairs.

Payload

https://docs.oracle.com/javaee/7/api/javax/jms/Message.html

Diffusion | 668

The contents of the message. This is a String.

Basic transformation

In a basic transformation only the textual payload or content of the message is relayed in either
direction.

Figure 45: Basic mapping from a JMS message to a Diffusion message

When relaying a JMS message to Diffusion, the JMS adapter creates a Diffusion message whose
content is the JMS message payload. The headers and properties of the JMS message are ignored.

Figure 46: Basic mapping from a Diffusion message to a JMS message

When relaying a Diffusion message to JMS, the JMS adapter sets the JMS message payload to be the
Diffusion content. The JMS adapter does not set any properties or headers on the JMS message. The
JMS provider sets any mandatory headers that are required on the JMS message.

Diffusion | 669

JSON transformation

In a JSON transformation all information is relayed both directions. The JMS message information is
expressed in JSON format inside the Diffusion message content.

Figure 47: Mapping from a JMS message to and from JSON in a Diffusion message

When relaying a JMS message to Diffusion, the JMS adapter performs the following actions:

• Expresses the Diffusion content as a single JSON object.
• Maps the JMS message headers to a JSON object called “headers” inside of the Diffusion message

content. The “headers” object contains all of the JMS message headers as name-value pairs. For
example,

 "headers": {
 "JMSType": "abc",
 "JMSPriority": 9
 }

• Maps the JMS message properties to a JSON object called “properties” inside of the Diffusion
message content. The “properties” object contains all of the JMS message properties as name-
value pairs. For example,

 "properties": {
 "AString": "def",
 "ABoolean": true
 }

• Maps the textual payload of the JMS message to a JSON item called “text” inside of the Diffusion
message content. For example,

 "text": "Message content"

When relaying a Diffusion message to JMS, the JMS adapter parses the JSON content of the Diffusion
message and uses the information to set the headers, properties, and payload of the JMS message
accordingly.

Related concepts
JMS on page 122

Diffusion | 670

Consider whether to incorporate JMS providers into your solution.

Sending messages using the JMS adapter on page 671
The JMS adapter can send messages from a Diffusion client to a JMS destination and messages from a
JMS destination to a specific Diffusion client.

Publishing using the JMS adapter on page 670
The JMS adapter can publish data from a JMS destination onto topics in the Diffusion topic tree.

Using JMS request-response services with the JMS adapter on page 674
You can use the messaging capabilities of the JMS adapter to interact with a JMS service through
request-response.

Configuring the JMS adapter on page 675
Use the JMSAdapter.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

Related reference
JMSAdapter.xml on page 684
This file specifies the schema for the configuration required by the JMS adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

Publishing using the JMS adapter
The JMS adapter can publish data from a JMS destination onto topics in the Diffusion topic tree.

Publishing data from a JMS destination onto a Diffusion topic

You can configure the JMS adapter to subscribe to a JMS destination and to associate that
subscription with a Diffusion topic.

The Diffusion topic can be stateful or stateless, but stateful topics must be created with an initial
value. For more information, see Example: Configuring topics for use with the JMS adapter on page
680.

Figure 48: JMS adapter: Publishing from JMS to Diffusion

1. A message is published to the JMS destination.
2. The JMS adapter receives the JMS message.
3. The JMS adapter transforms the JMS message into a Diffusion message. For more information, see

Transforming JMS messages into Diffusion messages or updates on page 667.
4. The JMS adapter publishes the transformed message to the Diffusion topic.

designguide/solution/thirdpartycomponents/jms_pubsub1.png
designguide/solution/thirdpartycomponents/jms_pubsub1.png

Diffusion | 671

5. Diffusion clients that are subscribed to the Diffusion topic receive the transformed message.

Publishing data from a Diffusion topic to a JMS destination

This is not currently supported.

Related concepts
JMS on page 122
Consider whether to incorporate JMS providers into your solution.

Transforming JMS messages into Diffusion messages or updates on page 667
JMS messages are more complex than Diffusion content. A transformation is required between the two
formats.

Sending messages using the JMS adapter on page 671
The JMS adapter can send messages from a Diffusion client to a JMS destination and messages from a
JMS destination to a specific Diffusion client.

Using JMS request-response services with the JMS adapter on page 674
You can use the messaging capabilities of the JMS adapter to interact with a JMS service through
request-response.

Configuring the JMS adapter on page 675
Use the JMSAdapter.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

Example: Configuring pub-sub with the JMS adapter on page 681
Use the subscriptions element of the JMSAdapter.xml configuration file to define JMS adapter
subscriptions to JMS destinations and the Diffusion topics to publish updates to.

Related reference
JMSAdapter.xml on page 684
This file specifies the schema for the configuration required by the JMS adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

Sending messages using the JMS adapter
The JMS adapter can send messages from a Diffusion client to a JMS destination and messages from a
JMS destination to a specific Diffusion client.

Sending a message from a Diffusion client to a JMS destination

You can configure the JMS adapter to handle messages sent on a Diffusion message path and to
associated messages received on that message path with a JMS destination.

Diffusion | 672

Figure 49: JMS adapter: Message flow from Diffusion to JMS

1. A Diffusion client sends a message to a topic path.
2. The JMS adapter receives the message.
3. The JMS adapter transforms the Diffusion message into a JMS message. For more information, see

Transforming JMS messages into Diffusion messages or updates on page 667.
4. The JMS adapter sets a JMS header or property to include the Diffusion server name of the JMS

adapter and the session ID of the Diffusion client.

This header or property is used as a return address for any response messages and is nominated
using the routingProperty configuration element. By convention, JMS CorrelationID is
often used. For more information, see JMSAdapter.xml on page 684.

5. The JMS adapter publishes the transformed message to the JMS destination.

Sending a message from a JMS destination to a Diffusion client

You can configure the JMS adapter to subscribe to a JMS destination and to associate that
subscription with a Diffusion message path to send a message through.

Figure 50: JMS adapter: Message flow from JMS to Diffusion

1. The JMS adapter receives a message from a JMS destination.
2. The JMS adapter transforms the JMS message into a Diffusion message. For more information, see

Transforming JMS messages into Diffusion messages or updates on page 667.
3. The JMS adapter checks the nominated JMS header or property for the server name and session ID

of the recipient client.

designguide/solution/thirdpartycomponents/jms_messaging2.png
designguide/solution/thirdpartycomponents/jms_messaging2.png
designguide/solution/thirdpartycomponents/jms_messaging1.png
designguide/solution/thirdpartycomponents/jms_messaging1.png

Diffusion | 673

This header or property is nominated using the routingProperty configuration element. For
more information, see JMSAdapter.xml on page 684.

4. The JMS adapter sends the transformed message through the message path to the recipient client
session.

Error scenarios

• The JMS adapter consumes a message from a JMS destination that is not intended for it. That is,
the routing property or header does not contain the Diffusion server name of the JMS adapter.

In this case, the JMS adapter drops the message and logs the failure to deliver.

You can avoid this scenario by using a JMS selector when subscribing to the JMS destination that
specifies the JMS adapter is only interested in messages whose routing property or header include
its Diffusion server name.

• The JMS adapter receives a message from a Diffusion client, but cannot send it on to JMS because
the JMS provider is not connected.

In this case, the JMS adapter returns the message to the client on the same topic and logs the
failure to deliver.

• The JMS adapter receives a message from a JMS destination, but cannot send it on to the Diffusion
client because the Diffusion client is not connected.

In this case, the JMS adapter drops the message and logs the failure to deliver.

Related concepts
JMS on page 122
Consider whether to incorporate JMS providers into your solution.

Transforming JMS messages into Diffusion messages or updates on page 667
JMS messages are more complex than Diffusion content. A transformation is required between the two
formats.

Publishing using the JMS adapter on page 670
The JMS adapter can publish data from a JMS destination onto topics in the Diffusion topic tree.

Using JMS request-response services with the JMS adapter on page 674
You can use the messaging capabilities of the JMS adapter to interact with a JMS service through
request-response.

Configuring the JMS adapter on page 675
Use the JMSAdapter.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

Example: Configuring messaging with the JMS adapter on page 682
Use the publications element of the JMSAdapter.xml configuration file to define how
Diffusion clients send messages to JMS destinations. Use the subscriptions element of the
JMSAdapter.xml configuration file to define how Diffusion clients receive messages from JMS
destinations.

Related reference
JMSAdapter.xml on page 684

Diffusion | 674

This file specifies the schema for the configuration required by the JMS adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

Using JMS request-response services with the JMS adapter
You can use the messaging capabilities of the JMS adapter to interact with a JMS service through
request-response.

Exposing a JMS service through Diffusion messaging is a typical use case for the JMS adapter.

Figure 51: JMS adapter: Request-response message flow

1. A Diffusion client sends a message to a Diffusion topic path configured in the JMS adapter to
receive service requests.

2. The JMS adapter receives the message on the request topic path.
3. The JMS adapter transforms the Diffusion message into a JMS message. For more information, see

Transforming JMS messages into Diffusion messages or updates on page 667.
4. The JMS adapter adds a routing property or header to the JMS message identifying the

Diffusion server and client to return a response to. This return information is of the form
server_name/client_session_id.

5. The JMS adapter sends the message to the JMS service request queue.
6. The JMS service receives the request.
7. The JMS service acts on the request.
8. The JMS service places a response message on its response queue. This message must include the

routing property or header that identifies the Diffusion server and client to return the response to.
9. The JMS adapter receives the response message from the JMS response queue.
10.The JMS adapter transforms the response message into a Diffusion message. For more information,

see Transforming JMS messages into Diffusion messages or updates on page 667.
11.The JMS adapter uses the information in the routing property or header to discover the connected

client session to relay the response to.
12.The JMS adapter sends the response message to the Diffusion client through a topic path.

Error scenarios

• The JMS adapter consumes a message from a JMS service response queue that is not intended for
it. That is, the routing property or header does not contain the Diffusion server name of the JMS
adapter.

In this case, the JMS adapter drops the message and logs the failure to deliver.

designguide/solution/thirdpartycomponents/jms_req_resp.png
designguide/solution/thirdpartycomponents/jms_req_resp.png

Diffusion | 675

You can avoid this scenario by using a JMS selector when subscribing to the JMS queue that
specifies the JMS adapter is only interested in messages whose routing property or header include
its Diffusion server name.

• The JMS adapter receives a message from a Diffusion client, but cannot send it on to JMS because
the JMS provider is not connected.

In this case, the JMS adapter returns the message to the client on the same topic and logs the
failure to deliver.

• The JMS adapter receives a message from a JMS destination, but cannot send it on to the Diffusion
client because the Diffusion client is not connected.

In this case, the JMS adapter drops the message and logs the failure to deliver.

Related concepts
JMS on page 122
Consider whether to incorporate JMS providers into your solution.

Transforming JMS messages into Diffusion messages or updates on page 667
JMS messages are more complex than Diffusion content. A transformation is required between the two
formats.

Sending messages using the JMS adapter on page 671
The JMS adapter can send messages from a Diffusion client to a JMS destination and messages from a
JMS destination to a specific Diffusion client.

Publishing using the JMS adapter on page 670
The JMS adapter can publish data from a JMS destination onto topics in the Diffusion topic tree.

Configuring the JMS adapter on page 675
Use the JMSAdapter.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

Example: Configuring the JMS adapter to work with JMS services on page 683
Use the publications and subscriptions elements of the JMSAdapter.xml configuration
file to define the message flow for using Diffusion with JMS services.

Related reference
JMSAdapter.xml on page 684
This file specifies the schema for the configuration required by the JMS adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

Configuring the JMS adapter
Use the JMSAdapter.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

The format of the JMSAdapter.xml configuration file is the same whether you run it within
the Diffusion server or as a standalone client. However, the server-connection element and
child elements are only used when the JMS adapter is run as a standalone client. If the server-
connection element is included in a JMSAdapter.xml configuration file used when the JMS
adapter runs within the Diffusion server, the JMS adapter ignores the element.

The schema of the JMSAdapter.xml is available in the xsd directory of the Diffusion installation.
For more information, see JMSAdapter.xml on page 684.

In the JMSAdapter.xml file, you can configure the following aspects of the JMS adapter behavior:

• The JMS provider to connect to.

Diffusion | 676

For more information, see Example: Configuring JMS providers for the JMS adapter on page 678.
• The Diffusion topics to create and use.

For more information, see Example: Configuring topics for use with the JMS adapter on page 680.
• The JMS destinations to subscribe to and the Diffusion topics to publish data from the JMS

destination to.

For more information, see Example: Configuring pub-sub with the JMS adapter on page 681.
• How messages are sent between Diffusion clients and JMS destinations through Diffusion topics.

For more information, see Example: Configuring messaging with the JMS adapter on page 682.
• A request-response message flow.

For more information, see Example: Configuring the JMS adapter to work with JMS services on
page 683.

Configuring the JMS adapter to run within the Diffusion server

The JMS adapter running inside the Diffusion server uses the JMSAdapter.xml configuration file
that is located in the adapters directory of the Diffusion installation.

When running inside the Diffusion server, the JMS adapter polls the JMSAdapter.xml file at five
second intervals. If the timestamp changes in that interval, the JMS adapter reloads the configuration
file.

When the JMS adapter reloads the configuration file, changes to the configuration are reflected in the
set of Diffusion topics created and used by the JMS adapter:

• If the topic configuration is not changed, the topic is not changed on the Diffusion server.
• If a topic configuration is added, that topic is added on the Diffusion server.
• If a topic configuration is removed, that topic is deleted from the Diffusion server.
• If a topic configuration is changed – for example, if its definition is changed from stateful to

stateless – that topic is deleted from the Diffusion server and a new topic is created at the same
path.

Any removal of topics as part of a configuration update causes clients to become unsubscribed from
the deleted topic.

When updating the JMSAdapter.xml configuration file on your running Diffusion server, consider
using the following practices:

• Back up your original configuration file. For example, by moving it to JMSAdapter.xml.bak.

If a configuration file is not present, the JMS adapter continues to use its current configuration.
• Do not copy the new configuration file into place. Use a move operation instead. Move operations

are atomic and remove the risk of the JMS adapter reading an incomplete file.
• In a production environment, rigorously test any new configuration file before deploying on a

production server.

If the new configuration file contains an error, the configuration changes it contains are not applied.
Instead the configuration rolls back to the original version and an error is logged.

Configuring the JMS adapter to run as a standalone client

When running as a standalone client, the JMS adapter uses the JMSAdapter.xml configuration file
that is passed to the jms_adapter.sh or jms_adapter.bat file used to start the JMS adapter.

The JMS adapter standalone client loads the JMSAdapter.xml file only once, when the JMS adapter
is started. To update the configuration used by the JMS adapter, edit the JMSAdapter.xml file and
restart the JMS adapter.

Diffusion | 677

Topics created by the JMS adapter when it runs as a standalone client remain on the Diffusion server
after the JMS adapter session closes.

The server-connection element of the JMSAdapter.xml configuration file is used by the
standalone client version of JMS adapter to define the connection that the JMS adapter makes to the
Diffusion server. For more information, see Example: Configuring the Diffusion connection for the JMS
adapter running as a standalone client on page 678.

Related concepts
JMS on page 122
Consider whether to incorporate JMS providers into your solution.

Transforming JMS messages into Diffusion messages or updates on page 667
JMS messages are more complex than Diffusion content. A transformation is required between the two
formats.

Sending messages using the JMS adapter on page 671
The JMS adapter can send messages from a Diffusion client to a JMS destination and messages from a
JMS destination to a specific Diffusion client.

Publishing using the JMS adapter on page 670
The JMS adapter can publish data from a JMS destination onto topics in the Diffusion topic tree.

Using JMS request-response services with the JMS adapter on page 674
You can use the messaging capabilities of the JMS adapter to interact with a JMS service through
request-response.

Example: Configuring JMS providers for the JMS adapter on page 678
Use the providers element of the JMSAdapter.xml configuration file to define the JMS providers
that the JMS adapter can connect to.

Example: Configuring topics for use with the JMS adapter on page 680
Use the topics element of the JMSAdapter.xml configuration file to define the Diffusion topics
that the JMS adapter uses. These topics are created when the JMS adapter starts.

Example: Configuring messaging with the JMS adapter on page 682
Use the publications element of the JMSAdapter.xml configuration file to define how
Diffusion clients send messages to JMS destinations. Use the subscriptions element of the
JMSAdapter.xml configuration file to define how Diffusion clients receive messages from JMS
destinations.

Example: Configuring pub-sub with the JMS adapter on page 681
Use the subscriptions element of the JMSAdapter.xml configuration file to define JMS adapter
subscriptions to JMS destinations and the Diffusion topics to publish updates to.

Example: Configuring the JMS adapter to work with JMS services on page 683
Use the publications and subscriptions elements of the JMSAdapter.xml configuration
file to define the message flow for using Diffusion with JMS services.

Related reference
JMSAdapter.xml on page 684

Diffusion | 678

This file specifies the schema for the configuration required by the JMS adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

Example: Configuring the Diffusion connection for the JMS adapter running
as a standalone client

Standalone client only: Use the server-connection element of the JMSAdapter.xml
configuration file to define the connection that the JMS adapter makes to the Diffusion server.

<server-connection>
 <server url="transport://host:port" reconnection="timeout">
 <authentication principal="principal">
 <password>password</password>
 </authentication>
 </server>
 <properties>
 <serverName>name</serverName>
 </properties>
</server-connection>

• The url attribute of the server element is the URL of the Diffusion server to connect to, including
the transport protocol and the port to use for the connection.

• The authentication element defines the principal and password to use to make the
connection to the Diffusion server

Note: The JMS adapter requires a session that has the TOPIC_CONTROL role. Specify a
principal with this role for the JMS adapter to use to make the connection.

• The serverName element is where you define a unique identifier to be used by the JMS adapter in
correlation IDs used in messaging.

Example: Configuring JMS providers for the JMS adapter
Use the providers element of the JMSAdapter.xml configuration file to define the JMS providers
that the JMS adapter can connect to.

Copy any provider JAR files that are required into the ext directory of your Diffusion server to ensure
that they are on the server classpath.

ActiveMQ

You can connect to an ActiveMQ instance by defining a provider element that contains the required
JNDI, credentials, and session information. See the following example:

<providers>
 <provider name="myActiveMQ">
 <jndiProperties>
 <property name="java.naming.factory.initial"
 value="org.apache.activemq.jndi.ActiveMQInitialContextFactory"/>
 <property name="java.naming.provider.url"
 value="tcp://hostname:61616"/>
 </jndiProperties>

 <jmsProperties connectionFactoryName="ConnectionFactory">
 <credentials>
 <username>user</username>
 <password>password</password>
 </credentials>
 </jmsProperties>

Diffusion | 679

 <sessions>
 <anonymousSessions number="1" transacted="false"
 acknowledgeMode="AUTO_ACKNOWLEDGE" />
 </sessions>

 </provider>

</providers>

IBM MQ

You can connect to an IBM MQ instance by defining a provider element that contains the required
information. See the following example:

<providers>
 <provider name="myIBMMQ">
 <jndiProperties>
 <property name="java.naming.factory.initial"
 value="com.sun.jndi.fscontext.RefFSContextFactory"/>
 <property name="java.naming.provider.url"
 value="hostname:1414"/>
 </jndiProperties>

 <jmsProperties connectionFactoryName="CF2"
 <sessions>
 <anonymousSessions number="2" transacted="false"
 acknowledgeMode="AUTO_ACKNOWLEDGE"/>
 </sessions>
 </jmsProperties>

 </provider>
</providers>

Related concepts
Example: Configuring topics for use with the JMS adapter on page 680
Use the topics element of the JMSAdapter.xml configuration file to define the Diffusion topics
that the JMS adapter uses. These topics are created when the JMS adapter starts.

Example: Configuring messaging with the JMS adapter on page 682
Use the publications element of the JMSAdapter.xml configuration file to define how
Diffusion clients send messages to JMS destinations. Use the subscriptions element of the
JMSAdapter.xml configuration file to define how Diffusion clients receive messages from JMS
destinations.

Example: Configuring pub-sub with the JMS adapter on page 681
Use the subscriptions element of the JMSAdapter.xml configuration file to define JMS adapter
subscriptions to JMS destinations and the Diffusion topics to publish updates to.

Example: Configuring the JMS adapter to work with JMS services on page 683
Use the publications and subscriptions elements of the JMSAdapter.xml configuration
file to define the message flow for using Diffusion with JMS services.

Configuring the JMS adapter on page 675
Use the JMSAdapter.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

Related reference
JMSAdapter.xml on page 684

Diffusion | 680

This file specifies the schema for the configuration required by the JMS adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

Example: Configuring topics for use with the JMS adapter
Use the topics element of the JMSAdapter.xml configuration file to define the Diffusion topics
that the JMS adapter uses. These topics are created when the JMS adapter starts.

The following example shows the definitions for a stateless and a stateful topic:

<topics>
 <stateless name="example/updates/stateless"/>
 <stateful name="example/updates/stateful" initialState="rhubarb"/
>
</topics>

• The JMS adapter cannot create or use topics that are in a branch of the topic tree that is created by
another publisher or client. For example, if example/updates already exists and was created by a
Diffusion client, the JMS adapter cannot create and use example/updates/stateless.

• Similarly, other clients and publishers cannot create or use topics in a branch of the topic tree that
was created by the JMS adapter.

• All stateful topics are created as single value topics.
• When defining a stateful topic, you must set the initial state of the topic.

Related concepts
Example: Configuring JMS providers for the JMS adapter on page 678
Use the providers element of the JMSAdapter.xml configuration file to define the JMS providers
that the JMS adapter can connect to.

Example: Configuring messaging with the JMS adapter on page 682
Use the publications element of the JMSAdapter.xml configuration file to define how
Diffusion clients send messages to JMS destinations. Use the subscriptions element of the
JMSAdapter.xml configuration file to define how Diffusion clients receive messages from JMS
destinations.

Example: Configuring pub-sub with the JMS adapter on page 681
Use the subscriptions element of the JMSAdapter.xml configuration file to define JMS adapter
subscriptions to JMS destinations and the Diffusion topics to publish updates to.

Example: Configuring the JMS adapter to work with JMS services on page 683
Use the publications and subscriptions elements of the JMSAdapter.xml configuration
file to define the message flow for using Diffusion with JMS services.

Configuring the JMS adapter on page 675
Use the JMSAdapter.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

Related reference
JMSAdapter.xml on page 684

Diffusion | 681

This file specifies the schema for the configuration required by the JMS adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

Example: Configuring pub-sub with the JMS adapter
Use the subscriptions element of the JMSAdapter.xml configuration file to define JMS adapter
subscriptions to JMS destinations and the Diffusion topics to publish updates to.

The following example shows subscriptions to JMS destinations defined by the destination
elements. When the JMS adapter receives an update message through the subscription, it publishes
that update message to the Diffusion topic defined in the corresponding publish element.

<subscriptions>
 <subscription>
 <destination>jms:topic:EXAMPLE.UPDATE.TOPIC</destination>
 <publish topicName="example/updates/stateless"/>
 </subscription>
 <subscription>
 <destination>jms:topic:EXAMPLE.UPDATE.TOPICTWO</destination>
 <publish topicName="example/updates/stateful"/>
 </subscription>
</subscriptions>

The Diffusion topics must be defined in the topics section of the JMSAdapter.xml configuration
file.

Related concepts
Example: Configuring JMS providers for the JMS adapter on page 678
Use the providers element of the JMSAdapter.xml configuration file to define the JMS providers
that the JMS adapter can connect to.

Example: Configuring topics for use with the JMS adapter on page 680
Use the topics element of the JMSAdapter.xml configuration file to define the Diffusion topics
that the JMS adapter uses. These topics are created when the JMS adapter starts.

Example: Configuring messaging with the JMS adapter on page 682
Use the publications element of the JMSAdapter.xml configuration file to define how
Diffusion clients send messages to JMS destinations. Use the subscriptions element of the
JMSAdapter.xml configuration file to define how Diffusion clients receive messages from JMS
destinations.

Example: Configuring the JMS adapter to work with JMS services on page 683
Use the publications and subscriptions elements of the JMSAdapter.xml configuration
file to define the message flow for using Diffusion with JMS services.

Publishing using the JMS adapter on page 670
The JMS adapter can publish data from a JMS destination onto topics in the Diffusion topic tree.

Configuring the JMS adapter on page 675
Use the JMSAdapter.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

Related reference
JMSAdapter.xml on page 684

Diffusion | 682

This file specifies the schema for the configuration required by the JMS adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

Example: Configuring messaging with the JMS adapter
Use the publications element of the JMSAdapter.xml configuration file to define how
Diffusion clients send messages to JMS destinations. Use the subscriptions element of the
JMSAdapter.xml configuration file to define how Diffusion clients receive messages from JMS
destinations.

From Diffusion clients to JMS destinations

The following example defines the Diffusion topic path through which the JMS adapter receives
messages from a Diffusion client and the JMS destination to send those messages to.

<publications>
 <publication>
 <destination>jms:queue:EXAMPLE.REQUEST.QUEUE</destination>
 <messaging
 topicName="example/topic/requests"
 routingProperty="JMSCorrelationID">
 <transformation type="basic">
 <sessionProperties>
 <sessionProperty from="$Principal"
 to="diffusionPrincipal"/>
 </sessionProperties>
 </transformation>
 </messaging>
 </publication>
</publications>

• The routingProperty attribute describes the JMS header or property that the JMS adapter
uses to set or get the client session ID.

• The transformation section defines how a message is transformed between a JMS message
and a Diffusion message. For more information, see Transforming JMS messages into Diffusion
messages or updates on page 667.

• The sessionProperties section defines whether the Diffusion session properties of the client
that sends the message are included as JMS headers or properties in the transformed message.
Currently, only $Principal is supported.

From JMS destinations to Diffusion clients

The following example defines the JMS destination that the JMS adapter retrieves messages on and
the Diffusion topic path through which the JMS adapter relays those messages to a Diffusion client.

<subscriptions>
 <subscription>
 <destination>jms:queue:EXAMPLE.UPDATE.QUEUE</destination>
 <options noLocal="true"/>
 <messaging
 topicName="example/direct/messages"
 routingProperty="JMSCorrelationID"/>
 </subscription>
</subscriptions>

• The routingProperty attribute describes the JMS header or property that the JMS adapter
uses to set or get the client session ID.

Diffusion | 683

• The noLocal attribute of the options element defines whether the JMS adapter does not
retrieve messages from a JMS queue that it is the originator of.

Related concepts
Example: Configuring JMS providers for the JMS adapter on page 678
Use the providers element of the JMSAdapter.xml configuration file to define the JMS providers
that the JMS adapter can connect to.

Example: Configuring topics for use with the JMS adapter on page 680
Use the topics element of the JMSAdapter.xml configuration file to define the Diffusion topics
that the JMS adapter uses. These topics are created when the JMS adapter starts.

Example: Configuring pub-sub with the JMS adapter on page 681
Use the subscriptions element of the JMSAdapter.xml configuration file to define JMS adapter
subscriptions to JMS destinations and the Diffusion topics to publish updates to.

Example: Configuring the JMS adapter to work with JMS services on page 683
Use the publications and subscriptions elements of the JMSAdapter.xml configuration
file to define the message flow for using Diffusion with JMS services.

Sending messages using the JMS adapter on page 671
The JMS adapter can send messages from a Diffusion client to a JMS destination and messages from a
JMS destination to a specific Diffusion client.

Configuring the JMS adapter on page 675
Use the JMSAdapter.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

Related reference
JMSAdapter.xml on page 684
This file specifies the schema for the configuration required by the JMS adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

Example: Configuring the JMS adapter to work with JMS services
Use the publications and subscriptions elements of the JMSAdapter.xml configuration
file to define the message flow for using Diffusion with JMS services.

In the following example, the publications section defines the JMS destination to put request
messages on and the Diffusion topic path through which the JMS adapter receives those request
messages from a Diffusion client. The subscriptions section defines the JMS destination that
the JMS adapter retrieves response messages on and the Diffusion topic path through which the JMS
adapter relays those messages to a Diffusion client.

<publications>
 <publication>
 <destination>jms:queue:REQUEST.QUEUE</destination>
 <messaging topicName="example/requests"
 routingProperty="JMSCorrelationID"/>
 </publication>
</publications>
<subscriptions>
 <subscription>
 <destination>jms:queue:RESPONSE.QUEUE</destination>
 <options noLocal="true">
 <selector>JMSCorrelationID like '${serverName}/%'</
selector>
 </options>
 <messaging topicName="example/responses"
 routingProperty="JMSCorrelationID"/>

Diffusion | 684

 </subscription>
</subscriptions>

• The routingProperty attribute describes the JMS header or property that the JMS adapter
uses to set or get the client session ID.

• The noLocal attribute of the options element defines whether the JMS adapter does not
retrieve messages from a JMS queue that it is the originator of.

• When subscribing to a JMS destination, the JMS adapter can use selectors. In this example, the
selector used requires that the routing property, in this case JMSCorrelationID, contains the
name of the Diffusion server where the JMS adapter is deployed. This prevents the JMS adapter
from consuming messages that are not intended for it.

The JMS adapter replaces the variable ${serverName} with the name of its server. The server
name is defined in the serverName element of the JMSAdapter.xml file when the JMS
adapter runs as a standalone client. When the JMS adapter runs within the Diffusion server, the
server name is defined by the Server.xml configuration file.

Related concepts
Example: Configuring JMS providers for the JMS adapter on page 678
Use the providers element of the JMSAdapter.xml configuration file to define the JMS providers
that the JMS adapter can connect to.

Example: Configuring topics for use with the JMS adapter on page 680
Use the topics element of the JMSAdapter.xml configuration file to define the Diffusion topics
that the JMS adapter uses. These topics are created when the JMS adapter starts.

Example: Configuring messaging with the JMS adapter on page 682
Use the publications element of the JMSAdapter.xml configuration file to define how
Diffusion clients send messages to JMS destinations. Use the subscriptions element of the
JMSAdapter.xml configuration file to define how Diffusion clients receive messages from JMS
destinations.

Example: Configuring pub-sub with the JMS adapter on page 681
Use the subscriptions element of the JMSAdapter.xml configuration file to define JMS adapter
subscriptions to JMS destinations and the Diffusion topics to publish updates to.

Using JMS request-response services with the JMS adapter on page 674
You can use the messaging capabilities of the JMS adapter to interact with a JMS service through
request-response.

Configuring the JMS adapter on page 675
Use the JMSAdapter.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

Related reference
JMSAdapter.xml on page 684
This file specifies the schema for the configuration required by the JMS adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

JMSAdapter.xml
This file specifies the schema for the configuration required by the JMS adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

JMSRootConfig

The mandatory root node of the JMS adapter configuration.

The following table lists the elements that an element of type JMSRootConfig can contain:

Diffusion | 685

Name Type Description Min
occurs

Max
occurs

topics JMSTopicsConfig The set of Diffusion topics created at
startup.

0 1

providers JMSProvidersConfigThe set of JMS providers. 1 1

server-
connection

ServerConnectionConfigConfiguration specific to the JMS
adapter when run as a client. When run
as a publisher this is ignored.

0 1

JMSTopicsConfig

The set of Diffusion topics created at startup. Diffusion Unified client messaging does not require an
existing topic, but Diffusion publishing and Diffusion Classic client messaging do.

The following table lists the elements that an element of type JMSTopicsConfig can contain:

Name Type Description Min
occurs

Max
occurs

stateful JMSStatefulTopicConfigThe configuration required to create a
stateful Diffusion topic, including the
initial state of the topic.

0 unbounded

stateless JMSTopicConfig The configuration required to create a
Diffusion topic.

0 unbounded

JMSTopicConfig

The configuration required to create a Diffusion .

The following table lists the attributes that an element of type JMSTopicConfig can have:

Name Type Description Required

name xs:string The full topic path of the topic to create. For
example, 'foo/bar/baz'.

true

reference xs:string A string value to associate with this topic. For
example, a description of the topic. Topic
references are honored only when the JMS adapter
runs as a publisher. DEPRECATED: Future versions
of the product might not support this.

false

JMSStatefulTopicConfig

The following table lists the attributes that an element of type JMSStatefulTopicConfig can
have:

Name Type Description Required

initialState xs:string The initial state of a topic when the topic is created. false

JNDIPropertiesConfig

The set of named values required to to create an InitialContext to access the JNDI configuration of the
JMS server. Individual JMS providers will provide documentation on this step.

Diffusion | 686

The following table lists the elements that an element of type JNDIPropertiesConfig can
contain:

Name Type Description Min
occurs

Max
occurs

property JNDIProperty A named value. 0 unbounded

JNDIProperty

A named value.

The following table lists the attributes that an element of type JNDIProperty can have:

Name Type Description Required

name xs:string The property name. true

value xs:string The property value. true

JMSProviderConfig

The configuration model to connect to a JMS provider (a broker), establish sessions, subscribe, and
publish to destinations.

The following table lists the attributes that an element of type JMSProviderConfig can have:

Name Type Description Required

name xs:string The name associated with this configuration model. false

The following table lists the elements that an element of type JMSProviderConfig can contain:

Name Type Description Min
occurs

Max
occurs

jndiProperties JNDIPropertiesConfigThe set of named values required to to
create an InitialContext to access the
JNDI configuration of the JMS server.

1 1

jmsProperties JMSConnectionConfigThe configuration related to connection
to the JMS provider.

1 1

sessions JMSSessionsConfigThe configuration for all JMS sessions
related to this JMS provider.

1 1

reconnection JMSReconnectionConfigThe configuration for reconnection
behavior.

0 1

subscriptions JMSSubscriptionsConfigThe set of subscriptions to JMS
destinations.

0 1

publications JMSPublicationsConfigThe set of publications to JMS
destinations.

0 1

JMSProvidersConfig

The set of JMS providers.

The following table lists the elements that an element of type JMSProvidersConfig can contain:

Diffusion | 687

Name Type Description Min
occurs

Max
occurs

provider JMSProviderConfigThe configuration model to connect to a
JMS provider.

0 unbounded

JMSSessionsConfig

The configuration for all JMS sessions related to this JMS provider.

The following table lists the elements that an element of type JMSSessionsConfig can contain:

Name Type Description Min
occurs

Max
occurs

anonymousSessionsJMSAnonymousSessionsConfigA number of JMS sessions shared
between JMSSubscriptions.

1 1

namedSessions JMSNamedSessionsConfigThe set of named JMS sessions,
optionally used by JMSSubscription
nodes in order to guarantee ordering, or
use specific JMS session properties.

0 1

JMSAnonymousSessionsConfig

A number of JMS sessions shared between JMSSubscriptions.

The following table lists the attributes that an element of type JMSAnonymousSessionsConfig
can have:

Name Type Description Required

number PositiveInteger The number of shared JMS sessions true

JMSNamedSessionsConfig

The set of named JMS sessions, optionally used by JMSSubscription nodes in order to guarantee
ordering, or use specific JMS session properties.

The following table lists the elements that an element of type JMSNamedSessionsConfig can
contain:

Name Type Description Min
occurs

Max
occurs

session JMSNamedSessionConfigA named set of configuration relating to
the placing of a JMS session.

1 unbounded

JMSReconnectionConfig

Following a disconnection event the adapter optionally attempts periodic reconnection. The first
reconnection attempt occurs after minFrequency seconds, and the following after twice that number.
The back-off time value doubles until it reaches the maxFrequency value in seconds. For example,
where minFrequency=2 and maxFrequency=10, the reconnection will be attempted after 2s, 4s, 8s, 10s,
10s and so on.

The following table lists the attributes that an element of type JMSReconnectionConfig can have:

Diffusion | 688

Name Type Description Required

minFrequency PositiveInteger The interval between disconnection and the first
reconnection attempt (in seconds). The interval
is doubled for each subsequent reconnection
attempt.

true

maxFrequency PositiveInteger The maximum interval between reconnection
attempts.

true

JMSSubscriptionsConfig

The set of subscriptions to JMS destinations.

The following table lists the elements that an element of type JMSSubscriptionsConfig can
contain:

Name Type Description Min
occurs

Max
occurs

subscription JMSSubscriptionConfigConfiguration to subscribe to a JMS
destination and relay to Diffusion topics
or messaging or both.

0 unbounded

JMSPublicationsConfig

The set of publications to JMS destinations.

The following table lists the elements that an element of type JMSPublicationsConfig can
contain:

Name Type Description Min
occurs

Max
occurs

publication JMSPublicationConfigConfiguration to receive Diffusion
topic messaging and relay to a JMS
destination.

0 unbounded

JMSSubscriptionConfig

Configuration to subscribe to a JMS destination and relay to Diffusion topics

The following table lists the attributes that an element of type JMSSubscriptionConfig can have:

Name Type Description Required

sessionName xs:string The name of the session to use. This session name
must be defined in the namedSessions element. If
this element is not defined, the JMS adapter does
not start.

false

The following table lists the elements that an element of type JMSSubscriptionConfig can
contain:

Name Type Description Min
occurs

Max
occurs

destination JmsURI The URI of the JMS destination. 1 1

Diffusion | 689

Name Type Description Min
occurs

Max
occurs

options JMSSubscriptionOptionsConfiguration relating to publishing in
JMS.

0 1

messaging ClientMessagingConfigConfiguration relating to the sending of
a Diffusion message to a single Diffusion
client.

0 1

publish TopicPublishingConfigConfiguration relating to the publishing
of a message or setting of a topic's state.

0 1

JMSPublicationConfig

Configuration to receive Diffusion topic messaging and relay to a JMS destination.

The following table lists the elements that an element of type JMSPublicationConfig can
contain:

Name Type Description Min
occurs

Max
occurs

destination JmsURI The URI of the JMS destination. 1 1

options JMSPublicationOptionsConfigConfiguration relating to publishing to
JMS destinations.

0 1

messaging ClientMessagingConfigConfiguration relating to the sending of
a Diffusion message to a single Diffusion
client.

0 1

JMSSubscriptionOptions

Options employed when subscribing to a JMS destination.

The following table lists the attributes that an element of type JMSSubscriptionOptions can
have:

Name Type Description Required

noLocal xs:boolean Inhibits the delivery of messages published through
its own connection.

false

The following table lists the elements that an element of type JMSSubscriptionOptions can
contain:

Name Type Description Min
occurs

Max
occurs

selector xs:string SQL 92 compliant expression used to
filter messages received from a JMS
destination.

0 1

JMSPublicationOptionsConfig

The following table lists the attributes that an element of type JMSPublicationOptionsConfig
can have:

Diffusion | 690

Name Type Description Required

ttl PositiveInteger The Time-To-Live value for a published JMS
message, in milliseconds

false

priority JMSPriorityRangeThe higher the number, the higher the priority. false

deliveryMode JMSDeliveryModeMaps to javax.jms.DeliveryMode false

ClientEndpointConfig

The following table lists the attributes that an element of type ClientEndpointConfig can have:

Name Type Description Required

topicName xs:string The topic path used by this end point. Depending
on the task it might not need to relate to an existing
topic.

true

The following table lists the elements that an element of type ClientEndpointConfig can
contain:

Name Type Description Min
occurs

Max
occurs

transformation MessageTransformationConfigThe transformation type to use for
messages relayed to and from this topic.

0 1

MessageTransformationConfig

The following table lists the attributes that an element of type MessageTransformationConfig
can have:

Name Type Description Required

type MessageTransformationTypeThe tranformation employed when relaying
Diffusion to JMS messages, or JMS to Diffusion
messages.

false

The following table lists the elements that an element of type MessageTransformationConfig
can contain:

Name Type Description Min
occurs

Max
occurs

sessionPropertiesSessionPropertyMappingsThe set of session property mappings. 0 1

TopicPublishingConfig

Configuration relating to the publishing of a message or setting of a topic's state.

ClientMessagingConfig

Configuration relating to the sending of a Diffusion message to a single Diffusion client.

The following table lists the attributes that an element of type ClientMessagingConfig can have:

Diffusion | 691

Name Type Description Required

routingProperty xs:string The routingProperty attribute describes a facet of
the JMS TextMessage that contains the destination
Diffusion client SessionID.

false

SessionPropertyMapping

A mapping from Diffusion session properties to JMS message metadata (JMS headers or properties).

The following table lists the attributes that an element of type SessionPropertyMapping can
have:

Name Type Description Required

from xs:string Currently limited to $Principal true

to xs:string Values starting with "JMS" are mapped into
JMS headers (for example, JMSType), others are
mapped into JMS message properties.

true

SessionPropertyMappings

The set of SessionPropertyMappings.

The following table lists the elements that an element of type SessionPropertyMappings can
contain:

Name Type Description Min
occurs

Max
occurs

sessionProperty SessionPropertyMappingA session property name. Currently, only
$Principal is supported.

1 1

JMSCredentialsConfig

A username and password pair.

The following table lists the elements that an element of type JMSCredentialsConfig can
contain:

Name Type Description Min
occurs

Max
occurs

username xs:string A username to use to connect to the JMS
provider.

1 1

password xs:string The password associated with the
username.

1 1

JMSConnectionConfig

The configuration related to connection to the JMS provider.

The following table lists the attributes that an element of type JMSConnectionConfig can have:

Name Type Description Required

connectionFactoryNamexs:string The name of the connection factory to use. true

The following table lists the elements that an element of type JMSConnectionConfig can contain:

Diffusion | 692

Name Type Description Min
occurs

Max
occurs

credentials JMSCredentialsConfigOptional credentials, used when
connecting to the JMS provider

0 1

JMSSessionConfig

All configuration relating to the placing of a JMS session.

The following table lists the attributes that an element of type JMSSessionConfig can have:

Name Type Description Required

transacted xs:boolean Currently unsupported. false

acknowledgeModeJMSSessionAcknowledgeModeCurrently unsupported. false

JMSNamedSessionConfig

A JMSSessionConfig that can be referred to by name.

The following table lists the attributes that an element of type JMSNamedSessionConfig can have:

Name Type Description Required

name xs:string Name used to refer to the session elsewhere in the
JMSProviderConfig.

true

ServerAuthenticationConfig

Optional session authentication details. The adapter defaults to establishing an anonymous session.
Note: The JMS adapter requires a session that has the TOPIC_CONTROL role. Either assign the
TOPIC_CONTROL role to the anonymous principal or specify a principal with this role for the JMS
adapter to use to make the connection.

The following table lists the attributes that an element of type ServerAuthenticationConfig
can have:

Name Type Description Required

principal xs:string The principal used during authentication. true

The following table lists the elements that an element of type ServerAuthenticationConfig
can contain:

Name Type Description Min
occurs

Max
occurs

password xs:string Optional plain text password using
during authentication.

1 1

ServerConfig

The following table lists the attributes that an element of type ServerConfig can have:

Diffusion | 693

Name Type Description Required

reconnection SessionReconnectionThe timeout duration in milliseconds used when
attempting to reconnect, or 'none' to prevent any
reconnection attempts.

false

url xs:string Location of the server to which the adapter
connects.

false

The following table lists the elements that an element of type ServerConfig can contain:

Name Type Description Min
occurs

Max
occurs

authentication ServerAuthenticationConfigOptional session authentication details.
The adapter defaults to establishing
an anonymous session. Note: The JMS
adapter requires a session that has the
TOPIC_CONTROL role. Either assign the
TOPIC_CONTROL role to the anonymous
principal or specify a principal with this
role for the JMS adapter to use to make
the connection.

0 1

ClientEditionProperties

Set of properties defined for the JMS adapter running as a client.

The following table lists the elements that an element of type ClientEditionProperties can
contain:

Name Type Description Min
occurs

Max
occurs

serverName xs:string Mandatory value for placeholder
'${serverName}' used in JMS request-
reply scenarios.

1 1

ServerConnectionConfig

Configuration specific to the JMS adapter when run as a client. When run as a publisher this is ignored

The following table lists the elements that an element of type ServerConnectionConfig can
contain:

Name Type Description Min
occurs

Max
occurs

server ServerConfig Location and authentication details of
the Diffusion server.

1 1

properties ClientEditionPropertiesSet of properties defined for the JMS
adapter running as a client.

1 1

Related concepts
Configuring the JMS adapter on page 675

Diffusion | 694

Use the JMSAdapter.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

JMS on page 122
Consider whether to incorporate JMS providers into your solution.

Transforming JMS messages into Diffusion messages or updates on page 667
JMS messages are more complex than Diffusion content. A transformation is required between the two
formats.

Sending messages using the JMS adapter on page 671
The JMS adapter can send messages from a Diffusion client to a JMS destination and messages from a
JMS destination to a specific Diffusion client.

Publishing using the JMS adapter on page 670
The JMS adapter can publish data from a JMS destination onto topics in the Diffusion topic tree.

Using JMS request-response services with the JMS adapter on page 674
You can use the messaging capabilities of the JMS adapter to interact with a JMS service through
request-response.

Example: Configuring JMS providers for the JMS adapter on page 678
Use the providers element of the JMSAdapter.xml configuration file to define the JMS providers
that the JMS adapter can connect to.

Example: Configuring topics for use with the JMS adapter on page 680
Use the topics element of the JMSAdapter.xml configuration file to define the Diffusion topics
that the JMS adapter uses. These topics are created when the JMS adapter starts.

Example: Configuring messaging with the JMS adapter on page 682
Use the publications element of the JMSAdapter.xml configuration file to define how
Diffusion clients send messages to JMS destinations. Use the subscriptions element of the
JMSAdapter.xml configuration file to define how Diffusion clients receive messages from JMS
destinations.

Example: Configuring pub-sub with the JMS adapter on page 681
Use the subscriptions element of the JMSAdapter.xml configuration file to define JMS adapter
subscriptions to JMS destinations and the Diffusion topics to publish updates to.

Example: Configuring the JMS adapter to work with JMS services on page 683
Use the publications and subscriptions elements of the JMSAdapter.xml configuration
file to define the message flow for using Diffusion with JMS services.

Running the JMS adapter
The JMS adapter is not enabled by default.

Running the JMS adapter within the Diffusion server

The JMS adapter can run within the Diffusion server, but is not enabled by default. To enable the JMS
adapter within the Diffusion server, complete the following steps:

1. Copy the adapters/JMSAdapter.xml configuration file into the etc directory.
2. Use the JMSAdapter.xml configuration file to define the JMS adapter behavior.

For more information, see Configuring the JMS adapter on page 675.
3. Use the Publishers.xml file to define and deploy the JMS adapter as a publisher on your

Diffusion server:

<publisher name="JMSAdapter">

Diffusion | 695

 <class>com.pushtechnology.diffusion.adapters.jms.JMSAdapterPublisher</
class>
 <enabled>true</enabled>
 <start>true</start>
</publisher>

4. Copy the adapters/jmsadapter.jar file into the ext directory of your Diffusion server to
ensure that it is on the Diffusion server classpath.

5. Start or restart the Diffusion server.

Running the JMS adapter as a standalone client

The JMS adapter is a Java application. The adapter requires at least Java version 7. However, we
recommend you use Java version 8 or above.

To run the JMS adapter as a client, complete the following steps:

1. To run the JMS adapter as a client on a different system to the Diffusion server, copy the following
files from the Diffusion server system to the system where you want to locate the JMS adapter.

• All files in the adapters directory
• The Diffusion Java Unified API client library: clients/java/diffusion-client.jar
• The SLF4J JAR file: lib/thirdparty/slf4j-simple-1.7.21.jar
• A SLF4J bindings JAR files. For example Log4J2, which is provided in the Diffusion installation:

lib/thirdparty/log4j-*.jar

2. Get the JAR file for the third-party JMS provider you use.
3. Use the JMSAdapter.xml configuration file to define the JMS adapter behavior.

For more information, see Configuring the JMS adapter on page 675.
4. Edit the jms_adapter.sh or jms_adapter.bat file to include the path to the Diffusion Java

Unified API client library, SLF4J, and the JMS provider JAR on the classpath.
5. Use the jms_adapter.sh or jms_adapter.bat file to start the JMS adapter:

jms_adapter.sh relative_path/JMSAdapter.xml

DEPRECATED: Legacy JMS adapter
For backwards compatibility, Diffusion provides an older version of the JMS adapter, version 5.1. The
version 5.1 JMS adapter is not compatible with the latest version of the JMS adapter.

The version 5.1 JMS adapter is packaged in the file JMSAdapter51.jar and configured using the
JMSAdapter51.xml configuration file.

Note: We recommend that you do not develop new solutions using the version 5.1 JMS
adapter. Instead use the latest version.

The JMS Adapter for Diffusion, enables Diffusion clients to transparently send and receive messages
with topics and queues on a JMS server.

The behavior of a JMS adapter is configured in XML. No coding is required to use a JMS adapter.

The Diffusion server maintains a topic tree. Configure the JMS adapter to map a branch of the topic
tree beneath a root topic to JMS topics and queues on your third-party JMS provider.

Considerations when using the JMS adapter

Dynamic topics

Diffusion | 696

Diffusion topics are created dynamically and do not exist until a valid JMS
subscription has been made and data received. Mapping to JMS queues is performed
in the same way.

Message delivery
Delivery of messages to clients subscribing to a Diffusion topic that is mapped to a
JMS queue is different to standard message delivery. Instead it is in keeping with the
delivery characteristics of JMS queues.

When there are multiple Diffusion clients listening for data originating from the
same JMS queue, each message is delivered to at most one client. Depending on the
configuration of the JMS adapter the receiving client is chosen either randomly or
based on the client with the fewest number of messages waiting for delivery.

Wildcards
You cannot subscribe to JMS topics using wildcards or topic selectors.

Temporary topics and queues
A common use for temporary queues is to set up a return path for request-reply
operations.

A Diffusion client can request access to a JMS temporary topic or queue in the same
way as subscribing to a JMS destination.

In the topic tree, temporary topics exist as sub-topics under the jms/tmp/topic topic.

Acknowledgment
The only acknowledgment mode supported is AUTO_ACKNOWLEDGE. This implies
that when any message is received from the JMS server, an acknowledgment is sent
from the JMS adapter to the JMS server.

Acknowledgments sent from a Diffusion client to the JMS server
(CLIENT_ACKNOWLEDGE) are not supported.

Message headers
The JMS adapter copies the standard JMS headers and user-supplied headers when
converting between JMS and Diffusion message types.

In Diffusion, headers are logically grouped in pairs. Property n is the name, and n+1 is
the value, where n is an even number. In the case of the JMSReplyTo header, the
related header DiffusionReplyTo is created. Mapping between a JMSReplyTo
destination and a DiffusionReplyTo topic is handled transparently by the
adapter.

In most circumstances, a Diffusion client can ignore the JMSReplyTo header. The
header is forwarded to the client for completeness.

Related concepts
DEPRECATED: Configuring the legacy JMS adapter version 5.1 on page 697
Use the JMSAdapter51.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

Related tasks
Configuring the JMS Adapter v5.1 on page 698
The configuration file for the legacy JMS adapter v5.1 is typically called JMSAdapter51.xml,
although you can override this by using a setting in Publishers.xml.

Related reference
DEPRECATED: Receiving data from JMS on page 706

Diffusion | 697

Diffusion clients can receive data from a JMS provider through the JMS adapter v5.1. A client can
receive updates from a JMS topic or messages from a JMS queue.

DEPRECATED: Sending messages to JMS on page 708
Diffusion clients can send messages to a JMS provider through the JMS adapter v5.1.

DEPRECATED: Processing a request-reply message with a Diffusion client on page 709
A common pattern among JMS solutions is for a client to receive a message from JMS and a reply is
expected to be sent to a specific JMS topic or queue.

DEPRECATED: Sending a request-reply message from a Diffusion client on page 711
You can send a message from a Diffusion client into a JMS server with the expectation that a JMS client
processes the message and sends a response back to the same Diffusion client.

DEPRECATED: JMS adapter data flow examples on page 705
The examples in this section show how data flows between the Diffusion server and a JMS provider.

JMSAdapter51.xml on page 701
This file specifies the schema for the configuration required by the JMS Adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

DEPRECATED: Configuring the legacy JMS adapter version 5.1
Use the JMSAdapter51.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

Note: We recommend that you use the new JMS adapter. This legacy version is deprecated.

Use the Publishers.xml file to define and deploy the JMS adapter as a publisher on your Diffusion
server:

<publisher name="JMSAdapter51">
 <class>com.pushtechnology.diffusion.adapters.jms51.JMSAdapter</
class>
 <enabled>true</enabled>
 <start>true</start>
 <property name="config.filename">../adapters/JMSAdapter51.xml</
property>
</publisher>

Related concepts
DEPRECATED: Legacy JMS adapter on page 695
For backwards compatibility, Diffusion provides an older version of the JMS adapter, version 5.1. The
version 5.1 JMS adapter is not compatible with the latest version of the JMS adapter.

Related tasks
Configuring the JMS Adapter v5.1 on page 698
The configuration file for the legacy JMS adapter v5.1 is typically called JMSAdapter51.xml,
although you can override this by using a setting in Publishers.xml.

Related reference
JMSAdapter51.xml on page 701
This file specifies the schema for the configuration required by the JMS Adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

DEPRECATED: Receiving data from JMS on page 706
Diffusion clients can receive data from a JMS provider through the JMS adapter v5.1. A client can
receive updates from a JMS topic or messages from a JMS queue.

DEPRECATED: Sending messages to JMS on page 708

Diffusion | 698

Diffusion clients can send messages to a JMS provider through the JMS adapter v5.1.

DEPRECATED: Processing a request-reply message with a Diffusion client on page 709
A common pattern among JMS solutions is for a client to receive a message from JMS and a reply is
expected to be sent to a specific JMS topic or queue.

DEPRECATED: Sending a request-reply message from a Diffusion client on page 711
You can send a message from a Diffusion client into a JMS server with the expectation that a JMS client
processes the message and sends a response back to the same Diffusion client.

DEPRECATED: JMS adapter data flow examples on page 705
The examples in this section show how data flows between the Diffusion server and a JMS provider.

Configuring the JMS Adapter v5.1
The configuration file for the legacy JMS adapter v5.1 is typically called JMSAdapter51.xml,
although you can override this by using a setting in Publishers.xml.

Procedure

1. Configure Publishers.xml

Instantiate the JMS adapter by enabling it in etc/Publishers.xml, for example:

<publisher name="JMSAdapter">
 <class>com.pushtechnology.diffusion.adapters.jms51.JMSAdapter</
class>
 <enabled>true</enabled>
 <start>true</start>
 <property name="config.filename">../adapters/JMSAdapter51.xml</
property>
</publisher>

2. Configure JMSAdapter51.xml

A JMSAdapter51.xml for ActiveMQ can look like this:

<property name="use.global.session">false</property>

Similarly, a sample JMSAdapter51.xml TIBCO Enterprise Message Service™ looks like this:

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>
<jms-config>
 <binding>
 <env>
 <property name="java.naming.factory.initial">
 com.tibco.tibjms.naming.TibjmsInitialContextFactory
 </property>
 <property name="java.naming.provider.url">
 tcp://localhost:7222
 </property>
 <property name="java.naming.security.principal">
 jndi_username
 </property>
 <property name="java.naming.security.credentials">
 jndi_password
 </property>
 </env>
 <connection-factory name="ConnectionFactory">
 <credentials username="jms_username" password="jms_password"/
>
 <reconnect>

Diffusion | 699

 <max-reconnections>10</max-reconnections>
 <interval>5000</interval>
 </reconnect>
 </connection-factory>
 <root-topic>jms/tibco</root-topic>
 <priority low="3" high="7" />
 <queue-distribution-mode>SMALLEST_QUEUE</queue-distribution-
mode>
 </binding>
 <mapping>
 <artefact-names jms=".$" diffusion="/~"/>
 </mapping>
</jms-config>

TIBCO Enterprise Message Service requires that a ConnectionFactory definition is provided in
factories.conf, for example:

[ConnectionFactory]
 type = generic
 url = tcp://localhost:7222
 ssl_verify_host = disable

This has been tested with TIBCO Enterprise Message Service 7.0; see the TIBCO Enterprise Message
Service documentation for further details.

For IBM MQ v7.x, the binding section can look like this:

<env>
 <property
 name="java.naming.factory.initial">com.sun.jndi.fscontext.RefFSContextFactory</
property>
 <property name="java.naming.provider.url">file:///var/mqm/jndi</
property>
</env>

IBM MQ can include MQRFH2 headers in messages sent between JMS and non-JMS systems. For
control over this behavior, set the property in mq.target.client in Publishers.xml; to
disable the headers, set this value to 1. For the default behavior, do not provide the property.

<property name="mq.target.client">1</property>

Some JMS vendors (for example, IBM MQ) require a JMS Session for each topic or queue
subscription. The default configuration for the JMS adapter does not allow for this, but you can
enable it by setting the use.global.session property to false in Publishers.xml:

<property name="use.global.session">false</property>

Table 60: Properties that can be specified when configuring the JMS adapter

<env> All properties within the <env> tag of
JMSAdapter51.xml are used when creating
the InitialContext which is in turn used to
create the connection to the JMS server.

<connection-factory> This tag specifies the name of the connection
factory to use. This varies between JMS vendors
and the server configuration.

Diffusion | 700

<credentials> Optionally, specify a username and/or
password which is used to create a JMS
client connection. However, most JMS
implementations are likely to have restricted
access for anonymous clients or clients which
do not require authentication so you can
specify a user here who has the necessary
privileges to receive and send messages to the
JMS destinations that are exposed through
Diffusion.

<reconnect> If a connection cannot be made between
Diffusion and the JMS server or the connection
is severed, the <max-reconnections>
and <interval> parameters enable you
to specify how many times to retry the
connection before giving up and how long to
wait between each attempt. A value for <max-
reconnections> of -1 indicates that the
adapter keeps trying to connect forever.

<root-topic> To provide partitioning of the topic tree
between topics related to JMS and other
topics, it is necessary for a root topic name is
defined here. In the event of more than one
JMS adapter, you can segment the topic tree
further.

<priority> JMS supports messages with up to 10 priority
levels (0-9) with 0-4 considered to be different
grades of normal priority and 5-9 to be different
grades of high priority. Diffusion only has the
concept of low, medium and high priority.
Using this parameter, you can map JMS
messages within a given priority range to a
representative Diffusion priority, and in the
other direction.

<queue-distribution-mode> Unlike topics, a message on a JMS queue is
delivered to only one client. When Diffusion
receives a message from a queue, it uses this
parameter to determine which of its connected
clients subscribed to the corresponding
Diffusion topic is selected to receive that
message. Valid values are:

SMALLEST_QUEUE
Choose a client with
the fewest number of
messages outstanding in
its message queue from
Diffusion.

RANDOM
Select a client randomly.

Diffusion | 701

<artefact-names> Not all characters in a Diffusion topic name
are valid JMS topic or queue names (and the
other way around). The two attributes on this
element (jms and diffusion) are lists of
characters where the nth character in one is
replaced by the corresponding nth character in
the other.

Related concepts
DEPRECATED: Configuring the legacy JMS adapter version 5.1 on page 697
Use the JMSAdapter51.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

DEPRECATED: Legacy JMS adapter on page 695
For backwards compatibility, Diffusion provides an older version of the JMS adapter, version 5.1. The
version 5.1 JMS adapter is not compatible with the latest version of the JMS adapter.

Related reference
JMSAdapter51.xml on page 701
This file specifies the schema for the configuration required by the JMS Adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

DEPRECATED: Receiving data from JMS on page 706
Diffusion clients can receive data from a JMS provider through the JMS adapter v5.1. A client can
receive updates from a JMS topic or messages from a JMS queue.

DEPRECATED: Sending messages to JMS on page 708
Diffusion clients can send messages to a JMS provider through the JMS adapter v5.1.

DEPRECATED: Processing a request-reply message with a Diffusion client on page 709
A common pattern among JMS solutions is for a client to receive a message from JMS and a reply is
expected to be sent to a specific JMS topic or queue.

DEPRECATED: Sending a request-reply message from a Diffusion client on page 711
You can send a message from a Diffusion client into a JMS server with the expectation that a JMS client
processes the message and sends a response back to the same Diffusion client.

DEPRECATED: JMS adapter data flow examples on page 705
The examples in this section show how data flows between the Diffusion server and a JMS provider.

JMSAdapter51.xml
This file specifies the schema for the configuration required by the JMS Adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

jms-config

The following table lists the elements that an element of type jms-config can contain:

Name Type Description Min
occurs

Max
occurs

binding binding 1 1

mapping mapping 1 1

binding

The following table lists the elements that an element of type binding can contain:

Diffusion | 702

Name Type Description Min
occurs

Max
occurs

env env 1 1

connection-
factory

connection-
factory

A collection of properties required to
create an InitialContext to access the
JNDI configuration of the JMS server.

1 1

root-topic push:string The JMS Adapter uses the topic name
specified here as the top-level Diffusion
topic, with all subtopics appearing as
children beneath it.

1 1

priority priority Specify how JMS message priorties (in
the range 0-9) map to Diffusion message
priorities high, normal or low.

0 1

queue-
distribution-
mode

push:jmsQueueDistributionModeMessages received from JMS queues are
only sent to one Diffusion client. This
element allows the distribution strategy
to be chosen from RANDOM (choose any
client) or SMALLEST_QUEUE (choose the
client with the fewest pending messages
in its queue from Diffusion).

1 1

topic-aliases topic-aliases This element is not currently used. 0 unbounded

mapping

The following table lists the elements that an element of type mapping can contain:

Name Type Description Min
occurs

Max
occurs

artefact-names artefact-names Diffusion topic names and JMS
destination names can both contain
different reserved characters. The
attributes on this element create a
substitution table of characters. If
a Diffusion topic name contains a
character in the 'diffusion' attribute, it is
replaced with the character in the same
position of the 'jms' attribute when
translating to a JMS topic or queue
name (and vice-versa).

1 1

topic-map jms-artefact-
map

This element is not currently used. 0 unbounded

queue-map jms-artefact-
map

This element is not currently used. 0 unbounded

env

The following table lists the elements that an element of type env can contain:

Diffusion | 703

Name Type Description Min
occurs

Max
occurs

property property This element represents a property
which is supplied when creating the
JNDI object (InitialContext) from which
JMS resources are obtained.

0 unbounded

connection-factory

Details for resolving the ConnectionFactory object from the nominated JNDI server.

The following table lists the attributes that an element of type connection-factory can have:

Name Type Description Required

name push:string false

The following table lists the elements that an element of type connection-factory can contain:

Name Type Description Min
occurs

Max
occurs

credentials credentials Username and password pair (optional),
used when creating the JMS Connection
from the ConnectionFactory.

0 1

reconnect reconnect This element is supplied to control
the reconnection policy for the initial
connection between Diffusion and
the JMS server, and any subsequent
reconnections that might be necessary.

0 1

jms-artefact-map

The following table lists the attributes that an element of type jms-artefact-map can have:

Name Type Description Required

jms push:string true

descendants push:boolean false

artefact-names

The following table lists the attributes that an element of type artefact-names can have:

Name Type Description Required

jms push:string true

diffusion push:string true

property

A named string property

The following table lists the attributes that an element of type property can have:

Diffusion | 704

Name Type Description Required

name push:string The property value true

credentials

The following table lists the attributes that an element of type credentials can have:

Name Type Description Required

username push:string false

password push:string false

priority

The following table lists the attributes that an element of type priority can have:

Name Type Description Required

low push:jmsMessagePriority false

high push:jmsMessagePriority false

topic-aliases

The following table lists the elements that an element of type topic-aliases can contain:

Name Type Description Min
occurs

Max
occurs

topic topic 0 unbounded

topic

The following table lists the attributes that an element of type topic can have:

Name Type Description Required

name push:string true

alias push:string true

reconnect

The following table lists the elements that an element of type reconnect can contain:

Name Type Description Min
occurs

Max
occurs

max-
reconnections

push:int When attempting a connection between
Diffusion and the JMS server, this
parameter specifies how many attempts
can be made before giving up. A value of
-1 (the default) means to retry forever.

1 1

Diffusion | 705

Name Type Description Min
occurs

Max
occurs

interval push:millis This parameter specifies how long to
wait between reconnection attempts
between Diffusion and the JMS server.

1 1

Related concepts
DEPRECATED: Configuring the legacy JMS adapter version 5.1 on page 697
Use the JMSAdapter51.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

DEPRECATED: Legacy JMS adapter on page 695
For backwards compatibility, Diffusion provides an older version of the JMS adapter, version 5.1. The
version 5.1 JMS adapter is not compatible with the latest version of the JMS adapter.

Related tasks
Configuring the JMS Adapter v5.1 on page 698
The configuration file for the legacy JMS adapter v5.1 is typically called JMSAdapter51.xml,
although you can override this by using a setting in Publishers.xml.

Related reference
DEPRECATED: Receiving data from JMS on page 706
Diffusion clients can receive data from a JMS provider through the JMS adapter v5.1. A client can
receive updates from a JMS topic or messages from a JMS queue.

DEPRECATED: Sending messages to JMS on page 708
Diffusion clients can send messages to a JMS provider through the JMS adapter v5.1.

DEPRECATED: Processing a request-reply message with a Diffusion client on page 709
A common pattern among JMS solutions is for a client to receive a message from JMS and a reply is
expected to be sent to a specific JMS topic or queue.

DEPRECATED: Sending a request-reply message from a Diffusion client on page 711
You can send a message from a Diffusion client into a JMS server with the expectation that a JMS client
processes the message and sends a response back to the same Diffusion client.

DEPRECATED: JMS adapter data flow examples on page 705
The examples in this section show how data flows between the Diffusion server and a JMS provider.

DEPRECATED: JMS adapter data flow examples
The examples in this section show how data flows between the Diffusion server and a JMS provider.

Note: The JMS Adapter v5.1 is now deprecated. Use the new JMS adapter instead. For more
information, see JMS on page 122.

The following scenarios assume that the JMS adapter v5.1 is configured with a root topic of jms.

Related concepts
DEPRECATED: Legacy JMS adapter on page 695
For backwards compatibility, Diffusion provides an older version of the JMS adapter, version 5.1. The
version 5.1 JMS adapter is not compatible with the latest version of the JMS adapter.

DEPRECATED: Configuring the legacy JMS adapter version 5.1 on page 697
Use the JMSAdapter51.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

Related tasks
Configuring the JMS Adapter v5.1 on page 698

Diffusion | 706

The configuration file for the legacy JMS adapter v5.1 is typically called JMSAdapter51.xml,
although you can override this by using a setting in Publishers.xml.

Related reference
DEPRECATED: Receiving data from JMS on page 706
Diffusion clients can receive data from a JMS provider through the JMS adapter v5.1. A client can
receive updates from a JMS topic or messages from a JMS queue.

DEPRECATED: Sending messages to JMS on page 708
Diffusion clients can send messages to a JMS provider through the JMS adapter v5.1.

DEPRECATED: Processing a request-reply message with a Diffusion client on page 709
A common pattern among JMS solutions is for a client to receive a message from JMS and a reply is
expected to be sent to a specific JMS topic or queue.

DEPRECATED: Sending a request-reply message from a Diffusion client on page 711
You can send a message from a Diffusion client into a JMS server with the expectation that a JMS client
processes the message and sends a response back to the same Diffusion client.

JMSAdapter51.xml on page 701
This file specifies the schema for the configuration required by the JMS Adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

DEPRECATED: Receiving data from JMS
Diffusion clients can receive data from a JMS provider through the JMS adapter v5.1. A client can
receive updates from a JMS topic or messages from a JMS queue.

Note: The JMS Adapter v5.1 is now deprecated. Use the new JMS adapter instead. For more
information, see JMS on page 122.

Receiving updates from a JMS topic

This section shows how a client receives updates from the JMS topic XYZ.

1. Diffusion client creates a subscription to the topic jms/topic/XYZ.
2. Once a message has been sent from the source system into the JMS server, the Diffusion client

receives an initial topic load message.
3. Subsequent messages from the source system result in delta messages being delivered to the

Diffusion client.

Diffusion | 707

Figure 52: Subscription flow

Receiving messages from a JMS queue

The same process occurs for receiving messages from JMS queues, with the following differences:

• Other clients subscribing to the same JMS queue (either through Diffusion or directly using JMS)
might receive the message instead of our client.

• All messages originating from JMS queues are initial topic load messages. Since a sequence of
messages from a JMS queue are unlikely to always be delivered to the same client, the concept of
delta messages does not readily apply and the full message state must be supplied every time.

Related concepts
DEPRECATED: Legacy JMS adapter on page 695
For backwards compatibility, Diffusion provides an older version of the JMS adapter, version 5.1. The
version 5.1 JMS adapter is not compatible with the latest version of the JMS adapter.

DEPRECATED: Configuring the legacy JMS adapter version 5.1 on page 697
Use the JMSAdapter51.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

Related tasks
Configuring the JMS Adapter v5.1 on page 698
The configuration file for the legacy JMS adapter v5.1 is typically called JMSAdapter51.xml,
although you can override this by using a setting in Publishers.xml.

Related reference
DEPRECATED: Sending messages to JMS on page 708

designguide/solution/thirdpartycomponents/flow_subscribe_topic.png

Diffusion | 708

Diffusion clients can send messages to a JMS provider through the JMS adapter v5.1.

DEPRECATED: Processing a request-reply message with a Diffusion client on page 709
A common pattern among JMS solutions is for a client to receive a message from JMS and a reply is
expected to be sent to a specific JMS topic or queue.

DEPRECATED: Sending a request-reply message from a Diffusion client on page 711
You can send a message from a Diffusion client into a JMS server with the expectation that a JMS client
processes the message and sends a response back to the same Diffusion client.

DEPRECATED: JMS adapter data flow examples on page 705
The examples in this section show how data flows between the Diffusion server and a JMS provider.

JMSAdapter51.xml on page 701
This file specifies the schema for the configuration required by the JMS Adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

DEPRECATED: Sending messages to JMS
Diffusion clients can send messages to a JMS provider through the JMS adapter v5.1.

Note: The JMS Adapter v5.1 is now deprecated. Use the new JMS adapter instead. For more
information, see JMS on page 122.

1. The Diffusion client sends a message to the topic path jms/topic/XYZ.
2. The JMS server receives an equivalent TextMessage on the XYZ topic.

Figure 53: Sending flow from a Diffusion client to a JMS topic (or queue)

Unlike some Diffusion solutions, it is not necessary to subscribe to a Diffusion topic before sending it a
message which targets a JMS destination.

Related concepts
DEPRECATED: Legacy JMS adapter on page 695
For backwards compatibility, Diffusion provides an older version of the JMS adapter, version 5.1. The
version 5.1 JMS adapter is not compatible with the latest version of the JMS adapter.

DEPRECATED: Configuring the legacy JMS adapter version 5.1 on page 697
Use the JMSAdapter51.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

Related tasks
Configuring the JMS Adapter v5.1 on page 698

designguide/solution/thirdpartycomponents/flow_send_topic.png

Diffusion | 709

The configuration file for the legacy JMS adapter v5.1 is typically called JMSAdapter51.xml,
although you can override this by using a setting in Publishers.xml.

Related reference
DEPRECATED: Receiving data from JMS on page 706
Diffusion clients can receive data from a JMS provider through the JMS adapter v5.1. A client can
receive updates from a JMS topic or messages from a JMS queue.

DEPRECATED: Processing a request-reply message with a Diffusion client on page 709
A common pattern among JMS solutions is for a client to receive a message from JMS and a reply is
expected to be sent to a specific JMS topic or queue.

DEPRECATED: Sending a request-reply message from a Diffusion client on page 711
You can send a message from a Diffusion client into a JMS server with the expectation that a JMS client
processes the message and sends a response back to the same Diffusion client.

DEPRECATED: JMS adapter data flow examples on page 705
The examples in this section show how data flows between the Diffusion server and a JMS provider.

JMSAdapter51.xml on page 701
This file specifies the schema for the configuration required by the JMS Adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

DEPRECATED: Processing a request-reply message with a Diffusion client
A common pattern among JMS solutions is for a client to receive a message from JMS and a reply is
expected to be sent to a specific JMS topic or queue.

Note: The JMS Adapter v5.1 is now deprecated. Use the new JMS adapter instead. For more
information, see JMS on page 122.

Typically, the JMS publisher creates and sends a message with the JMSReplyTo header set to some
other destination defined within the JMS server. This can be a topic, queue, or a temporary topic or
temporary queue. The Diffusion client does not have to know the destination type as this is handled
within the adapter.

1. The Diffusion client subscribes to topic jms/queue/ABC.
2. The JMS provider creates a temporary queue, XYZ, and subscribes to it.
3. The JMS provider sends a message to the queue ABC with JMSReplyTo set to the queue XYZ.
4. The Diffusion client receives a message on queue jms/topic/ABC, with DiffusionReplyTo set to

jms/reply/XYZ.
5. The Diffusion client sends a response message to the queue jms/reply/XYZ.
6. The JMS provider receives a TextMessage on the temporary queue XYZ.

Diffusion | 710

Figure 54: Request-reply initiated by a JMS client and serviced by a Diffusion client

Related concepts
DEPRECATED: Legacy JMS adapter on page 695
For backwards compatibility, Diffusion provides an older version of the JMS adapter, version 5.1. The
version 5.1 JMS adapter is not compatible with the latest version of the JMS adapter.

DEPRECATED: Configuring the legacy JMS adapter version 5.1 on page 697
Use the JMSAdapter51.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

Related tasks
Configuring the JMS Adapter v5.1 on page 698
The configuration file for the legacy JMS adapter v5.1 is typically called JMSAdapter51.xml,
although you can override this by using a setting in Publishers.xml.

Related reference
DEPRECATED: Receiving data from JMS on page 706
Diffusion clients can receive data from a JMS provider through the JMS adapter v5.1. A client can
receive updates from a JMS topic or messages from a JMS queue.

DEPRECATED: Sending messages to JMS on page 708
Diffusion clients can send messages to a JMS provider through the JMS adapter v5.1.

DEPRECATED: Sending a request-reply message from a Diffusion client on page 711

designguide/solution/thirdpartycomponents/flow_rq_reply_jms.png
designguide/solution/thirdpartycomponents/flow_rq_reply_jms.png

Diffusion | 711

You can send a message from a Diffusion client into a JMS server with the expectation that a JMS client
processes the message and sends a response back to the same Diffusion client.

DEPRECATED: JMS adapter data flow examples on page 705
The examples in this section show how data flows between the Diffusion server and a JMS provider.

JMSAdapter51.xml on page 701
This file specifies the schema for the configuration required by the JMS Adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

DEPRECATED: Sending a request-reply message from a Diffusion client
You can send a message from a Diffusion client into a JMS server with the expectation that a JMS client
processes the message and sends a response back to the same Diffusion client.

Note: The JMS Adapter v5.1 is now deprecated. Use the new JMS adapter instead. For more
information, see JMS on page 122.

1. The JMS client subscribes to messages on the queue ABC.
2. The Diffusion client subscribes to jms/tmp/queue/XYZ. (Commonly, XYZ is a unique identifier).
3. The Diffusion client sends a request message to jms/queue/ABC with the DiffusionReplyTo header

set with the value jms/tmp/queue/XYZ.
4. The JMS client receives the request message on queue ABC, with the JMSReplyTo header set to

queue DEF.
5. The JMS client sends a reply to queue DEF.
6. The Diffusion client receives the reply on topic jms/tmp/queue/XYZ.

Note: The return Diffusion topic can be any topic, so it is not necessary that the originating
Diffusion client receives the reply – it can be any client listening for messages on that topic.

Diffusion | 712

Figure 55: Request-reply initiated by a Diffusion client and serviced by a JMS client

Related concepts
DEPRECATED: Legacy JMS adapter on page 695
For backwards compatibility, Diffusion provides an older version of the JMS adapter, version 5.1. The
version 5.1 JMS adapter is not compatible with the latest version of the JMS adapter.

DEPRECATED: Configuring the legacy JMS adapter version 5.1 on page 697
Use the JMSAdapter51.xml configuration file to configure the JMS adapter to send and receive
messages with destinations on a JMS server.

Related tasks
Configuring the JMS Adapter v5.1 on page 698
The configuration file for the legacy JMS adapter v5.1 is typically called JMSAdapter51.xml,
although you can override this by using a setting in Publishers.xml.

Related reference
DEPRECATED: Receiving data from JMS on page 706
Diffusion clients can receive data from a JMS provider through the JMS adapter v5.1. A client can
receive updates from a JMS topic or messages from a JMS queue.

DEPRECATED: Sending messages to JMS on page 708
Diffusion clients can send messages to a JMS provider through the JMS adapter v5.1.

DEPRECATED: Processing a request-reply message with a Diffusion client on page 709
A common pattern among JMS solutions is for a client to receive a message from JMS and a reply is
expected to be sent to a specific JMS topic or queue.

DEPRECATED: JMS adapter data flow examples on page 705
The examples in this section show how data flows between the Diffusion server and a JMS provider.

JMSAdapter51.xml on page 701

designguide/solution/thirdpartycomponents/flow_rq_reply_diffusion.png
designguide/solution/thirdpartycomponents/flow_rq_reply_diffusion.png

Diffusion | 713

This file specifies the schema for the configuration required by the JMS Adapter. Note that JMS topics
and queues are referred to only as destinations. Topics refers exclusively to Diffusion topics.

Network security

This section describes how to deploy network security, which can be used in conjunction with data
security.

Secure clients

Diffusion clients can connect to your solution using TLS or SSL. The secure connection can terminate
at your load balancer or at your Diffusion server. Terminating the TLS/SSL at the load balancer reduces
CPU cost on your Diffusion servers.

The following SSL and TLS versions are supported by default:

• SSLv2Hello
• TLSv1
• TLSv1.1
• TLSv1.2

You can use the system property diffusion.tls.protocols with the JVM that runs the Diffusion server, a
Java client or an Android client to provide a different list of secure protocols to use.

The following cipher suites are supported by default:

• TLS_RSA_WITH_AES_128_CBC_SHA
• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
• TLS_RSA_WITH_AES_128_CBC_SHA256
• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
• TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA

You can use the system property https.cipherSuites with the JVM that runs the Diffusion server, a Java
client or an Android client to provide a different list of cipher suites to use.

Session tokens

Unified API clients use session tokens to authenticate when reconnecting to their existing session. To
protect the credentials supplied in the original connection request and the returned session token,
ensure that the client uses a secure transport to communicate with the Diffusion server. For example,
WSS.

Session tokens are generated by using java.security.SecureRandom with the default
algorithm supplied by the Java environment used to run the Diffusion server. Each token is a 24-
character string encoded in base-64, representing 18 bytes (144 bits) of random data.

A new session token is generated when a client connects to the Diffusion server, is authenticated, and
creates a session. The server returns the session token to the client in the connection response. The
client library keeps the session token in memory. If the client connection is lost, the client attempts
to reconnect and supplies the session token. The server is configured with a reconnection timeout.
If the Diffusion server detects the loss of the client connection and the client fails to reconnect to the
Diffusion server before the reconnection timeout has elapsed, the Diffusion server closes the session
and the session token is no longer valid. If the client reconnects before the reconnection timeout has
elapsed, the Diffusion server accepts the new connection using the session token is used as proof of
authentication.

Diffusion | 714

Web server configuration

The web server can be configured in your test environment to allow you to deploy and undeploy DAR
files by using a web service. By default this capability is not enabled.

For security, if you choose to enable this web service in your production environment, you must
restrict access to the diffusion-url/deploy URL by other means. For example, by setting up
restrictions in your firewall.

To configure the web server, use the WebServer.xml file. For more information, see WebServer.xml
on page 606. An example of this file is provided in the /etc directory of the Diffusion installation.
The XSD is provided in the /xsd directory of the Diffusion installation.

Connector configuration

If secure connections are required, Diffusion connectors must be configured to support HTTPS,
WSS, DPTS, or a combination of these transports. Any connector can accept secure connections. A
connector does not have to be dedicated to only secure connections. To enable secure connections
a keystore entry is required in the connector configuration. This informs the connector that it is
enabled for secure connections. If HTTPS is required, a keystore section and a web-server entry are
also required, even for secure Diffusion clients.

To configure the connectors, use the Connectors.xml file. For more information, see
Connectors.xml on page 572. An example of this file is provided in the /etc directory of the Diffusion
installation. The XSD is provided in the /xsd directory of the Diffusion installation.

Keystores

The default Diffusion installation includes a sample keystore containing a self-signed certificate.
This is suitable for development. The certificate will not be trusted by browsers and other clients
without additional configuration. If you use TLS in production, you must create a new keystore, using a
certificate obtained from a certificate authority.

The following steps use the Java Keytool to create a keystore. The steps can vary depending on your
certificate authority. For more information, refer to your certificate authority's documentation.

1. Generate a key and place it in your keystore.

keytool -genkeypair -alias my_alias -keyalg RSA -
keystore keystore_name -keysize

2. Generate a CSR file.

keytool -certreq -keyalg RSA -alias my_alias -file certreq.csr -
keystore keystore_name

3. Send the CSR file to your certificate authority.
4. Receive the signed certificate from your certificate authority.
5. Install any intermediate certificates that you require.

keytool -import -trustcacerts -alias intermediate_alias -
keystore keystore_name -file intermediate_certificate_file.crt

6. Install your own certificate. Use the same alias as when you generated the key and the signing
request.

keytool -import -trustcacerts -alias my_alias -
keystore keystore_name -file certificate_file.crt

Diffusion | 715

Provided keystores

The etc directory of the Diffusion directory contains the following keystores:

sample.keystore
This keystore is an example keystore that contains a self-signed certificate. In
production, we recommend you create your own keystore that contains a certificate
signed by a certificate authority.

licence.keystore
This keystore contains the public key used for the Diffusion license file. Do not edit or
delete this keystore. Diffusion requires this keystore to verify your Diffusion license.

Related information
http://www.networking4all.com/en/support/ssl+certificates/manuals/java/java+based+webserver/
keytool+commands/

Going to production

When going to production with Diffusion review this information for recommendations on preparing
for a successful production deployment.

The advice in this section is not an exhaustive list of steps to take when getting ready to take your
Diffusion solution into production. You might have additional requirements based on your solution.
Push Technology provides Professional Services that can work with you to advise on a pre-production
testing strategy specific to your requirements. Email consulting@pushtechnology.com for more
information.

Pre-production testing
The most important part of taking your solution into production is to ensure that you fully test it under
as wide a range of expected conditions as possible.

Setting up your test environment
Ensure that the environment you set up to test your solution is as close as possible to the production
environment you intend to deploy.

About this task
There are many benefits to creating a test environment that is the same as your production
environment:

• It enables you to do regression testing when you change the version or configuration of any of the
components in your solution.

• It enables you to test your solution's performance under different levels of stress and load.
• It provides a controlled environment where you can reproduce any issues that you encounter in

your production system.
• It provides an environment where you can capture runtime data that cannot easily be captured in

production without affecting the behavior or performance of the production system.

To create a test environment that closely reflects your production environment, consider taking the
following steps:

http://www.networking4all.com/en/support/ssl+certificates/manuals/java/java+based+webserver/keytool+commands/
http://www.networking4all.com/en/support/ssl+certificates/manuals/java/java+based+webserver/keytool+commands/

Diffusion | 716

Procedure

1. Use the same hardware as you intend to deploy your production solution on.
Consider the following aspects:

• Hardware specifications
• Operating system version and patch version

For more information, see Requirements.
2. Use the same network specifications as you intend to use in your production solution.

Consider the following aspects:

• Connection reliability

Note: This is especially important when testing mobile applications. The behavior of
your mobile client can be different depending on whether the client connects through
WiFi or 3G, for example.

• Speed
3. Use the same JDK version as you intend to use to run your Diffusion server.

Consider the following aspects:

• The JVM version
• Any tuning parameters you intend to use

For more information, see Requirements.
4. Include third-party components that will be used in your production solution.

Consider your use of the following components:

• Load balancers

For more information, see Load balancers on page 117.
• Web servers

For more information, see Web servers on page 118.
• Push notification networks

For more information, see Push notification networks on page 120.
• JMS servers

For more information, see JMS on page 122.
5. Ensure your Diffusion servers use the same version and configuration as in your production

solution.
Consider the following aspects:

• Diffusion server version
• Diffusion server configuration
• Diffusion server security configuration

6. Include all the components you have developed for use in your production system.
Consider your use of the following components:

• Clients

Both those within your organization and those used by your customers.
• Publishers
• Server-side components

Diffusion | 717

Understanding production usage conditions
Consider the flow of data and the actions of clients in your Diffusion server. Pre-production testing that
closely models the usage you expect to see in production is most useful in understanding how your
solution will respond in production.

The following sections contain some of the questions to consider when deciding how to test your
solution before going to production. For each of these questions consider both average use values and
edge case values.

Client connections

• How many clients do you expect to attempt to connect simultaneously?
• How many clients do you expect to be connected concurrently?
• Do you have session replication enabled and, if so, in a failover situation do you expect all of your

concurrently connected clients to attempt reconnect at the same time?
• How long is a client connection expected to last?
• What is the expected geographic distribution of client connections?
• How does your load balancer decide how to distribute incoming client connections?
• How are your expected client connections distributed by platform or API?
• How are your incoming client connections authenticated?

Topics

• At what frequency do you expect to create topics?
• How many topics do you expect to create at the same time?
• At what frequency do you expect to delete topics?
• How many topics do you expect to delete at the same time?
• How many topics do you expect your clients to be subscribed to?
• How many topics do you expect your clients to subscribe to in a single action?

Topic updating

• How many topics is a given client expected to update?
• How frequently do you expect topics to be updated?
• How many topics do you expect to send updates to at the same time?
• How many topics do you expect a given client to send updates to at the same time?
• How big do you expect the data in your topic updates to be?

Other client actions

• How many client authentication requests is a given client expected to handle?
• How many messages sent to a topic path is a given client expected to handle?
• How many messages sent directly to the client is a given client expected to receive?
• How many messages is a given client expected to send to a topic path?
• How many messages is a given client expected to send directly to another client?
• How often do you expect clients to manage other clients?
• How many clients do you expect a given client to manage?

Diffusion | 718

How to create production usage conditions in your test environment
You can create production usage conditions in your test environment by either recording live
production usage and playing it back or by simulating production usage.

Recording production conditions

Recording production conditions involves inserting components within your production system to
track specific actions. For example:

• A recording tool upstream of the Diffusion server that records the data stream being fed in to
Diffusion topics

• A recording tool at your load balancer to record incoming connections, where they come from,
when they connect, and how long they remain connected.

After this data has been captured in production test tools use the data to replay or simulate identical
conditions in your test environment.

The record and playback approach has the following advantages:

• The data and client actions have occurred in production and reflect realistic production conditions.

The record and playback approach has the following disadvantages:

• You cannot use the recorded data to test conditions that have not occurred in your production
environment, but that you might expect to occur.

• You must have an existing production environment to capture data from.
• You must develop the tools to capture and store production conditions. Introducing these

components to your production system might effect its behavior.
• You must develop the tools to replay production conditions in your test environment.

Simulating production conditions

Simulating production conditions involves developing tools or test harnesses that generate data or
client behavior in your test environment.

The simulation approach has the following advantages:

• You can test a wider range of conditions than those that have occurred in production.

The simulation approach has the following disadvantages:

• There is a risk that the simulation might not create realistic production conditions.
• You must develop the tools to simulate the conditions you want to test.

Using live production data

You can create production conditions in your data by using the same data stream as the production
environment uses to feed into your test environment.

The live production data approach has the following advantages:

• The data stream being fed in to Diffusion is real.
• You do not need to create tools to record and playback or to simulate production data.

The live production data approach has the following disadvantages:

• Depending on the type of client information in the production data and your data protection
policies and legal requirements, you might not be permitted to use live production data in a test
environment.

• Depending on the type of client information in the production data and your data protection
policies and legal requirements, you might not be permitted to send certain diagnostics to Push
Technology when requesting support.

Diffusion | 719

• You must ensure that nothing in your test environment can affect either the production data or the
production environment.

• You must have an existing production environment to use data from.
• If you want to test specific data conditions, you are restricted to doing so at the times when these

conditions occur.

Using live production traffic

You can simulate production conditions in your client traffic by duplicating client requests coming into
your live production environment in your test environment and by suppressing the responses made by
the test server from reaching the production client.

The live production traffic approach has the following advantages:

• The client requests to Diffusion are real.
• You do not need to create tools to record and playback or to simulate production traffic.

The live production traffic approach has the following disadvantages:

• Depending on the type of client information in the traffic and your data protection policies and
legal requirements, you might not be permitted to use live production traffic in a test environment.

• Depending on the type of client information in the production traffic and your data protection
policies and legal requirements, you might not be permitted to send certain diagnostics to Push
Technology when requesting support.

• You must have an existing production environment to use the traffic from.
• You must ensure that responses from your test environment do not reach the client.
• Because the responses from the test environment do not reach the production clients, who instead

receive responses from the production environment, the behavior does not accurately reflect
server-client interactions.

• If you want to test specific traffic conditions, you are restricted to doing so at the times when these
conditions occur.

These techniques can be used separately or together to give the fullest range of test conditions.

Both involve the development of custom tooling to create the required conditions. Push
Technology provides Professional Services that can work with you to create these tools. Email
consulting@pushtechnology.com for more information.

Types of testing
Consider performing the following types of testing before taking your solution into production.

Component testing

Before setting up your test environment, test the clients and other components that you have
developed. For each component, consider doing the following testing:

• Unit testing with a high level of code coverage
• End-to-end testing
• Performance testing
• Stress testing
• Usability and accessibility testing, if the component is customer-facing.

For more information, see Testing on page 507

Smoke testing

On first setting up your test environment, smoke test your solution to ensure that all basic expected
function works before proceeding to more in-depth testing.

Diffusion | 720

For more information, see Smoke Testing on Wikipedia

Regression testing

If you have an existing Diffusion solution in production and are updating one or more components or
their configuration, perform regression testing in your test environment to ensure that the behavior of
your solution has not changed in unintended ways before updating your production environment.

For more information, see Regression Testing on Wikipedia

Load testing

Ensure that you test your Diffusion solution at peak expected load to discover how your solution
handles these conditions. This load can be client connections, topics, topic updates, and combinations
of load types.

For more information, see Load Testing on Wikipedia

Soak testing

Most Diffusion solutions are expected to run continuously under varying load. Ensure that you test
how your solution behaves when it is left in operation for a long time, for example, 24 hours. Long
test runs can uncover potential resource leaks, long garbage collections, or previously unforeseen
timeouts.

For more information, see Soak Testing on Wikipedia

Failover and recovery testing

If your solution has failover or replication configured on your Diffusion servers, test that these work as
you expect when one of the Diffusion becomes unavailable. For resiliency of your whole solution, other
components – for example, load balancers – can be configured to failover or provide redundancy.
Ensure that these measures work as you expect.

For more information, see Configuring the Diffusion server to use replication on page 600 and Using
load balancers for resilience on page 636

Penetration testing

Diffusion provides mechanisms to secure which ports clients can connect to your Diffusion server on,
what actions those clients can take, and what data they can view or update. You also can use load
balancers and firewalls to secure your solution.

However, security flaws can occur in any system. Many companies offer a penetration testing
service that can help uncover any vulnerabilities in your solution. If you do not have the resource or
knowledge to perform penetration testing on your solution, we recommend that you use a third-party
penetration testing company.

For more information, see Penetration Testing on Wikipedia

Testing your security
Your Diffusion solution is made up of multiple components. Ensure that you consider and test for
potential security problems in all your components and in their interactions.

It is important to design your solution for security before you even begin any development or
configuration. For more information about designing a secure solution, see Design Guide on page 41.

https://en.wikipedia.org/wiki/Smoke_testing_(software)
https://en.wikipedia.org/wiki/Regression_testing
https://en.wikipedia.org/wiki/Load_testing
https://en.wikipedia.org/wiki/Soak_testing
https://en.wikipedia.org/wiki/Penetration_test

Diffusion | 721

Note: Many companies offer a penetration testing service that can help uncover any
vulnerabilities in your solution. If you do not have the resource or knowledge to perform
penetration testing on your solution, we recommend that you use a third-party penetration
testing company.

Consider these aspects of security for your solution.

URL spaces and ports exposed by your load balancer

What routes does your solution offer to connections from outside?

For more information, see Load balancers on page 631.

Connectors

What ports allow connections to the Diffusion server? What kind of connections are these ports
configured to allow?

For more information, see Configuring connectors on page 570.

Users and roles on your Diffusion server

How are connections to the Diffusion server authenticated? What roles and permissions are assigned
to authenticated connections? How are different parts of your topic tree secured?

For more information, see Role-based authorization on page 127.

Console

Are connections from outside your organization permitted to access the Diffusion console? Which
users are assigned the permission to access the console?

For more information, see Diffusion monitoring console on page 748.

Introspector

Are connections from outside your organization permitted to access the Introspector? Which users are
assigned the permission to access Diffusion using the Introspector?

For more information, see Diffusion monitoring console on page 748.

Tools you can use in your pre-production testing
There are many available tools that are useful when doing pre-production testing of your solution.

Amazon Web Services (AWS)

Use AWS to host large numbers of test clients that connect to your test environment for capacity and
load testing. Using a cloud provider enables you to scale up your testing without being constrained by
how much hardware resource you have in your organization.

Amazon Web Services is one of many cloud providers that you can choose between for your load and
capacity testing.

For more information, see https://aws.amazon.com/dev-test/

Eclipse Memory Analyser Tool (MAT)

Use Eclipse MAT to analyze how your Diffusion server memory behaves under different usage
conditions. You can also use this tool to analyze the memory behavior of any Java clients that you use
in your solution.

https://aws.amazon.com/dev-test/

Diffusion | 722

For more information, see http://www.eclipse.org/mat/

VisualVM

VisualVM is a Java monitoring tool that you can use to monitor the behavior of the Diffusion server and
other Java-based components in your solution.

For more information, see https://visualvm.java.net/

VisualVM also provides the ability to view the MBeans that the Diffusion server registers with the JMX
service. These MBeans provide statistics and information about many of the primary features of the
Diffusion server.

For more information, see JMX on page 724

Java Flight Recorder and Java Mission Control

These tools provide the capability to capture low-level JVM metrics during the test cycle. Java Flight
Recorder is built into the Oracle JDK. Java Mission Control enables you to analyse the data collected
by the Flight Recorder.

For more information, see Java Mission Control documentation

Diffusion monitoring console

Use the Diffusion monitoring console to validate, in real time, the metrics presented by the Diffusion
server.

For more information, see Diffusion monitoring console on page 748

Diffusion JavaScript test client

Use the JavaScript test client, which is available from the Diffusion landing page at http://
localhost:8080 to perform basic feature testing and smoke testing against your test servers.

DEPRECATED: Diffusion Introspector Eclipse plugin

Use the Introspector to inspect Diffusion internals from within Eclipse.

For more information, see DEPRECATED: Introspector on page 759

Diffusion benchmarking suite

Push Technology provide a suite of benchmarks that you can use to test the behavior of the Diffusion
server on your hardware and with your configuration.

For more information, see https://github.com/pushtechnology/diffusion-benchmark-suite

Planning for production
The key to a successful production deployment is planning and preparation.

Consider the following questions when planning for production deployment:

Hard launch or soft launch?
In a hard launch, your solution is rolled out to all of your users at the same time. In a
soft launch, your solution is rolled out to only a select group of users.

The advantage of a soft launch is that it enables you to trial your new solution with
a subset of your users and discover any remaining issues before rolling out to your
whole user base.

http://www.eclipse.org/mat/
https://visualvm.java.net/
http://www.oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-control-1998576.html
https://github.com/pushtechnology/diffusion-benchmark-suite

Diffusion | 723

Will your users experience any down-time?
How will your deployment affect existing users? Will their clients experience a
disconnection? Will the deployment of your new solution force them to upgrade their
client version before they can continue to use your solution?

Understand what your users will experience during your deployment and what
experience you want them to have.

When are you going to roll out to production?
Select a time that fits best with your business. Consider when you have the most
users, when you have certain events for which your system needs to be up, and when
your team are available to support and troubleshoot the deployment.

Who do you need to notify in advance?
Do you need to notify your users of upcoming down-time? Do you need to notify your
user of actions they must take? Do you have any third parties that provide data or
services who need to be notified?

How are you deploying your solution to production?
Are you rolling out all of the components of your solution or just changing some of
them? What order are you deploying your components in? Are you going to automate
all or some of the deployment process?

What is your roll back plan if something unforeseen happens?
Even with the best testing and planning, problems an occur in a production
environment. Developing a strategy in advance for handling problems ensures that
you can react quickly if problems occur.

Prepare a go-live checklist

After you have considered all aspects of your deployment, we recommend that you create a go-live
checklist detailing all of the tasks necessary across your organization in order to go live.

Deploying to your production environment
For the best results, consider automating deployment of your components and configuration.

Automated deployment to your test environment enables you to quickly iterate your development
and roll out new changes into testing. Removing the overheads of setting up a test environment by
automating the process, gives your team more time to perform testing.

Automated deployment to your production environment helps reduce the risk of human error. By
automating all the steps required to deploy your solution to production, you can easily test your
deployment process. Automated deployment is quicker than manual deployment and can reduce
the amount of down-time that a deployment might cause. Testing your automated deployment
process gives you the chance to measure this down-time duration. You can use this information to
appropriately set your service-level agreements.

Managing and monitoring your running Diffusion server

This section discusses how to manage your Diffusion server and system as a whole.

We recommend that you actively monitor the health of your Diffusion server to pre-empt failures and
to minimize unplanned downtime.

You can monitor your Diffusion server using the tools listed in this section.

Diffusion | 724

JMX
You can use JMX to manage Diffusion. By default, the RMI registry port is 1099 and the JMX service port
is 1100.

Figure 56: Connecting to Diffusion JMX

The following methods of connecting to Diffusion JMX are available:

1. Recommended: Through the RMI JMX connector server provided by the Diffusion server.

This feature is integrated with Diffusion security, enabling you to use roles and permissions to
control access to the MBeans. However, this connection does not use SSL.

For more information, see Configuring the Diffusion JMX connector server on page 590.
2. Through the RMI JMX connector server provided by JVM that runs Diffusion.

You can use SSL to make a secure connection. However, the JVM does not use Diffusion security.
You must add additional configuration to your JVM to control access to the MBeans.

For more information, see Configuring a remote JMX server connector on page 591.
3. Through the local JMX connector server provided by JVM that runs Diffusion.

You make this connection from the server that Diffusion runs on. However, the JVM does not use
Diffusion security. You must add additional configuration to your JVM to control access to the
MBeans.

For more information, see Configuring a local JMX connector server on page 592.

Related concepts
DEPRECATED: Introspector on page 759
An introduction to the Introspector Eclipse plugin.

Related tasks
Configuring the Diffusion JMX connector server on page 590

Diffusion | 725

Connect to JMX through the Diffusion connector server. This connector server is integrated with the
Diffusion server and enables you to use role-based access control to define how connecting users can
use the MBeans.

Configuring a local JMX connector server on page 592
Connect to JMX through a local connector to the JVM that runs the Diffusion. This connector is not
integrated with the Diffusion server security and you must configure additional security in the JVM.

Configuring a remote JMX server connector on page 591
Connect to JMX through a remote connector to the JVM that runs the Diffusion. This connector is not
integrated with the Diffusion server security and you must configure additional security in the JVM.

Related reference
Statistics on page 743
Diffusion provides statistics about the server, publishers, clients, and topics.

Diffusion monitoring console on page 748
A web console for monitoring the Diffusion server.

Logging on page 773
Diffusion uses the Simple Logging Facade for Java (SLF4J) API to log messages from the Diffusion
server or from publishers running on the Diffusion server. SLF4J separates the logging of messages
in the Diffusion server from the logging framework. This separation enables you to configure an
independent back-end implementation to format and write out the log messages.

Integration with Splunk on page 780
How to achieve basic integration between Diffusion and the Splunk™ analysis and monitoring
application

Management.xml on page 593
This file specifies the schema for the management properties that enable JMX access over an RMI
JMXConnectorServer.

Using Java VisualVM
You can manage Diffusion using the JMX system management console Java VisualVM.

Java VisualVM is usually installed with JDK's but can be downloaded from https://
visualvm.dev.java.net/.

Connecting to the Diffusion connector server

1. Start Java VisualVM.
2. Right-click on the Remote section of the Applications panel and select Add Remote Host.
3. In the Host name field, type the host name or IP address of the server where Diffusion is running.

Click OK.
4. In the Applications panel, right-click on the name of the server where Diffusion is running. Select

Add JMX Connection.
5. In the Connection field, enter the host name and RMI registry port for the Diffusion server.
6. Select Use security credentials and enter the username and password of a principal that you

have configured to be able to use JMX. For more information, see Configuring the Diffusion JMX
connector server on page 590. Click OK.

Information about the Diffusion process is displayed in the main panel.

Connecting to the JVM remote connector server

Note: We recommend you use the Diffusion connector server to access the JMX service.

1. Start Java VisualVM.

https://visualvm.java.net/
https://visualvm.java.net/

Diffusion | 726

2. Right-click on the Remote section of the Applications panel and select Add Remote Host.
3. In the Host name field, type the host name or IP address of the server where Diffusion is running.

Click OK.
4. In the Applications panel, right-click on the name of the server where Diffusion is running. Select

Add JMX Connection.
5. In the Connection field, enter the host name and RMI registry port for the Diffusion server.
6. Select Use security credentials and enter the username and password of a user that you have

configured in the JVM. For more information, see Configuring a remote JMX server connector on
page 591. Click OK.

Information about the Diffusion process is displayed in the main panel.

Connecting to the JVM local connector server

Figure 57: Java VisualVM: Overview tab

Note: We recommend you use the Diffusion connector server to access the JMX service.

1. Start Java VisualVM.
2. From the Local section of the Applications panel, select the Diffusion process,

com.pushtechnology.diffusion.Diffusion.
3. Right-click com.pushtechnology.diffusion.Diffusion and select Open.

Information about the Diffusion process is displayed in the main panel.

Once connected to JMX, several aspects of the system are available to monitor and tune. For more
information, see the Java VisualVM documentation: http://visualvm.java.net/docindex.html.

Related tasks
Configuring the Diffusion JMX connector server on page 590
Connect to JMX through the Diffusion connector server. This connector server is integrated with the
Diffusion server and enables you to use role-based access control to define how connecting users can
use the MBeans.

Configuring a local JMX connector server on page 592

http://visualvm.java.net/docindex.html

Diffusion | 727

Connect to JMX through a local connector to the JVM that runs the Diffusion. This connector is not
integrated with the Diffusion server security and you must configure additional security in the JVM.

Configuring a remote JMX server connector on page 591
Connect to JMX through a remote connector to the JVM that runs the Diffusion. This connector is not
integrated with the Diffusion server security and you must configure additional security in the JVM.

Using JConsole
You can manage Diffusion using the JMX system management console JConsole.

Connecting to the Diffusion connector server

Figure 58: JConsole New Connection dialog: Remote Process

In the Remote Process section of JConsole's New Connection dialog, enter the following information:

• The host name and RMI registry port of the Diffusion connector server. The default RMI registry port
is 1099.

• The username and password of a principal that you have configured to be able to use MBeans. For
more information, see Configuring the Diffusion JMX connector server on page 590

Diffusion | 728

Connecting to the JVM remote connector server

Figure 59: JConsole New Connection dialog: Remote Process

Note: We recommend you use the Diffusion connector server to access the JMX service.

In the Remote Process section of JConsole's New Connection dialog, enter the following information:

• The host name and RMI port of the Diffusion connector server. The default port is 1099.
• A username and password that you have configured in the JVM to be able to connect to the JMX

service. For more information, see Configuring a remote JMX server connector on page 591

administratorguide/systemmanagement/jconsole_remote_connection.png

Diffusion | 729

Connecting to the JMX service

Figure 60: JConsole New Connection dialog: Local Process

Note: We recommend you use the Diffusion connector server to access the JMX service.

In the Local Process section of JConsole's New Connection dialog, select the Diffusion process,
com.pushtechnology.diffusion.Diffusion.

Once connected to JMX, several aspects of the system are available to monitor and tune. For more
information, see the JConsole documentation: https://docs.oracle.com/javase/8/technotes/guides/
management/jconsole.html.

Related tasks
Configuring the Diffusion JMX connector server on page 590

https://docs.oracle.com/javase/8/technotes/guides/management/jconsole.html
https://docs.oracle.com/javase/8/technotes/guides/management/jconsole.html

Diffusion | 730

Connect to JMX through the Diffusion connector server. This connector server is integrated with the
Diffusion server and enables you to use role-based access control to define how connecting users can
use the MBeans.

Configuring a local JMX connector server on page 592
Connect to JMX through a local connector to the JVM that runs the Diffusion. This connector is not
integrated with the Diffusion server security and you must configure additional security in the JVM.

Configuring a remote JMX server connector on page 591
Connect to JMX through a remote connector to the JVM that runs the Diffusion. This connector is not
integrated with the Diffusion server security and you must configure additional security in the JVM.

Detecting deadlocks with JConsole
To check if your publisher is experiencing a deadlock, you can use JConsole to inspect the threads.

Procedure

1. Connect JConsole to the JMX service on the Diffusion server.
For more information, see Using JConsole on page 727.

2. Go to the Threads tab.
This tab provides information about thread use: number of threads, a list of active threads, and
details for a selected thread.

3. On the Threads tab, click the Detect Deadlock button.
If deadlocks are present, new tabs open next to the Threads tab. You can use the information in
these tabs to diagnose any deadlocks.

What to do next
For more information, see http://docs.oracle.com/javase/7/docs/technotes/guides/management/
jconsole.html.

MBeans
Diffusion registers MBeans with the JMX service for many of its principal features.

Annotations on each of the MBeans employed are used to produce the following pages in this manual
as well as feeding JMX clients with descriptive information. MBeans, attributes and operations have
descriptions; operation arguments have names; operations also have JMX impact information.

http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html

Diffusion | 731

Figure 61: The server MBean stopController operation showing in JConsole

AggregateStatistics
Interface for a specific StatisticsCollector

Object name format

The objectName for MBeans of this type is of the following form:
com.pushtechnology.diffusion:type=AggregateStatistics,name="name",server="server_name"

Attributes

Name Type Read/Write Description

instanceStatisticsEnabled boolean read-write Whether statistics collection is enabled or
not.

managementName String read A name describing the set of statistics
being aggregated.

AuthorisationManager
Management interface to the optional AuthorisationManager

Object name format

The objectName for MBeans of this type is of the following form:
com.pushtechnology.diffusion:type=AuthorisationManager,server="server_name"

Attributes

Name Type Read/Write Description

connections int read Number of connections authorized

connectionsDenied int read Number of connections denied
authorization

fetches int read Number of fetches authorized

fetchesDenied int read Number of fetches denied authorization

Diffusion | 732

Name Type Read/Write Description

handlerClassName String read Class name of any configured
AuthorisationHandler

hasHandler boolean read True if this server has an
AuthorisationHandler configured

subscriptions int read Number of subscriptions authorized

subscriptionsDenied int read Number of subscriptions denied
authorization

writes int read Number of writes authorized

writesDenied int read Number of writes denied authorization

Notifications

Class Name Description

javax.management.Notification News that a client interaction with a topic was not allowed
(deprecated)

ClientStatistics
Monitoring interface to the client session statistics MBean

Object name format

The objectName for MBeans of this type is of the following form:
com.pushtechnology.diffusion:type=ClientStatistics,server="server_name"

Attributes

Name Type Read/Write Description

clientOutputFrequency long read-write Statistics output frequency in
milliseconds

clientResetFrequency long read-write The frequency at which the counters are
reset

concurrentClientCount int read The current client session count

connectionCounts Map read The current client session count, broken
down by client type

maximumConcurrentClientCountint read The maximum number of concurrent
client sessions

maximumDailyClientCount int read The count of client sessions started in a
day

Diffusion | 733

Connector
Management interface to a connector

Object name format

The objectName for MBeans of this type is of the following form:
com.pushtechnology.diffusion:type=Connector,name="name",server="server_name"

Attributes

Name Type Read/Write Description

keepAliveQueueMaximumDepthint read-write The maximum queue depth used for
clients in the keep-alive state

keepAliveTime long read-write The time in milliseconds that a
unexpectedly disconnected client is kept
alive before closing

numberOfAcceptors int read The number of acceptors

queueDefinition String read-write The queue definition

totalNumberOfConnections long read The number of connections accepted
since the connector was started

uptime String read The time this connector has been running
as a formatted string, or 0 if the connector
is not running

uptimeMillis long read The time this connector has been running
in milliseconds, or 0 if the connector is not
running

Operations

Name Return Type Arguments Impact Description

remove void 0 ACTION Remove the connector. It will
not be possible to restart the
connector again (until system
restart).

Name Return Type Arguments Impact Description

start void 0 ACTION Start the connector

Name Return Type Arguments Impact Description

stop void 0 ACTION Stop the connector. Allows it to
be restarted.

Diffusion | 734

JMXAdapter
Management interface to the adapter that reflects MBean attributes and notifications as Diffusion
topics

Object name format

The objectName for MBeans of this type is of the following form:
com.pushtechnology.diffusion:type=JMXAdapter,server="server_name"

Attributes

Name Type Read/Write Description

MBeanFilter String read the filter applied to the set of all MBeans,
as a flattened AST

adapterState String read Values: STOPPED, STARTED

updateFrequency long read MBean attribute poll frequency, in
milliseconds

Operations

Name Return Type Arguments Impact Description

start void 0 UNKNOWN Build the topic tree and
periodically refresh it

Name Return Type Arguments Impact Description

stop void 0 UNKNOWN Cease refresh and remove
topics

Log
Management interface for Log Definition

Object name format

The objectName for MBeans of this type is of the following form:
com.pushtechnology.diffusion:type=Log,name="name",server="server_name"

Attributes

Name Type Read/Write Description

description LogDescriptionread The LogDescription for this log

filename String read The fully qualified filename of this log

logLevel String read-write The current log level as a string

Diffusion | 735

Multiplexer
Management interface to a multiplexer

Object name format

The objectName for MBeans of this type is of the following form:
com.pushtechnology.diffusion:type=Multiplexer,name="name",server="server_name"

Attributes

Name Type Read/Write Description

latencyWarningTime long read The latency threshold of this multiplexer,
after which notifications will be sent

pendingEvents int read The number of operations pending on the
multiplexer queue

name String read The Multiplexer name

numberOfClients int read The current number of clients assigned to
multiplexer

Operations

Name Return Type Arguments Impact Description

diagnosticReportString 0 UNKNOWN Generate a diagnostic report
describing the state of this
multiplexer

Notifications

Class Name Description

javax.management.Notification Published in case of multiplexer latency (deprecated)

MultiplexerManager
Management interface to the multiplexer manager

Object name format

The objectName for MBeans of this type is of the following form:
com.pushtechnology.diffusion:type=MultiplexerManager,name="name",server="server_name"

Attributes

Name Type Read/Write Description

numberOfMultiplexers int read The number of multiplexers

Diffusion | 736

Operations

Name Return Type Arguments Impact Description

diagnosticReportString 0 UNKNOWN Generate a diagnostic report for
each multiplexer

Publisher
Management interface for a publisher

Object name format

The objectName for MBeans of this type is of the following form:
com.pushtechnology.diffusion:type=Publisher,name="name",server="server_name"

Attributes

Name Type Read/Write Description

inboundClientAverageMessageSizelong read The average size of a message received
from clients

inboundClientNumberOfMessageslong read The count of messages received from
clients

logLevel String read-write The log level for this publisher

numberOfTopics int read The count of topics associated with this
publisher

outboundAverageMessageSizelong read The average size of a message sent to
clients

outboundNumberOfMessageslong read The count of messages sent to clients

started boolean read True if the publisher is started

Operations

Name Return Type Arguments Impact Description

removePublishervoid 0 ACTION Permanently remove the
publisher

Name Return Type Arguments Impact Description

startPublisher void 0 ACTION Start this publisher

Name Return Type Arguments Impact Description

stopPublisher void 0 ACTION Stop this publisher

Name Return Type Arguments Impact Description

undeploy void 0 ACTION Undeploy this publisher

Diffusion | 737

Server
Diffusion Controller

Object name format

The objectName for MBeans of this type is of the following form:
com.pushtechnology.diffusion:type=Server,server="server_name"

Attributes

Name Type Read/Write Description

buildDate String read The build date and time

freeMemory long read The amount of free memory in the Java
virtual machine

licenseExpiryDate Date read The license expiry date

maxMemory long read The total amount of memory in the Java
virtual machine

numberOfTopics long read The number of topics on this server

release String read The Diffusion release string, for example,
5.1.2_01

startDate Date read The date and time at which this Diffusion
server was started

startDateMillis long read The time at which this Diffusion server
was started, as milliseconds since the
epoch

timeZone String read The name of the time zone to which this
Diffusion server belongs

totalMemory long read The total amount of memory in the Java
virtual machine

uptime String read The time that this controller has been
running, as a formatted string. For
example, "3 hours 4 minutes 23 seconds"

uptimeMillis long read The time this controller has been running,
in milliseconds

usedPhysicalMemorySize long read Free physical memory, in bytes

usedSwapSpaceSize long read Used swap space, in bytes

userDirectory String read The directory in which the Diffusion server
was started

userName String read The name of the user to whom the
Diffusion server belongs

Diffusion | 738

Operations

Name Return Type Arguments Impact Description

checkLicense void 0 ACTION Recheck the license being used

Name Return Type Arguments Impact Description

stopController void 0 ACTION Stop this Diffusion controller

Name Return Type Arguments Impact Description

stopController void 2 ACTION Stop this Diffusion controller,
and record the reason and
adminName

Argument name Type Description

reason String The reason this server is stopping

adminName String The name of the administrator

StatisticsService
Interface for StatisticsService controller

Object name format

The objectName for MBeans of this type is of the following form:
com.pushtechnology.diffusion:type=StatisticsService,server="server_name"

Attributes

Name Type Read/Write Description

clientStatisticsEnabled boolean read-write True if aggregate statistics for clients are
enabled

enabled boolean read-write True if the statistics service is enabled

publisherStatisticsEnabled boolean read-write True if aggregate statistics for publishers
are enabled

topicStatisticsEnabled boolean read-write True if aggregate statistics for topics are
enabled

ThreadPool
Management interface to the basic thread pool

Object name format

The objectName for MBeans of this type is of the following form:
com.pushtechnology.diffusion:type=ThreadPool,name="name",server="server_name"

Diffusion | 739

Attributes

Name Type Read/Write Description

activeCount int read The number of active threads

coreSize int read-write The number of threads to maintain

keepAlive long read-write Keep-alive time in milliseconds

largestSize int read The largest number of threads that have
simultaneously been in the pool

maximumSize int read-write Maximum pool size

queueLowerThreshold int read The lower queue size at which the
notification handler will be notified

queueMaximumSize int read The maximum queue size that the task
queue can reach

queueSize int read The size of the embedded task queue

queueUpperThreshold int read The upper queue size at which the
notification handler will be notified

size int read The current number of threads in the pool

taskCount long read The approximate total number of tasks
that have ever been scheduled for
execution

VirtualHost
HTTP virtual host management interface

Object name format

The objectName for MBeans of this type is of the following form:
com.pushtechnology.diffusion:type=VirtualHost,name="name",server="server_name",webServer="web_server_name"

Attributes

Name Type Read/Write Description

cacheSizeBytes int read The cache size in bytes

cacheSizeEntries int read The number of entries in the cache

aliasFile String read the alias file name

aliasProcessor HTTPAliasProcessorread the alias processor object

cache HTTPCache read the HTTP cache

compressionThreshold int read the compression threshold

debug boolean read true if debug is set

documentRoot String read the document root directory

errorPage String read the error-page file name

fileServiceName String read the file service name

Diffusion | 740

Name Type Read/Write Description

homePage String read the home-page file name

host String read the host name

minify boolean read true if the minify property is set

name String read the virtual host name

numberOfRequests int read number of requests actioned since service
was started

static boolean read true if static

webServerName String read the web server name

Operations

Name Return Type Arguments Impact Description

startService void 0 ACTION Restart a previously stopped
virtual host

Name Return Type Arguments Impact Description

stopService void 0 ACTION Stops the virtual host from
processing requests

Name Return Type Arguments Impact Description

clearCache void 0 ACTION Clear the cache of all entries

The JMX adapter
The JMX adapter reflects JMX MBeans and their properties and notifications as topics.

The JMX adapter is packaged in the Diffusion publisher. The Diffusion publisher must be running for
the JMX adapter be enabled.

You can configure the adapter to reflect the state of JMX MBeans and MXBeans as topics. These
MBeans can be built-in, Diffusion, or third-party in origin.

The following aspects of the JMX adapter can be configured:

• Whether it is enabled or disabled.

By default, the adapter is enabled.
• Which MBeans are reflected as topics.

By default, all Diffusion MBeans, java.nio:*, java.lang:*, and java.util.logging:*
are reflected as topics.

• How often the data on those topics is refreshed.

By default, the topics are refreshed every 3 seconds.

For more information about configuring the JMX adapter, see Configuring the JMX adapter on page
594

Many statistics are available as MBean properties, for example, CPU load, OS version, number of file-
descriptors, and threads. Making these statistics available as topics to Diffusion clients makes possible
the implementation of system monitoring solutions to the web, and all other Diffusion platforms.

Diffusion | 741

Note: Publishing MBean data to topics can constitute a security risk. Ensure that crucial
information about your Diffusion server is protected by permissions.

Figure 62: Reflecting MBeans as topics

MBean notifications are also available as topics. Whenever a notification is thrown and the matching
topic is subscribed and a message holding a number of key attributes is published to it.

Table 61: Notifications as topics

Record starting ... Holding

message javax.management.Notification.getMessage()

sequenceNumber javax.management.Notification,getSequenceNumber()

timeStamp javax.management.Notification.getTimeStamp()

userData javax.management.Notification.getUserData()
if present

source javax.management.Notification.getSource()

The JMX Adapter is itself an MBean with object-name
com.pushtechnology.diffusion:name=JMXAdapter, which exposes the polling frequency
in milliseconds as attribute 'UpdateFrequency'. A value less than or equal to zero prevents polling.

Diffusion | 742

MXBeans versus Simple MBeans

The JMX adapter caters for both MXBeans and simpler MBeans. All MBean attributes are serialized as
strings when converted to topics, this might be impractical if a solution returns an object or an array of
objects. MXBean attributes with ArrayType and CompositeType types are treated differently.

• CompositeType Fields within the composite attribute are mapped to discrete topics.

Figure 63: Showing a composite attribute as a topic nest
• ArrayType One dimensional arrays are presented as a single record with many values. Two

dimensional arrays are not supported. ArrayType attributes holding attributes that are not
SimpleType are not supported (for example, an ArrayType attribute holding Composite or
ArrayType values)

Diffusion | 743

Figure 64: Topics reflecting an ArrayType MXBean attributes

Related tasks
Configuring the JMX adapter on page 594
The JMX adapter can reflect JMX MBeans their properties and notifications as topics. Configure the
JMX adapter using the Publishers.xml configuration file.

Statistics
Diffusion provides statistics about the server, publishers, clients, and topics.

Statistics exposed by MBeans

Diffusion provides a set of statistics as MBeans. For more information about these statistics, see
MBeans on page 730.

These statistics can be accessed in the following ways:

• Using a JMX tool, such as VisualVM or JConsole. For more information, see Using Java VisualVM on
page 725 or Using JConsole on page 727.

• Using the Diffusion monitoring console. For more information, see Diffusion monitoring console on
page 748.

• Through topics under the topic Diffusion/Metrics.

You can configure whether these statistics are collected and how they are reported. For more
information, see Configuring statistics on page 746.

You can configure Diffusion to report the top-level statistics through JMX. These statistics appear
under com.pushtechnology.diffusion.metrics. Reporting statistics through JMX can have
a significant performance impact. Ensure that you test how using MBeans for statistics affects your
solution.

The following is a list of all the top level statistics and their attributes.

• clients.concurrent

• Count
• clients.concurrent_max

Diffusion | 744

• Value
• client.connections

• RateUnit
• Count
• FifteenMinuteRate
• FiveMinuteRate
• MeanRate
• OneMinuteRate

• clients.disconnections

• RateUnit
• Count
• FifteenMinuteRate
• FiveMinuteRate
• MeanRate
• OneMinuteRate

• eventpublishers.concurrent

• Count
• eventpublishers.connections

• RateUnit
• Count
• FifteenMinuteRate
• FiveMinuteRate
• MeanRate
• OneMinuteRate

• eventpublishers.disconnections

• RateUnit
• Count
• FifteenMinuteRate
• FiveMinuteRate
• MeanRate
• OneMinuteRate

• publishers.loaded

• Count
• publishers.started

• Count
• topics.additions

• RateUnit
• Count
• FifteenMinuteRate
• FiveMinuteRate
• MeanRate
• OneMinuteRate

• topics.count

• Count
• topics.deletions

• RateUnit

Diffusion | 745

• Count
• FifteenMinuteRate
• FiveMinuteRate
• MeanRate
• OneMinuteRate

In all top-level statistics that attributes have the following values:

Count
The total number of items or events of this type over the lifetime of the metric.

RateUnit
The unit for the various rates. Generally, this is events per second.

MeanRate
The count divided by the lifetime of the metric.

OneMinuteRate, FiveMinuteRate, FifteenMinuteRate
A moving average across the given time period that is exponentially weighted
towards new data.

Statistics in the Publisher API

You can get some statistics from the Publisher API. For more information, see the Java Unified API
documentation.

The following statistics are provided through the Publisher API:

• PublisherStatistics

• InboundClientMessageStatistics

• AverageMessageSize
• BytesOnWire
• NumberOfMessages

• OutboundMessageStatistics

• AverageMessageSize
• BytesOnWire
• NumberOfMessages

• ClientStatistics

• InboundMessageStatistics

• AverageMessageSize
• BytesOnWire
• NumberOfMessages

• OutboundMessageStatistics

• AverageMessageSize
• BytesOnWire
• NumberOfMessages

• TopicStatistics

• InboundMessageStatistics

• AverageMessageSize
• BytesOnWire
• NumberOfMessages

• OutboundMessageStatistics

http://docs.pushtechnology.com/docs/5.9.4/java/index.html
http://docs.pushtechnology.com/docs/5.9.4/java/index.html

Diffusion | 746

• AverageMessageSize
• BytesOnWire
• NumberOfMessages

• TotalNumberOfSubscribers

Related concepts
JMX on page 724
You can use JMX to manage Diffusion. By default, the RMI registry port is 1099 and the JMX service port
is 1100.

DEPRECATED: Introspector on page 759
An introduction to the Introspector Eclipse plugin.

Related reference
Diffusion monitoring console on page 748
A web console for monitoring the Diffusion server.

Logging on page 773
Diffusion uses the Simple Logging Facade for Java (SLF4J) API to log messages from the Diffusion
server or from publishers running on the Diffusion server. SLF4J separates the logging of messages
in the Diffusion server from the logging framework. This separation enables you to configure an
independent back-end implementation to format and write out the log messages.

Integration with Splunk on page 780
How to achieve basic integration between Diffusion and the Splunk™ analysis and monitoring
application

Configuring statistics
You can configure statistics using the etc/Statistics.xml configuration file or programmatically
using the Classic API.

By default statistic collection is turned off for performance reasons, to enable statistic collection, set
the statistics root attribute enabledin Log.xml to true.

Statistics and performance

Collecting and communicating statistics introduces a performance overhead on the Diffusion server.

Enabling client instance statistics in a solution with significant numbers of clients can cause up to 20%
reduction in the maximum throughput achieved. This performance impact can inhibit the system from
supporting further connections.

If your system has more than 20,000 concurrent client connections per Diffusion instance, we
recommend that client instance statistics be turned off.

Enabling topic instance statistics causes the creation of 5 statistics topics for each of your own topics.

If your system supports very large number of topics, we recommend that topic instance statistics are
turned off.

The Statistics.xml configuration file

Diffusion servers provide statistics which are available through the JMX MBeans or through topics
under the topic Diffusion/Metrics. If statistics is enabled via etc/Statistics.xml, users
can take measurements including the average message size, number of messages per topic per
second, etc.

Diffusion | 747

The statistics configuration has several distinct elements, that allow granular control over what is
enabled on server start.

• <statistics>

The top-level element. Setting the enabled property to false will disable all statistics for the server.
• <topics>, <clients>, <publishers>, and <server>

Enabling these elements provides aggregate metrics for each given class. Each element also
contains a <monitor-instances> element that dictates whether specific instances of the
parent class are monitored. Instance metrics require that the parent element is enabled.

The collection of metrics is configured separately from the distribution thereof. Within the
Statistics.xml configuration file, there is also a <reporters> element which contains
definitions of available reporters, which expose metrics over different mediums.

Some reporters allow certain properties to be passed to them. For instance, the topics reporter allows
the use of <property name="interval"> to provide the desired update frequency in seconds.
Details of valid properties is documented within the etc/Statistics.xml file itself.

Configuring a reporter to distribute statistics through JMX

Inside the reporters element of the Statistics.xml configuration file, add the following
XML:

<reporter name="JMX" enabled="true">
 <type>JMX</type>
</reporter>

Reporting statistics through JMX can have a significant performance impact. Ensure that you test
how using MBeans for statistics affects your solution.

Configuring a reporter to distribute statistics through topics

Inside the reporters element of the Statistics.xml configuration file, add the following
XML:

<reporter name="Topics" enabled="true">
 <type>TOPIC</type>
</reporter>

Programmatic configuration

You can programmatically query and configure the recording and calculation of statistics for the
classes:

• com.pushtechnology.diffusion.api.publisher.Client

• com.pushtechnology.diffusion.api.topic.Topic

• com.pushtechnology.diffusion.api.publisher.Publisher

Developers are able to query the state of each class, to discover whether it is recording statistics using
method isStatisticsEnabled(), stop recording with stopStatistics() and start recording
using startStatistics(). The relevant API documentation holds more detail on the subject.

Diffusion | 748

Diffusion monitoring console
A web console for monitoring the Diffusion server.

About

The Diffusion Monitoring Console is an optional publisher, provided as console.dar. It is deployed
by default, and can be undeployed in the same manner as any DAR file. It exists to give operational
staff using a web browser accessible visibility over the operations of a Diffusion solution

To manage a Diffusion server and make changes to it, use JMX tools such as JConsole. Unless you have
to stop the Diffusion server, and stop and restart a publisher.

Dependencies

The console depends on the Diffusion publisher to mirror JMX MBeans as topics. The console also
makes use of the statistics controlled by etc/Statistics.xml

The live graphing feature mandates a web browser that supports Scalar Vector Graphics (SVG). Most
modern web browsers implement the features required by the Console however Internet Explorer v9 is
the recommended minimum for Microsoft users.

There are also two configuration settings within the Diffusion publisher configuration within etc/
Publishers.xml. These are:

• console.control.server – Enable the ability to stop the Diffusion server through the
console.

• console.control.publishers – Enable the ability to stop a particular publisher through the
console.

Both of these options are disabled by default.

Logging in

The console is secured by a username and password. The username you use to login must have
permissions to view and act on information on the Diffusion server, for example by having the
ADMINISTRATOR role.

The default configuration of the Diffusion server, provides a user 'admin' with the password
'password'. This user has the appropriate permissions to use all of the console capabilities. For more
information, see Pre-defined users on page 143.

Note: We recommend that you change the default security configuration before putting your
solution into production. For more information, see Configuring user security on page 578

Diffusion | 749

Figure 65: Logging in the monitoring console

Features: Overview tab

By default the console is deployed as part of Diffusion. It is available in a fresh installation at http://
localhost:8080/console.

Default layout

By default, the console consists of six panels, each focusing on a key feature of the server.

Figure 66: The default console layout

• Diffusion Details: the server version; the server up time, the server start date and time and the
time and which the current license expires.

• Server details: the name and version of the underlying operating system; the total memory
available (physical and virtual) and the amount of free memory.

http://localhost:8080/console
http://localhost:8080/console
administratorguide/systemmanagement/console/console_default_layout.png
administratorguide/systemmanagement/console/console_default_layout.png

Diffusion | 750

• Java Details: the name, vendor and version of the JVM.

Instead of tabular data the second row show live line graphs.

• Memory pool usage: the values over time of the memory used by the JVM process.
• Clients: the value over time of the number of clients connected.
• Topics: the value over time of the number of topics on your Diffusion server.

Publishers table

At the bottom of the Overview is the publishers table. At a glance this shows the installed publishers
and their vital statistics: the number of topics created, client connected, messages sent, bytes sent and
finally publisher status

Figure 67: The table of publishers

Using the pull-down menu on the Details button publishers can be stopped and restarted. The Details
button itself reveals the publisher statistics: clients, topics, average messages per second and average
bytes per second.

administratorguide/systemmanagement/console_publishers_table.png
administratorguide/systemmanagement/console_publishers_table.png

Diffusion | 751

Figure 68: Publisher statistics graphs

Features: Topics tab

The Topics tab brings to the web browser the ability to browse and interact with the Diffusion topic
tree.

Figure 69: The table of topics

Users can intuitively browse the live topic tree, fetch and subscribe to topics. If the server is so
configured the table also shows the number of subscribed clients, messages sent and bytes sent.
Enable individual topic statistics through etc/Statistics.xml, for example,

<!-- Enable global topic statistics -->

 <topic-statistics enabled="true">

administratorguide/systemmanagement/console/publisher_details.png
administratorguide/systemmanagement/console/publisher_details.png
administratorguide/systemmanagement/console/topics_tree.png
administratorguide/systemmanagement/console/topics_tree.png

Diffusion | 752

 <!-- Enable individual topic instance statistics -->

 <monitor-instances>true</monitor-instances>

</topic-statistics>

Once a set of topics is selected using its checkbox the Subscribe and Unsubscribe work intuitively, and
each button has an recursive alternative available through the drop-down menu-button.

The details button shows more detail on the topic in question, as well as offering to fetch the topic
value

Figure 70: Details of the topic publishing the CPU load of the host server

Features: Clients tab

The Client tab shows a live list of the clients connected to the Diffusion server. Additionally it shows
the number of messages to and from the server, the client IP address, connection type and connection
time.

Figure 71: The table of clients

Configure the Diffusion server to provide live client statistics through etc/Statistics.xml

<!-- Enable global client statistics -->
<client-statistics enabled="true">
 <!-- Definition of the log in Logs.xml -->
 <log-name>stats</log-name>
 <!-- Specifies the output frequency of the log, this is one entry
 per frequency -->

 <output-frequency>1h</output-frequency>
 <!-- Enable individual client instance statistics -->
 <monitor-instances>true</monitor-instances>

administratorguide/systemmanagement/console/topic_details.png
administratorguide/systemmanagement/console/topic_details.png
administratorguide/systemmanagement/console/diffusion_clients.png
administratorguide/systemmanagement/console/diffusion_clients.png

Diffusion | 753

</client-statistics>

Features: Logs tab

The Logs tab shows a live color-coded display of log entries emitted by the server at the levels of INFO,
WARN, and ERROR.

Figure 72: The table of log entries

Users can also perform client-side simple filtering on log entries. Unlike other monitoring metrics the
Diffusion server retains up to 250 log entries in memory.

Features: Security tab

The Security tab shows a live list of security principals and roles that are configured on the Diffusion
server.

For more information about security, see Security on page 126.

administratorguide/systemmanagement/console/server_logs.png
administratorguide/systemmanagement/console/server_logs.png

Diffusion | 754

Figure 73: Security tables

Create, edit, or delete principals: The Principals table shows a list of the principals that the system
authentication handler is configured to allow to connect to the Diffusion server. The table also shows
the roles that are assigned to any client session that authenticates with the principal.

Click the New Principal button to add a new principal and define its associated password and roles.

Click the spanner icon next to an existing principal to edit that its password or roles.

Click the trashcan icon next to an existing principal to delete that principal.

Edit authentication policy and roles for anonymous users: The Anonymous Users table shows the
authentication decision for client session that connect anonymously to the Diffusion server. You can
choose to ALLOW or DENY anonymous connections or to ABSTAIN from the authentication decision,
which then passes to the next configured authentication handler.

Click the spanner icon to edit the authentication decision for anonymous connections and, if that
decision is ALLOW, edit any roles that are assigned to anonymous sessions.

Create, edit, or delete roles: The Roles table shows a list of roles that have been configured in
the security store of the Diffusion server. These are the roles that you can choose to assign to any
principals that connect to the Diffusion server.

Click the New Role button to add a new role and define its permissions and any roles it inherits from.

Click the spanner icon next to an existing role to edit its permissions and any roles it inherits from.

Click the trashcan icon next to an existing role to delete that role.

Advanced

Saving the console layout

Users can save changes made to their console layout with the “Save Overview layout” button. This
persists a file on the server side, making it shared amongst all Console users.

White & Blacklist editing

administratorguide/systemmanagement/console/console_security_tab.png
administratorguide/systemmanagement/console/console_security_tab.png

Diffusion | 755

The Console optionally maintains a blacklist or whitelist of IP addresses that are allowed
to make use of it. Users can specify discrete IP addresses or use syntax supported by etc/
SubscriptionValidationPolicy.xml to cover subnets. In order to make these changes active,
after editing the whitelist or blacklist and clicking the "Save settings" button, you must restart the
server.

Figure 74: Editing the Access Policy

Stop Diffusion

Required permissions: control_server

The Stop Diffusion menu item stops the server when clicked upon.

Figure 75: Notification that the Diffusion server has stopped

Going further

Changing the console layout

The console is designed to be extensible and flexible. Users can reorder, edit, create and remove
panels. Grab the panel header and drag it to a new location as desired. Click the trash-can icon to
remove the icon – with verification

administratorguide/systemmanagement/console/white_and_blacklist.png
administratorguide/systemmanagement/console/white_and_blacklist.png
administratorguide/systemmanagement/console/lost_connection_to_diffusion.png
administratorguide/systemmanagement/console/lost_connection_to_diffusion.png

Diffusion | 756

Figure 76: The default Diffusion Details panel

Click on the spanner or wrench icon to configure the panel.

administratorguide/systemmanagement/console/diffusion_details_panel.png
administratorguide/systemmanagement/console/diffusion_details_panel.png

Diffusion | 757

Figure 77: Editing the properties of the Diffusion Details panel

Panel name’ and ‘Header color’ are self explanatory. ‘View type’ is a choice of data renderings.

• Table: As seen already, this option shows one or more monitoring metrics in a table of textual
values.

• Line: Renders one or more numeric metrics as a line graph.
• Area: Renders one or more numeric metrics as an overlapping area graph.
• Single: Used to visualize a single metric in large text, for metrics that are worth the screen real-

estate.

Line and area graphs have an extra two configuration fields: ‘Refresh rate (ms)’ and ‘Max data points’.
The latter configures how much data is retained for rendering the graph. The former governs the
frequency with which the graph is updated and does not influence the frequency of updates from the
server. Historic data is only stored in the browser and refreshing the page loses the stored set of data
points.

Hovering the mouse over a graph panel shows the detail of the underlying data point

administratorguide/systemmanagement/console/spanner_dialog.png

Diffusion | 758

Figure 78: Visualizing the CPU load on a server at a specific time.

Sourcing monitoring metrics

Clicking the ‘Edit fields’ button presents the user with a Topic Data Fields dialog, where the user
nominates one or more topics from where metrics are drawn.

Figure 79: Editing and adding to the set of topics for this panel

Users of the Topics tab have already seen the Add to Overview button in the Topic details dialog that
can shortcut this process.

administratorguide/systemmanagement/console/load_average.png
administratorguide/systemmanagement/console/load_average.png
administratorguide/systemmanagement/console/topic_data_fields_dialog.png
administratorguide/systemmanagement/console/topic_data_fields_dialog.png

Diffusion | 759

The default Console layout draws metrics from topics in the Diffusion/MBeans topic tree, however this
is not mandatory and solution implementers are free to draw on any suitable topic to reflect their own
monitoring needs – including 3rd party topics implemented as part of the solution.

The Diffusion/MBeans topic tree is populated by the JMX adapter which reflects all JMX MBeans
as topics. Solution implementers that build custom MBeans to manage their solution can re-use the
same MBeans for monitoring purposes.

The Console can draw on features that are themselves optional (Topic and client statistics, for
example). If they are disabled, the Console points this out, and request they be enabled in etc/
Statistics.xml

Production deployment notes

Securing the Diffusion/ topics

The topics in the Diffusion/ tree convey a great deal of power and it is highly probable that
bringing a Diffusion based solution to production requires limiting their access to suitable users:
for example, users with an IP address in a specific range. Solution implementers can achieve this by
implementing an authentication handler.

The default configuration for the console allows users to stop and restart publishers as well as stop the
Diffusion server itself. This feature is configured using the properties console.control.server
and console.control.publishers on the Diffusion publisher in etc/Publishers.xml.

Related concepts
JMX on page 724
You can use JMX to manage Diffusion. By default, the RMI registry port is 1099 and the JMX service port
is 1100.

DEPRECATED: Introspector on page 759
An introduction to the Introspector Eclipse plugin.

Related reference
Statistics on page 743
Diffusion provides statistics about the server, publishers, clients, and topics.

Logging on page 773
Diffusion uses the Simple Logging Facade for Java (SLF4J) API to log messages from the Diffusion
server or from publishers running on the Diffusion server. SLF4J separates the logging of messages
in the Diffusion server from the logging framework. This separation enables you to configure an
independent back-end implementation to format and write out the log messages.

Integration with Splunk on page 780
How to achieve basic integration between Diffusion and the Splunk™ analysis and monitoring
application

DEPRECATED: Introspector
An introduction to the Introspector Eclipse plugin.

Note: The Introspector plugin is deprecated and will be removed in a future release. Use the
Diffusion console instead. For more information, see Diffusion monitoring console on page
748.

This section introduces and explains the features of the Diffusion Introspector GUI. This is currently a
beta-product, and as such might contain bugs.

Diffusion | 760

The Introspector GUI is a set of Eclipse plugins. This product depends on a minimum of Eclipse version
Kepler or later for Java EE Developers which can be downloaded from http://eclipse.org/downloads/.

This GUI uses features from the existing system publisher as well as the new Diffusion publisher for
which a license must be obtained.

Related concepts
JMX on page 724
You can use JMX to manage Diffusion. By default, the RMI registry port is 1099 and the JMX service port
is 1100.

Related reference
Statistics on page 743
Diffusion provides statistics about the server, publishers, clients, and topics.

Diffusion monitoring console on page 748
A web console for monitoring the Diffusion server.

Logging on page 773
Diffusion uses the Simple Logging Facade for Java (SLF4J) API to log messages from the Diffusion
server or from publishers running on the Diffusion server. SLF4J separates the logging of messages
in the Diffusion server from the logging framework. This separation enables you to configure an
independent back-end implementation to format and write out the log messages.

Integration with Splunk on page 780
How to achieve basic integration between Diffusion and the Splunk™ analysis and monitoring
application

Supported platforms.
The stack of technologies upon which this software is expected to function.

Introspector is tested on version Kepler or later for Java EE Developers and Java HotSpot™

Development Kit 8 (latest update).

Installing from update site
All Diffusion Eclipse plugins are distributed primarily through the Eclipse Update site.

The Eclipse Update site is located at the following URL: http://download.pushtechnology.com/
eclipse/5.9.

A To install the software, ensure you have version Kepler or later for Java EE Developers installed.
Earlier versions might work, but are not supported. Pick the Help menu, click the Install new
software menu item. From the dialog, choose the Add ... button. Complete the dialog as shown
below.

http://eclipse.org/downloads/
http://download.pushtechnology.com/eclipse/5.9
http://download.pushtechnology.com/eclipse/5.9

Diffusion | 761

Figure 80: Adding a repository

Click on the OK button to go to the Available Software dialog.

Figure 81: Install dialog

Click the Next button. Follow the sequential stream of dialogs. When you are given the dialog shown
below, select I accept the terms of the license agreement if you agree to the license terms.

Diffusion | 762

Figure 82: Accept the license agreement

If asked to select the certificate to trust, select Push Technology Ltd; Development; Push
Technology Ltd and click OK.

Diffusion | 763

Figure 83: Click OK

When the installation process is done, click the Restart Now button.

Diffusion | 764

Figure 84: Restarting

Installing subsequent plugin updates.
Once this process is complete users can install the latest version of the plugins by clicking on the Help
menu and picking the Check for updates menu item.

Uninstalling
Eclipse maintains a registry of what plugins have been installed, and gives users a means of removing
plugins from it.

Firstly, open the About Eclipse dialog. On macOS this can be found in the Eclipse menu, on every
other platform – the 'Help' menu.

Figure 85: About Eclipse dialog

Click on Installation details. Once the Eclipse Installation Details dialog appears, click on the
Installed Software tab to review which plugins are installed.

Diffusion | 765

Figure 86: Installed plugins

Once a the software is found, you can uninstall it using the Uninstall ... button. Users might be advised
to restart Eclipse once the process is complete.

Opening the Diffusion perspective
The Diffusion perspective contains a set of views that relate to Diffusion functional.

Select Window > Open Perspective > Other Pick the Diffusion item from the list and click on OK.

Diffusion | 766

Figure 87: Perspective

Opening the Diffusion perspective presents to the user a set of views related to Diffusion functionality.
The same views can be added to other perspectives (such as the Java perspective):

• Select Window > Show View > Other
• Find the Diffusion section in the list and pick the views required.

Figure 88: Views

The Diffusion perspective shows the topics and clients views on the left hand side.

Diffusion | 767

Adding servers
To add server details to the plugin click the green plus button in the head of the topic view or client
view.

You can click on the Test button to test the connection before clicking OK.

Figure 89: Add a server

If the you want to amend server details, the context menu of closed server (that is, those servers that
are not currently connected) holds an Edit item that presents the same dialog box.

Diffusion | 768

Figure 90: Edit server details

Opening servers
You can view server information through Eclipse.

In either the topics view or the clients view, right-click on a server icon and pick Open from the context
menu, or double-click on the icon.

The set of columns shown by default show the Diffusion server name (server.name in etc/
Server.xml) in the value column and the time that the server was started in the Created column.

Exploring the topics
You can navigate the tree of topics the same way as any other tree control.

The GUI populates the tree on-demand and asynchronously, so a branch of the tree might be
populated some short time after it has been opened. Each topic shows its name, the publisher, the
type of any topic-data associated, the date-stamp the topic was created, the date-stamp the topic
was last updated and the value of that topic. The last two are populated only if the topic is fetched or
subscribed.

The topic tree is live and as new topics are created and old topics deleted so the tree is updated.

Getting topic values
Users can retrieve the current state of the topic by picking Fetch from the context menu of a topic.
Picking Fetch recursively also fetches the values of all topics below this one.

Users can also subscribe to a topic by picking Subscribe from the context-menu of a topic. Subscribe
recursively also subscribes to values of all topics below this one. When the value of a topic changes
the Value and Updated columns flash blue for a second.

To drill into a part of the topic tree they can pick Go Into from the topic context menu. The view shows
the name of the top-level topic in the view header.

Diffusion | 769

Figure 91: View topic values

Click the back button to return to the previous position in the topic tree.

Diffusion | 770

Configuring columns
Columns can be reordered with drag and drop. Column positions are stored between uses. The context
menu of the headers lets users toggle individual columns on and off.

Figure 92: Re-order columns

Ping servers
To establish the response time of a remote server pick Ping from the context menu of a connected
server. The results in milliseconds is shown next to the server name in the Name column.

Figure 93: Ping a server

Count topics
Pick Count topics from the context-menu of a topic for the server to count the number of topics
underneath this one.

The result is shown to the right of the topic name

Figure 94: Topic count

Using the clients view
The clients view is a live view of the clients connected to the set of Diffusion servers.

As the Diffusion GUI is also a Diffusion client, it shows up in this list and is shown in bold. A newly
connected client is bright blue for 1s, while a disconnecting client is drawn pale gray for 1s before it
vanishes.

The properties of a client listed in the following table.

Diffusion | 771

Table 62: Client properties in the Eclipse client view

Type Flash, Silverlight, WebSocket, iOS, or Android,
and so on.

Server the name of the server this client is connected to

Start time the time-stamp the client connected to its server

Resolved name the result of a WHOIS query on the IP address of
the remote client

Description more details from the WHOIS query

Locale The nation or territory from which this client is
connecting

Ping The time taken to ping the remote client

Alarm Not currently in use

IP address The IP address of the remote client

Client reference The reference/description granted to a client

Ping
Using this feature the user can ping individual clients, the results of which show up in the Ping column

All Diffusion clients respond to ping requests from the server.

Further details of a client can be gained from the properties view. Pick Properties from the context
menu of a client.

Figure 95: Ping clients

The Properties view is part of the Eclipse framework and used in many other non-Diffusion
circumstances. Consequently, if the user clicks a new object in another view the Properties view might
show the properties of that object instead.

Diffusion | 772

Statistics
This shows the number of messages sent, received, the number of messages conflated, the current
queue size, the highest queue size, the maximum queue size allowable and throttling thresholds.

Unlike previous views this data is not live, and the refresh button in the view header must be clicked to
refresh this view.

Topics
This section shows the topics to which this client is currently subscribed along with any related topic
reference. This data is also not live, and must be refreshed manually.

Logging
Access to remote client logs is currently an experimental and optional feature. Those clients that do
support it subscribe to the Diffusion/ClientLogs topic.

Using this section of the view, you can retrieve log entries from remote JavaScript clients that are
normally sent to the JavaScript console alone.

The JavaScript environment inside a modern browser is memory constrained. This facet of the GUI lets
the user set the level at which a log entry is stored and the size of the buffer in which entries are stored
before being removed.

Server logs
Diffusion server logs are published through the Diffusion/Logs topic as well as written to log files. The
Logs view subscribes to Diffusion to display the log entries as they happen.

Right-click on any open Diffusion server item in the topics or clients view and pick Logs ... from the
context menu.

Figure 96: Server log entries

By clicking on the Timestamp table header, users can order the log entries by time-stamp. The pull
down menu on the right hand side of the view header lets the user filter log entries by the entry log-
level.

Note: This does not affect the logging from the server as this is a client-side filter only.

Diffusion | 773

You can get the properties of server log entry from the context menu of an entry. Shown above are the
properties of a multi-line log-entry.

Property obfuscator
This dialog is part of the Diffusion perspective and can be used to hide sensitive Diffusion configuration
file entries, such as passwords and JMS login credentials.

Select or enter into the dialog the text that you want to obfuscate. All obfuscated entries start with
OB:. The Copy button copies the obfuscated text to the clipboard, ready for pasting back into the
configuration file.

Figure 97: Property Obfuscator dialog

The dialog is modeless, and reacts to the users selection changes you do not need to dismiss the
dialog if you have more than one value to obfuscate.

Logging
Diffusion uses the Simple Logging Facade for Java (SLF4J) API to log messages from the Diffusion
server or from publishers running on the Diffusion server. SLF4J separates the logging of messages
in the Diffusion server from the logging framework. This separation enables you to configure an
independent back-end implementation to format and write out the log messages.

Note: The information in this section applies to logging that occurs at the Diffusion server
or publishers running on the Diffusion server. Some clients provide logging capabilities. For
information about using logging with your Diffusion clients, see the Developer Guide section
for the client API you are using.

Related concepts
JMX on page 724
You can use JMX to manage Diffusion. By default, the RMI registry port is 1099 and the JMX service port
is 1100.

DEPRECATED: Introspector on page 759
An introduction to the Introspector Eclipse plugin.

Configuring logging on the Diffusion server on page 583

Diffusion | 774

Your Diffusion installation provides a default logging framework and the log4j2 logging framework.
Configure the Diffusion server to use your preferred framework.

Configuring default logging on page 584
To use the default logging, ensure that the Diffusion logging JAR is at lib/slf4j-binding.jar.
The default logging implementation is already located here when you first install the Diffusion server.
Use the Logs.xml configuration file to configure the behavior of the Diffusion default logging.

Configuring log4j2 on page 587
To use log4j2, replace the default logging JAR file with the log4j2 JAR file. Use the log4j2.xml
configuration file to configure the behavior of log4j2.

Related reference
Statistics on page 743
Diffusion provides statistics about the server, publishers, clients, and topics.

Diffusion monitoring console on page 748
A web console for monitoring the Diffusion server.

Integration with Splunk on page 780
How to achieve basic integration between Diffusion and the Splunk™ analysis and monitoring
application

Log messages
Log4j2.xml on page 588
Use the Log4j2.xml configuration file to configure the behavior of the log4j2 logging framework.

Logging using another SLF4J implementation on page 589
You can use other implementations of SLF4J for your logging. However, this is not supported for
production use.

Logging back-end
The work of formatting and writing out messages logged by the Diffusion server and publishers
running on the Diffusion server is done by the logging back-end. The logging back-end is a logging
framework that is independent of the Diffusion server. Diffusion provides a default logging framework,
but you can configure the Diffusion server to use other SLF4J implementations.

Default logging framework

The default logging framework provided by Diffusion is configured to log messages out to the console
and write them to a file. You can configure the behavior of the default logging framework using the
Logs.xml configuration file.

For more information, see Configuring default logging on page 584.

Log4j2 logging framework

Diffusion supports log4j2 as an alternative logging implementation. Log4j2 is a third-party SLF4J
implementation provided by the Apache Software Foundation. For more information, see http://
logging.apache.org/log4j/2.x/.

You can replace the Diffusion default logging with the log4j2 implementation of SLF4J. The log4j2
implementation of SLF4J supports a wide range of appenders and allows fine-grained tuning of logged
events.

By default, log4j2 is configured to behave in the same way as the default logging. Change this
configuration by editing the provided log4j2.xml configuration file.

For more information, see Configuring log4j2 on page 587.

http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/

Diffusion | 775

Note: Messages logged using the deprecated LogWriter publisher API are passed directly to
the default logging framework, not to log4j2. To use log4j2, you must update your publisher to
use SLF4J.

Other logging frameworks

Your Diffusion server can be configured to use any logging framework that implements SLF4J.
However, only the default and log4j2 frameworks are supported for production use.

For more information, see Logging using another SLF4J implementation on page 589.

Note: Messages logged using the deprecated LogWriter publisher API are passed directly to
the default logging framework, not to log4j2. To use log4j2, you must update your publisher to
use SLF4J.

Related concepts
Configuring logging on the Diffusion server on page 583
Your Diffusion installation provides a default logging framework and the log4j2 logging framework.
Configure the Diffusion server to use your preferred framework.

Configuring default logging on page 584
To use the default logging, ensure that the Diffusion logging JAR is at lib/slf4j-binding.jar.
The default logging implementation is already located here when you first install the Diffusion server.
Use the Logs.xml configuration file to configure the behavior of the Diffusion default logging.

Configuring log4j2 on page 587
To use log4j2, replace the default logging JAR file with the log4j2 JAR file. Use the log4j2.xml
configuration file to configure the behavior of log4j2.

Related reference
Logging reference on page 775
Messages logged by the Diffusion server are logged at different levels depending on their severity.

Log messages
Connection counts on page 779
The Diffusion server produces connection summaries.

Log4j2.xml on page 588
Use the Log4j2.xml configuration file to configure the behavior of the log4j2 logging framework.

Logging using another SLF4J implementation on page 589
You can use other implementations of SLF4J for your logging. However, this is not supported for
production use.

Logging reference
Messages logged by the Diffusion server are logged at different levels depending on their severity.

Log levels

Diffusion events are logged at different levels of severity. The log levels, ordered from most severe to
least severe, are as follows:

Table 63: Log levels

Level Description

ERROR Events that indicate a failure.

WARN Events that indicate a problem with operation.

Diffusion | 776

Level Description

INFO Significant events.

DEBUG Verbose logging. Not usually enabled for production.

TRACE High-volume logging of interest only to Push Technology Support. Push
Technology Support may occasionally ask you to enable this log level to
diagnose issues.

Warning: Logging can use considerable CPU resources. In a production environment, enable
only significant log messages (INFO and above). Performance degrades significantly when
running at finer logging levels as more messages are produced, each requiring processing.

Log format

Log messages output by the Diffusion default logging back-end are output in the following format.

Each log line is made up of a number of fields. All of the fields except for the Exception are formatted
on a single line, delimited by pipe (|) characters.

yyyy-MM-dd HH:mm:ss.SSS|Level|Thread|Code|Message|LoggerName
 Exception

If you use log4j2 as your logging back-end it also produces output in this format if you use the provided
Log4j2.xml configuration file. However, you can edit the configuration file to change the log format.
For more information, see Configuring log4j2 on page 587.

Note: Sometimes log messages that are output to the same location as Diffusion messages
can be from other products. You can see which messages are Diffusion messages by looking for
the message code of the format PUSH-XXXXXX. All messages that Diffusion outputs at INFO
level or above include this code.

The meaning of each field is described in the following table.

Table 64: Fields included in the logs

Field Optional or
Mandatory

Format/values stable
between releases

Description

Time stamp Mandatory Yes The time and date the
log event occurred.

Asynchronous logging
is enabled by default.
The server might log a
message in a different
thread to the one that
produced the log event,
and at a slightly later
time. Consequently,
log lines might not be
logged in exact time
stamp order.

The time stamp is
displayed using the
timezone configured
for the JVM running
the server. The date

Diffusion | 777

Field Optional or
Mandatory

Format/values stable
between releases

Description

format can be changed
in the Server.xml
configuration file.

Level Mandatory Yes The log severity, using
the SLF4J levels:
ERROR, WARN, INFO,
DEBUG, TRACE.

Thread Mandatory No The name of the Java
thread that logged the
event.

Code Optional Yes Diffusion log messages
have a unique
code. For example,
PUSH-000123. For
more information, see
#unique_340.

All messages at that
are logged at INFO or
above are documented.

Message Mandatory No A natural language
description of the
event.

Logger name Mandatory No The logger name.
Usually the fully
qualified name of
the Java class that
produced the event.

Exception Optional No If the log event has
an associated Java
Throwable, the
exception message
and stack trace directly
follows the message
line.

Optional fields are empty if the log event does not have the information.

The third column indicates whether fields are stable between releases. Where possible, Push
Technology will not change the format or values of these fields so they can be relied on for automated
log monitoring. The fields not marked as stable are more likely to change between releases, including
patch releases.

Log message examples

The following examples show the log format output by the Diffusion default logging back-end. Log4j2
also produces output in this format if you use the provided Log4j2.xml configuration file.

Diffusion | 778

Most log messages are formatted on a single line.

2016-02-19 14:01:31.199|INFO|main|PUSH-000159|
The maximum message size is 32768 bytes.|
com.pushtechnology.diffusion.DiffusionController

If a log event has an exception, the exception message and stack trace directly follows the message
line. The exception can span multiple lines.

2016-02-19 14:14:54.095|ERROR|main|PUSH-000164|Diffusion Server not
 started.|com.pushtechnology.diffusion.api.server.DiffusionServer
com.pushtechnology.diffusion.server.security.persistence.store.StoreException:
 Error parsing SystemAuthentication.store
 at
 com.pushtechnology.diffusion.server.security.persistence.store.systemauthentication.DSLSystemAuthenticationProvider.parse(DSLSystemAuthenticationProvider.java:67)
 at
 com.pushtechnology.diffusion.server.security.persistence.store.AbstractFileProvider.connect(AbstractFileProvider.java:102)
 at
 com.pushtechnology.diffusion.server.security.persistence.store.AbstractStoreImpl.getModel(AbstractStoreImpl.java:71)
 at
 com.pushtechnology.diffusion.server.security.authentication.systemhandler.SystemAuthenticationHandler.<init>(SystemAuthenticationHandler.java:47)
 at
 com.pushtechnology.diffusion.server.security.persistence.store.systemauthentication.SystemAuthenticationStoreImpl.newHandler(SystemAuthenticationStoreImpl.java:75)
 at
 com.pushtechnology.diffusion.server.security.authentication.AuthenticationManagerProvider.provide(AuthenticationManagerProvider.java:107)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at
 sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
 at
 sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
 at java.lang.reflect.Method.invoke(Method.java:498)

Log headers

Currently, log files output by the Diffusion default logging back-end start with a special header.

2016-02-19 14:14:53.376 : Starting log for Diffusion 5.7.0_01
 (Server) 29689@tangerine (2016-02-08 12:22:07)

Do not depend on this header. In a future release, this header will be replaced with a standard log
message.

This does not apply to log files output by log4j2 or other third-party SLF4J implementations.

Log stopped

When the Diffusion default logging back-end rotates the log files, it outputs the message Log
stopped at the end of the log file before creating a new log file and continuing to log messages in that
new file.

This does not apply to log files output by log4j2 or other third-party SLF4J implementations.

Related concepts
Configuring logging on the Diffusion server on page 583
Your Diffusion installation provides a default logging framework and the log4j2 logging framework.
Configure the Diffusion server to use your preferred framework.

Configuring default logging on page 584

Diffusion | 779

To use the default logging, ensure that the Diffusion logging JAR is at lib/slf4j-binding.jar.
The default logging implementation is already located here when you first install the Diffusion server.
Use the Logs.xml configuration file to configure the behavior of the Diffusion default logging.

Configuring log4j2 on page 587
To use log4j2, replace the default logging JAR file with the log4j2 JAR file. Use the log4j2.xml
configuration file to configure the behavior of log4j2.

Related reference
Logging back-end on page 774
The work of formatting and writing out messages logged by the Diffusion server and publishers
running on the Diffusion server is done by the logging back-end. The logging back-end is a logging
framework that is independent of the Diffusion server. Diffusion provides a default logging framework,
but you can configure the Diffusion server to use other SLF4J implementations.

Log messages
Connection counts on page 779
The Diffusion server produces connection summaries.

Log4j2.xml on page 588
Use the Log4j2.xml configuration file to configure the behavior of the log4j2 logging framework.

Logging using another SLF4J implementation on page 589
You can use other implementations of SLF4J for your logging. However, this is not supported for
production use.

Connection counts
The Diffusion server produces connection summaries.

At one minute past midnight Diffusion creates an entry in the file logs/ConnectionCount, and
resets the counter.

The value in the third column is the total number of client connections that have been made that day.

The value in the fourth column is the maximum number of concurrent connections that have been
active that day.

If you shutdown the Diffusion server, the server updates this file with the client connection information
for the day up to the point of shutdown. However, if the Diffusion server is killed instead of shut down,
it does not update the file.

An example is shown here:

2017-09-27 00:01:40 5.9.4_01 128 31
2017-09-28 00:01:48 5.9.4_01 139 28
2017-09-29 00:01:56 5.9.4_01 177 28
2017-09-30 00:01:05 5.9.4_01 118 41
2017-10-01 00:01:22 5.9.4_01 207 36
2017-10-02 00:01:31 5.9.4_01 188 19
2017-10-03 00:01:41 5.9.4_01 244 44
2017-10-04 00:01:41 5.9.4_01 188 26
2017-10-05 00:01:41 5.9.4_01 195 39

Related reference
Logging back-end on page 774
The work of formatting and writing out messages logged by the Diffusion server and publishers
running on the Diffusion server is done by the logging back-end. The logging back-end is a logging

Diffusion | 780

framework that is independent of the Diffusion server. Diffusion provides a default logging framework,
but you can configure the Diffusion server to use other SLF4J implementations.

Logging reference on page 775
Messages logged by the Diffusion server are logged at different levels depending on their severity.

Log messages

Integration with Splunk
How to achieve basic integration between Diffusion and the Splunk™ analysis and monitoring
application

About

Splunk is a third-party application from Splunk, Inc., which provides monitoring and analysis of other
applications, primarily by parsing their logs and extracting information of interest. The information is
displayed through a web interface, which allows the creation of dashboards and alerts on user-defined
events. Splunk is available for all major operating systems.

The Diffusion log format is designed to be consistent and to allow for easy parsing by monitoring tools,
not limited to Splunk.

Installation

Installation typically takes just a few minutes, see the appropriate section of the Splunk Installation
Manual. For simplicity, we assume that Diffusion and Splunk are installed on the same machine.

Basic configuration

This is easier to do with existing log files to import, so configure Diffusion to write log files. To better
demonstrate Splunk, set the server log file to TRACE logging in etc/Logs.xml and start Diffusion.

<!-- Example server log configuration -->
<log name="server">
 <log-directory>../logs</log-directory>
 <file-pattern>%s.log</file-pattern>
 <level>TRACE</level>
 <xml-format>false</xml-format>
 <file-limit>0</file-limit>
 <file-append>false</file-append>
 <file-count>1</file-count>
 <rotate-daily>false</rotate-daily>
</log>

On startup, access the Splunk web UI at http://localhost:8000. After logging in (and changing the
default admin password), choose the Add data option.

http://docs.splunk.com/Documentation/Splunk/latest/Installation/Whatsinthismanual
http://docs.splunk.com/Documentation/Splunk/latest/Installation/Whatsinthismanual
http://localhost:8000

Diffusion | 781

Figure 98: Welcome tab of the Splunk web UI

In the Add Data to Splunk screen that follows, choose the link A file or directory of files followed by
Consume any file on this Splunk server.

Splunk might not be able to immediately identify the format of the log files; if this is the case, a dialog
box similar to the following is presented. Select csv from the existing source types. Diffusion uses a
pipe symbol rather than a comma as a separator but this is acceptable to the Splunk CSV parser.

Figure 99: The Splunk Set source type dialog

The next dialog allows you to select the Diffusion logs/Server.log file under the Preview
data before indexing option, which Splunk reads and parses. On the Data Preview screen, there
are numbered log entries with the timestamp highlighted. This indicates that the log file has been
correctly parsed. Accept this, and on the next screen, set the source to be continuously indexing the
data. You can leave the parameters in More settings at their default values. Once this is done, you
have given the new data source a name (for example, Diffusion Server Log) and finally accepted the
settings, you can begin searching and generating reports based on the log contents.

Diffusion | 782

Figure 100: The Data Preview panel

Simple searches

Now we have a data source configured, we can start to execute basic searches.

On the Splunk launch page, select the Search option. On the Search Summary page that opens, select
the Source relating to the file logs/Server.log previously imported. The page changes to include
the source in the Search area. Additional search terms can be added to the end, for example, “Started
Publisher”.

Figure 101: The Splunk search summary panel

Related concepts
JMX on page 724
You can use JMX to manage Diffusion. By default, the RMI registry port is 1099 and the JMX service port
is 1100.

DEPRECATED: Introspector on page 759

administratorguide/systemmanagement/splunk/05-DataPreview.png
administratorguide/systemmanagement/splunk/06-SearchSimple.png

Diffusion | 783

An introduction to the Introspector Eclipse plugin.

Related reference
Statistics on page 743
Diffusion provides statistics about the server, publishers, clients, and topics.

Diffusion monitoring console on page 748
A web console for monitoring the Diffusion server.

Logging on page 773
Diffusion uses the Simple Logging Facade for Java (SLF4J) API to log messages from the Diffusion
server or from publishers running on the Diffusion server. SLF4J separates the logging of messages
in the Diffusion server from the logging framework. This separation enables you to configure an
independent back-end implementation to format and write out the log messages.

Related information
http://docs.splunk.com

Tuning

Aspects of tuning Diffusion for better performance or resilience

This section covers aspects of configuring Diffusion to achieve higher levels of performance and covers
some of the more advanced features which enable users to get more out of Diffusion.

Concurrency
Diffusion is a multi-threaded server and utilizes concurrent processing to achieve maximum
performance. Java NIO technology is utilized so that a separate thread is not required for each
concurrent connection and very large numbers of concurrent connections can be handled.

Because Diffusion is a multi-threaded environment it is necessary to have an understanding of
concurrency issues when writing publishers and when configuring Diffusion for best performance.

This section discusses issues of threading and concurrent processing.

Publisher threads

The processing that occurs within the user-written code of a publisher can be executed in different
threads as discussed below. Any publisher method can be called at the same time as another. Because
of this all publisher processing must be thread safe and it is the user's responsibility to synchronize
processing as required. It is recommended that synchronization is maintained at the smallest scope
possible to avoid performance bottlenecks.

Inbound threads

Any input that is received on an NIO connection is processed by a thread from the inbound thread
pool. This includes most publisher notifications from clients, event publishers or other publishers with
the exception of control notifications (such as initialLoad, publisherStarted) which occurs
in the controlling thread.

Note: The act of publishing or sending messages to clients is asynchronous that is to say that
the message is queued for the client or clients. Publisher processing is not blocked whilst
messages are delivered to clients. For best performance it is recommended that any code
executed in the inbound threads is non-blocking (for example, avoid database access, locking,
and disk IO as much as possible).

Client notification threads

http://docs.splunk.com

Diffusion | 784

If a publisher uses client notifications, the publisher has its own dedicated thread to process those
notifications.

By default here is one notification thread per publisher, no matter how many listeners are defined.
Each event is processed by the thread in the order in which they occur and two client notification
event methods are not called concurrently. If the order of such events is not critical, you can specify
that a user thread pool is used for client notifications this increasing throughput.

User threads

Publishers or other users of the Diffusion Java API can make use of the Java threads API to schedule
tasks for processing of their own in a separate thread of processing.

You can execute any object of a class that implements the RunnableTask interface using one
of the ThreadService.schedule methods. You can to request a one-off execution of a task,
periodic execution at a given interval or execution according to a schedule. Periodic processing can be
important to publishers that pull data updates from elsewhere.

Such tasks issued using the thread service are executed using threads from the background thread
pool.

Alternatively, users can define their own thread pools to use using the thread service and execute tasks
using these thread pools.

NIO Threads

Each connector that is configured in etc/Connectors.xml comprises a connector thread that
listens for incoming socket connections, accepts them and registers them with an acceptor thread that
handles any incoming data notifications. Message decoding, routing to publishers and appropriate
publisher callbacks are all run in the inbound thread pool. Connector and acceptor threads are
occupied for the minimum amount of time and are completely non-blocking.

Though performance can be improved in extreme case by adjusting the numbers of these NIO threads,
no significant processing occurs within them.

Client multiplexers

A client multiplexer is a separate thread which is responsible for processing messages on the publisher
event queue, queuing for clients (conflating if necessary), taking messages from client queues and
sending them to the client or clients. A number of these multiplexers can be configured to improve
concurrent processing when there are a large number of clients.

The number of multiplexers can be configured. By default, the number of multiplexers is the same as
the number of available cores on the host system of the Diffusion server.

Multiplexers typically batch these output messages into output buffers according to the output buffer
size configured for the client connectors.

Thread pools
Diffusion maintains a number of configurable thread pools which are used for a number of purposes

For more information, see Thread pools on page 789. Thread pools can also be accessed
programmatically using the ThreadService class of Diffusion server API. Refer to the API
documentation for more information about this.

The various types of thread pools are as follows:

Inbound thread pool

Diffusion | 785

This is used to obtain a thread to process any inbound message received on an NIO connection.
The maximum number of threads configured for this pool must cater for the maximum required
concurrency for incoming requests.

Diffusion does not maintain a separate thread for each client connection but rather passes each
inbound request from a connection to the inbound thread pool for processing.

For example, when a client subscribes, the input processing happens on an inbound thread from the
pool, the subscribe method and topic loader methods are run in one of these threads.

Connector inbound thread pools

Individual connectors can configure their own separate inbound thread pool to override the use of
the default. This cannot be required if you want different behaviors for each connector or if there are
a lot of connectors. Due to locking on the inbound thread pool, you get better performance if each
connector to have its own inbound thread pool.

Background thread pool

The background thread pool is used for executing scheduled tasks. These tasks can be issued by
Diffusion itself or using a publisher using the Java threads API.

Diffusion uses scheduled tasks for various reasons such as:

1. Timing out ACK messages. A scheduled task executes if a message sent to a client is not
acknowledged within its required timeout period.

2. Retrying connections. If a Diffusion server cannot connect to another server and there is a retry
policy, a scheduled task will be used to retry the connection.

If any publisher uses a lot of scheduled tasks, the number of threads in this pool might have to be
increased waiting tasks might queue.

Unlike other types of pool when the specified number of threads are in use, tasks are queued in an
unbounded queue.

User thread pools

Within the Java threads API user can define thread pools that can be used for multi-threaded
processing.

Buffer sizing
There are a number of places within the configuration of Diffusion where buffer sizes must be specified
and getting these right can have a significant impact upon performance.

Connector output buffers

An output buffer size must be configured for each connector.

The output buffer size configured for a connector must be at least as large as the largest message that
is expected to be sent to any client connecting through that connector. However, the buffer size can be
much larger so that the messages can be batched at the server, which improves performance.

Each connected client is assigned a socket buffer of the specified size if possible. A warning is logged if
a smaller socket buffer was allocated than requested.

In addition each client multiplexer has a buffer of the configured size (as a multiplexer writes to only
one of its clients at any one time). The multiplexer buffer is used to batch messages from the client
queue before writing and, if the socket buffer does end up being smaller than the configured buffer
and the throughput is high, the allocated socket buffer size might become a bottleneck.

Diffusion | 786

Getting the correct output buffer size is vital. Make this too small and the Diffusion server does not
batch and write messages to clients at optimal rates. Make them too big, extra memory is consumed or
messages might time out and cause the client connection to be closed.

If the output buffer size is larger than the TCP output buffer size, this can cause problems if the client
is slow consuming. If a slow-consuming client does not clear messages from the TCP buffer fast
enough, messages on the connector buffer which are waiting to move to the TCP output buffer can
time out. You can avoid this problem by setting the TCP output buffers for your operating system and
the connector output buffers for your Diffusion server to the same value. You can also increase your
message timeout interval.

Note: For maximum performance, ideally all clients configure their input buffer size to match
the connector's output buffer size.

Client output buffers

As at the server, the output buffer sizes in use must be configured for a client.

In the Java client this is specified in the ServerDetails object used to make the connection. As the Java
client does not buffer messages, this only has to be large enough to cater for the largest message size
that is sent to the server.

Publisher client output buffers
A publisher client (a connection made from a publisher to another Diffusion server) is slightly different
from a normal client in that it does queue and buffer messages for sending. It is advantageous to
throughput to use a larger output buffer size.

The output buffer size is configured in the server element in Publishers.xml or in the ServerDetails
object depending upon how the connection is being made.

Connector input buffers

Each connector also specifies an input buffer size.

Input buffers receive messages from clients. This buffer must be as large as the largest message
expected. If you specify an input buffer size that is less than the maximum message size, the maximum
message size is used as the input buffer size.

This size is also used to allocate a receive socket buffer for the client. The socket buffer allocated might
actually be less than requested in which case a warning is logged.

For maximum performance, the size used for this buffer must match up with the output buffer size
used by clients.

Client input buffers

Clients must also specify the buffer size to use for input.

In the Java client this is specified in the ServerDetails object used to make the connection (or possibly
Publishers.xml for a publisher client connection).

Matching buffer sizes

For optimal throughput it is desirable to match the size of buffers at each end of every connection.
The input buffer size used by clients ideally matches the output buffer size at the connector that they
connect to. Also the output buffer size specified by clients must match the input buffer size of the
connector they connect to.

Note: Because publisher server connections queue and batch messages at both ends, use a
separate connector for such connections such that optimal buffer sizing can be achieved.

Diffusion | 787

Message batching

The size of output buffers configured for a connector can be much larger than the largest expected
message size because the server uses these buffers to batch client messages which improves
performance. Ideally the buffer size is a multiple of the average message size.

Note: When using for HTTP clients, allow between 20 and 250 bytes extra for control
information.

Each client multiplexer assigns an output buffer of each size specified by client connectors. So if there
were 3 client connectors, each specifying a different output buffer size, and 2 client multiplexers, each
multiplexer assigns 3 different buffers (6 in total). When using HTTP Duplex connections (deprecated),
each multiplexer assigns an additional buffer for chunked encoding.

When a client multiplexer is unable to write the contents of an output buffer to a client in one go, the
writing is deferred and the multiplexer takes a copy of the remaining data in the output buffer into its
own temporary buffer.

Message sizing
The sizing of messages that are sent to clients is very important to the overall performance and this
must be carefully considered within the design of publishers.

Every topic message has a fixed header of 6 bytes. It then has the topic name terminated by one byte,
plus any user header information that is also included with the message.

It is important to work out the size of the message so that the connector buffers can be set correctly,
otherwise Diffusion is unable to put the messages on the wire quickly enough.

Byte pinching

With any messaging system, the smaller the messages, the lower the latency and the faster the system
performs. There is a consultancy exercise that Push Technology performs as a service to analyze the
messages and reduce them as much as possible. The following list includes a few of the best practices
to use:

• Only send data that is required by the client.
• Look at the data format and strip any fat off the message.
• Is the information being sent a true delta?
• Client side data models

Message encoding

If you are sending large messages, it is worth compressing the messages. This happens only once on
the server, and then the clients have the technology to decompress them, this also includes JavaScript
clients. If other encoding is used, it is worth bearing in mind the CPU overhead required.

Client queues
A maximum queue depth can be configured for client queues so that clients are closed if their message
backlog becomes too large.

The maximum queue depth must be chosen carefully as a large size might lead to excessive memory
usage and vulnerability to Denial of Service attacks, whilst a small size can lead to slow clients being
disconnected too frequently.

Diffusion | 788

Client queues do not take any memory, as Diffusion uses a Zero Copy paradigm, but there are
consequences in setting them too small or too large. If the client queue is set too small, once the client
has filled its queue the Diffusion server closes the client.

When considering queue depth take into account the average message size and publication rate.
Messages that are held in the client queue are not garbage collected and can get promoted, which
increases their impact on GC pressure. If messages in the client queue build up, consider the maximum
delay in the context of you application. For example: Assuming 100 bytes is the average message size
and the application is publishing an average of 100 messages per second. If the client queue is setup to
have a maximum depth of 1000 messages this means we allow messages to build up for a slow client
for up to 10 seconds, during this time a slow client is building up a cache of 100k of messages to be
sent.

Note: It is natural for queues to build up a little with spikes in publication rate or momentary
bandwidth limits, but the tolerance to such delays is expressed in the client queue depth and
must be considered in that context.

Client multiplexers
Tuning multiplexers for optimal performance

The load of batching, conflating and merging messages being sent from publishers to outbound clients
is spread across client multiplexers. The number of configured client multiplexers must take into
account the expected message load and concurrent client connections. The more clients are assigned
to a multiplexer the more load it must contend with.

By default, the number of client multiplexers is equal to the number of cores on the host system of the
Diffusion server

A client multiplexer processes all client messages into the client queue. Clients are added to the
multiplexers according to a round-robin load balancing policy.

Publishers either broadcast on a topic to all subscribed clients or send clients direct messages. When
broadcasting all multiplexers are notified and go on to find all subscribed clients which are assigned to
the particular multiplexer. When a message is sent to a particular client only that client's multiplexer
is notified. It is more efficient to broadcast than it is to send the same message to a large number of
clients by iterating over them.

Client multiplexers are non-blocking, high priority threads so having too many can be detrimental, as
they are competing for the same resource (CPU). As a rule of thumb, the number of multiplexers must
not exceed the number of available logical cores. If a client multiplexer becomes over-subscribed,
message latency can increase. For maximum throughput, the number of multiplexers can be set to
the number of available cores, but this configuration is only recommended in the case where other
threads are assumed to be mostly idle (for example, little inbound traffic, low publisher overhead).

Client multiplexers performance is influenced by the use of merge and conflation policies as those are
executed in the multiplexer thread. It is recommended that conflation policy changes and in particular
changes to merge conflation logic be profiled and written with performance in mind. In particular the
use of locks or any other blocking code is highly discouraged.

Each multiplexer uses a different buffer for each output buffer size that is specified to any connector.
If there were three connectors with different output buffer sizes specified, each multiplexer assigns
three different buffers. Each multiplexer might also assign an extra buffer for HTTP use. A larger output
buffer enables more efficient batching of messages per write, as large writes are generally more
efficient but care must be taken to not overwhelm client connections regularly and causing them to be
blocked for any period of time.

Diffusion | 789

When a multiplexer is unable to write a message to a client because the buffer has become full, a
selector thread is notified. The selector thread is responsible for watching the client and notifying the
multiplexer when it becomes writable. The multiplexer remains responsible for writing the message.

Connectors
You can tune your connectors to handle multiple connections and improve performance.

Configuring multiple connectors

When there is more than one publisher application running on a server, configure a separate
connector for each publisher so that buffer requirements can be specific to the connector.

It might also be beneficial to configure different connectors for different client types as their
requirements can be different. This is especially true for publisher clients where there are low numbers
of connections which benefit from very large buffer sizes in both directions.

Buffers

As Diffusion can have tens of thousands of connections at any one time on a machine it is important to
make sure that the buffers are set correctly.

To reduce the memory footprint, the Diffusion server will condition the input and output buffers. If
the buffers are set too small, Diffusion cannot write the messages in one go and delegate the task to a
writer selector.

For more information, see Buffer sizing on page 785.

Thread pools
Thread pools are used within Diffusion to optimize the use of threads.

It is important to understand balance when tuning thread usage for a system. There must be sufficient
thread resources required but not so many as to starve other parts of the system. At the end of the day
there are only so many threads that a system can provide.

In general, when provisioning threads, separate the blocking and non-blocking activities. While it is
beneficial to have more threads than cores for blocking tasks it is detrimental to the server if more
threads than cores are runnable at any given time.

There are a number of places where thread pools are used within Diffusion. For more information, see
Concurrency on page 783.

Configurable properties

The following key values can be configured for a thread pool to influence its behavior and use of
resource:

Table 65: Values that can be configured for a thread pool

Property Usage

Core size The core number of threads to have running in
the thread pool.

Diffusion | 790

Property Usage
Whenever a thread is required a new one is
created until this number is reached, even if
there are idle threads already in the pool. After
reaching this number of threads then at least this
number of threads is maintained within the pool.

Maximum size The maximum number of threads that can be
created in the thread pool before tasks are
queued.

If this is specified as 0, the pool is unbounded and
so the task queue size value is ignored. Generally
an unbounded pool is not recommended as it can
potentially consume all machine resources.

Queue size The pool queue size. When the maximum pool
size is reached then tasks are queued.

If the value is zero, the queue is unbounded. If
not zero then the value must be at least 10 (it is
automatically adjusted if it is not).

Keep-alive time The time limit for which threads can remain idle
before being terminated.

If there are more than the core number of threads
currently in the pool, after waiting this amount
of time without processing a task, excess threads
are terminated.

A value of zero (the default) causes excess
threads to terminate immediately after executing
tasks.

Notification handler A thread pool can have a notification handler
associated with it to handle certain events
relating to the pool. This allows for user written
actions to be performed (for example, sending an
email) when certain pool events (like too much
task queuing) occur.

See below for more details.

Rejection handler A thread pool can have a rejection handler
associated with it to handle a runnable task
that has been rejected. This allows user written
actions to handle a runnable task that can not be
executed by the thread pool.

See below for more details.

Notification handler

A thread pool notification handler can be configured to act upon certain thread pool events.

These events are:

Diffusion | 791

Table 66: Events that a thread pool notification handler can act on

Event Description

Upper threshold reached A specified upper threshold for the pool has been
reached. This means the pool size has reached
the specified size. The event is notified only once
and is not notified again until the lower threshold
reached event has occurred.

Lower threshold reached A specified lower threshold for the pool has been
reached after an upper threshold reached event
has been notified. This means the pool size has
now shrunk the specified size.

Task rejected The pool has rejected a task because there are
no idle threads available and the task queue has
filled. What happens to the rejected task depends
upon the type of pool. Typically, the task is run
within the thread that passes the task to the pool,
which is not desirable. This is why the thread
ought to be notified when it occurs. This differs
from the rejection handler in that it does not
expose the runnable task. This means it can be
used only for notification.

The notification handler is a user written class which must implement the
ThreadPoolNotificationHandler interface in the threads Java API. The name of such a class
can be configured for in-bound or out-bound thread pools or for connector thread pools in which case
an instance of the class is created (and must have a no arguments constructor) when the thread pool is
created.

Rejection handler

A thread pool can have a rejection handler associated with it to handle a runnable task that has been
rejected.

Two rejection handlers are provided with Diffusion. These are
the ThreadService.CallerRunsRejectionPolicy and
ThreadService.AbortRejectionPolicy.

The ThreadService.CallerRunsRejectionPolicy executes the runnable task in the thread
that tried to pass the runnable task to the thread service. This can cause inconsistencies and out of
order processing.

The ThreadService.CallerRunsRejectionPolicy does not execute the task and instead
generates an exception.

Note: By default, the thread that tried to pass the runnable task to the thread service blocks
until there is space on the thread pool queue.

The rejection handler is a user written class which must implement the
ThreadPoolRejectionHandler interface in the threads Java API. The name of such a class can
be configured for inbound or outbound thread pools or for connector thread pools in which case an
instance of the class is created (and must have a no arguments constructor) when the thread pool is
created.

Diffusion | 792

Adjusting the configuration

Adjust thread pools gradually. Ideally, duplicate expected maximum loads in test environment. This
environment can be used to tune the thread pools to satisfy the load. Tune the thread pools so they
are just able to cope with the maximum load, increasing them beyond this might degrade overall
performance.

Background thread pool:

In general, the defaults suffice for the tasks assigned to the background thread pool by Diffusion. If you
assign tasks to the pool yourself, consider increasing the number of threads.

Inbound thread pool:

This pool is used to handle inbound connections and messages. Increasing the thread pool allows new
connections and received messages to be handled over a greater number of threads. However, much
of the behavior in this pool can involve locking the clients or parts of the topic tree. This can cause lock
contention that delays processing.

Due to the underlying implementation of Java NIO sockets a high rate of threads being added/
removed from the incoming thread pool will result in the allocation of off-heap byte buffers. In
extreme cases this can result in an out of memory exception being thrown as the server runs out of off
heap allocation space.

Client reconnection
You can configure the client reconnection feature by configuring the connectors at the Diffusion server
to keep the client session in a disconnected state for a period before closing the session.

Normally when a client application loses its connection to the server, perhaps due to some
communications error, the only option is for it to connect again and then re-establish the state of the
topics to which it was subscribed. There is however, the facility for clients to be able to reconnect a
lost connection without losing its topic state or messages that were queued for it whilst it was not
connected.

This can be useful for mobile clients where connections are less reliable.

Server configuration

To enable clients to reconnect, connectors must be configured to keep client sessions in the
DISCONNECTED state for a period during which the client can reconnect. To do this a reconnection
timeout must be specified for the connector.

Specify a reconnection timeout, maximum queue depth, and recovery buffer size by using the
<reconnect> element in the etc/Connectors.xml configuration file.

Reconnection timeout (keep-alive)
How long a disconnected client's session remains available on the server before
being closed. By default, this is 60 seconds.

Maximum queue depth (max-depth)
Optional maximum limit on the number of messages to queue for a disconnected
client session. By default, this is the same as the queue depth for a connected
client session, which is defined by the queue definitions in Connectors.xml and
Server.xml.

Recovery buffer size (recovery-buffer-size)

Diffusion | 793

The maximum number of sent messages to keep in a buffer. These messages can then
be recovered on reconnection.

<connector>
 ...
 <reconnect>
 <keep-alive>60s</keep-alive>
 <max-depth>1000</max-depth>
 <recovery-buffer-size>64</recovery-buffer-size>
 </reconnect>
 ...
</connector>

A client can reconnect to the server through this connector within 60 seconds of becoming
disconnected. While the client is disconnected, up to 1000 messages are queued for it. These messages
are delivered to the client when it reconnects. A buffer of up to 64 sent messages are retained in the
recovery buffer. When a client reconnects, the Diffusion server use this buffer to re-send any messages
that the client has not received.

If a client signals that it wants to disconnect, the client state on the server is removed when the client
disconnects. However, in all other circumstances where the client loses connection, the client goes
into the DISCONNECTED state, where the subscriptions are retained and messages are queued as
normal for the amount of time specified by the reconnection timeout of the connector.

If the server is configured to expect reconnecting clients, clients that are currently disconnected and
might reconnect are excluded from the regular system pings that the server sends to clients.

If the client then reconnects during the period that the session is in DISCONNECTED state, the sending
of messages to the client resumes from the point when the failure occurred. Messages that were in
transit at the time of disconnection might be lost.

The only way to ensure the delivery of messages on reconnection is for the publisher to mark
the messages as requiring acknowledgment as any such messages that have been sent but not
acknowledged on reconnection are requeued for the client. The delivery of acknowledged messages
is assured. However, because an ack from the client might have been lost during the disconnection,
there is the possibility that a message might be delivered to the client twice in this scenario.

It is important when using acknowledged messages to ensure delivery after reconnect that the ack
timeout set for messages is sufficiently long to allow for the time that a message can be queued for a
client plus the reconnection timeout configured for reconnection.

If an ack timeout expires before a message is even dequeued for a client, the non-acknowledgment is
notified and the message is not sent to the client.

Message queue management

Managing message queues when using client reconnection

When a client session is in DISCONNECTED state, messages for the client continue queuing for the
client until the reconnection timeout expires or the client reconnects. This puts an unusual load on
the client queue and the facility exists to adjust the maximum client queue depth for the period of
disconnection.

This is done by specifying a queue depth which is greater than the normal maximum queue depth.
When disconnected the queue can expand to the higher value and when reconnection occurs and
the queue starts to drain, when the queue size goes down to a value of 80% of its previous limit, the
maximum queue depth reverts to the normal value.

The queue depth has an effect only if it represents a value higher than the normal maximum queue
depth.

Diffusion | 794

Client reconnection

Configuring the reconnection of clients

Not all clients support reconnection but those that do have a reconnect method which they can call on
notification of a lost connection.

If the reconnection succeeds, the client is subscribed to all of the same topics as before and starts to
receive messages again, including all of those queued whilst the client was disconnected.

Messages in transit at the time of disconnection might be lost, however any message marked
as requiring acknowledgment and sent by the server that was not acknowledged by the client
is retransmitted on reconnect. The delivery of acknowledged messages from client to server is
assured on reconnect although there is the possibility that the client might receive a message it had
acknowledged before the connection again after reconnection if the ack had never reached the server.

A reconnection might not succeed, either because a reconnection timeout is not specified on the
connector that the client has connected to, or the specified time period has expired. In this case
a normal new connection is established with the same topic set as was specified on the original
connection.

How to test reconnection in my environment?

To simulate a communication error, we use a proxy between the client and the server.

• Start Diffusion. (By default it uses port 8080)
• Set the proxy to listen on a different port (for example, 9090) and redirect the connection to 8080
• Connect the client through the proxy on port 9090.
• Kill the proxy.
• Start the proxy.
• Reconnect the client.

Diffusion | 795

Figure 102: Reconnection scenario

Note: The proxy behaviors are different depending on the operating system and the TCP/IP
stack configuration.

Common errors

1. From the client, request a connection close and call reconnect.

After a close request, the client cannot reconnect. In this case, the client will establish a new
connection with a different client ID assigned by Diffusion.

2. Unplug the network wire from the computer where the client is running

This will not throw an IO_ERROR in the other end of the connection.

Client failover
You can configure a client to fail over to another Diffusion server after it loses connection to the
Diffusion server it was previously connected to.

Client failover is when a client loses its connection to a server and attempts to connect to a different
one. The client is provided with a list of servers. If a client loses its connection to a server it can
automatically attempt to connect to the next server in the list. If it fails to connect or loses its
connection to that server, it tries the next server on the list. This is referred to as autofailover.

Diffusion | 796

Generally the list of servers to connect to must be provided before attempting to make the connection.
How the list of servers is provided differs between client APIs and the JavaScript client does not
support autofailover but it can be implemented using the callback methods.

Using automatic failover

If a client has an established connection that it loses, autofailover attempts to open a new connection
in the next connection in the list. This is not compatible with reconnection because reconnection
attempts to preserve the state of the client (the client ID and the subscribed topics). As the new server
has no knowledge of the client it is unable to preserve this state. Autofailover must be enabled and a
list of servers to connect to provided.

Using load balancing with autofailover

You can enable load balancing in conjunction with autofailover. When load balancing is enabled and a
client loses connection, the list of servers is shuffled before the client selects the next server to attempt
to connect to.

In Java, for example, you can enable load balancing by using the setLoadBalancing method on
the ConnectionDetails object.

Using server cascading

When a client attempts to place a connection, if the attempt fails, the next server in the list is chosen.
Server cascading is similar to autofailover except this logic is applied prior to a connection, whereas
autofailover applies once a connection is in place.

In Java, for example, you can enable server cascading by using the setCascading method on the
ConnectionDetails object.

Note: Server cascading is different to protocol cascading, which attempts to connect to the
same server using different protocols before a connection has been opened.

Java failover

Configuring failover in Java

In Java the ConnectionDetails object supports a collection of ServerDetails objects. The server
details are use the control failover between servers. The ConnectionDetails factory methods provide
several options for creating ConnectionDetails with multiple ServerDetails objects. A collection of
ServerDetails object can be passed as a parameter, a varargs method supports ServerDetails and
another varargs method supports String URLs, which ServerDetails objects are constructed from. After
construction the ServerDetails objects used by the ConnectionDetails can be altered by calling the
setServerDetails(Collection<ServerDetails>) method.

The following code supports autofailover from the server with the IP address 192.168.0.1 to the server
192.168.0.2. If the client loses connection to 192.168.0.1 it tries to connect to 192.168.0.2. It uses the
varargs method to create a ConnectionDetails object with multiple ServerDetails objects constructed
from String URLs.

ConnectionDetails details =
 ConnectionFactory.createConnectionDetails(
 "dpt://192.168.0.1:8080",
 "dpt://192.168.0.2:8080");
details.setAutoFailover(true);
ExternalClientConnection client = new
 ExternalClientConnection(listener, details);
client.connect();

For further information refer to the Java API documentation for ConnectionDetails and ServerDetails.

Diffusion | 797

JavaScript failover

Using failover in JavaScript

The JavaScript client does not support autofailover. Support for failover is limited. If the connection
attempt fails DiffusionClient.connect(DiffusionClientConnectionDetails) can be called with a different
object. You must provide the logic to do this on connection failure.

ActionScript failover

Using failover in ActionScript

In ActionScript the ConnectionDetails object supports an array of ServerDetails objects. The server
details are use the control failover between servers. The ConnectionDetails constructor has a
mandatory ServerDetails object. After construction additional ServerDetails objects used by the
ConnectionDetails can be altered by calling the addServerDetails(ServerDetails) method
and the setServerDetailsArray(Array) method.

This code:

var server0:ServerDetails = new
 ServerDetails("dpt://192.168.0.1:8080");
var server1:ServerDetails = new
 ServerDetails("dpt://192.168.0.2:8080");
var details:ConnectionDetails = new ConnectionDetails(server0);
details.addServerDetails(server1);
details.setAutoFailover(true);
var client:DiffusionClient = new DiffusionClient();
client.connect(details);

supports autofailover from the server with the IP address 192.168.0.1 to the server 192.168.0.2.
If the client loses connection to 192.168.0.1, it tries to connect to 192.168.0.2. It uses the
addServerDetails(ServerDetails) method to add a single additional server to connect
to. For further information refer to the Flex Classic API documentation for ConnectionDetails and
ServerDetails.

Client throttling
Throttling is a method of ensuring that the Diffusion server limits (throttle) the volume of messages it
transmits to a client within a specified period of time. This can be used to limit bandwidth usage or to
prevent more messages being sent to a client than it can cope with.

How does throttling work?

Throttling is applied to a client queue so that the number or volume of messages sent to that client
is restricted. Diffusion only dequeues a message to send to a client if that client has not breached its
throttling limit.

Throttle types;

• Messages per second (Only a specified number of messages are sent every second.)
• Bytes per second (Only a specified number of bytes are sent every second)
• Message interval (A single message is sent every n milliseconds.)
• Buffer interval (A full output buffer (or the equivalent of) is sent every n milliseconds)

http://docs.pushtechnology.com/docs/5.9.4/flex/index.html

Diffusion | 798

Figure 103: Normal and throttled client queues

Enabling throttling

Throttling can be enabled on a client-by-client basis from within the publisher.

To throttle a Client.throttle method which allows you to specify the type of throttling and a
limit. A clientThrottler reference is returned.

If the throttle method is called for a client that is already throttled, it has the effect of removing the old
throttler and adding a new one.

Call the Client.removeThrottler method to stop throttling.

The Client.isThrottling method can be used to determine whether a client is currently
throttled and, if it is, the getThrottler method can be used to determine the type of throttling and the
current limit.

Java memory usage
Typically you do not have to tune the Java VM's use of memory. However, in certain conditions,
consider using runtime options to change the default behavior.

If you use SSL-offloading at Diffusion

If your clients make secure connections to the Diffusion server and these connections are SSL
offloaded at the Diffusion server, ensure that you tune the following runtime options:

-Xmx
Sets the maximum heap size.

-XX:MaxDirectMemorySize
Sets the maximum total size (in bytes) of direct-buffer allocations. By default, the JVM
chooses the size for direct-buffer allocations automatically.

Diffusion uses direct memory to offload SSL connections.

Ensure that the combined total of these two values does not exceed 80% of the RAM available on your
system.

Diffusion | 799

Platform-specific issues
To run Diffusion it might be necessary to increase the number of sockets and reduce timewait.

It might also be necessary to increase the number of open files that is allowed on UNIX or Linux
systems

Socket issues

To fix these problems, complete the following steps based on platform.

Windows
Setting values on Windows

Setting TCP timed wait

This parameter determines the length of time that a connection stays in the TIME_WAIT state when it
is closed. When a connection is in the TIME_WAIT state, the socket pair cannot be reused. This is also
known as the 2MSL state because the value is twice the maximum segment lifetime on the network.
See RFC 793 for further details.

Add TcpTimedWaitDelay registry values as a workaround. You can set these values through REGEDIT
command.

Set TcpTimedWaitDelay to 30:

1. Select Start > Run.
2. In the available field, enter regedit.
3. Go to the key directory file: HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/

Services/Tcpip/Parameters/TcpTimedWaitDelay. The value type is REG_DWORD.
4. Double-click TcpTimedWaitDelay.
5. Select Decimal.
6. Type 30 in the Value data field. The default value for this field is 0xF0 (240 decimal). The valid

range is 30-300 (decimal).

Setting MaxUserPort

This parameter controls the maximum port number used when an application requests any available
user port from the system. Normally, short-lived ports are allocated in the range from 1024 through
5000. Setting this parameter to a value outside of the valid range causes the nearest valid value to be
used (5000 or 65534).

Add MaxUserPort registry values as a workaround. You can set these values through REGEDIT
command.

Set the MaxUserPort to 65534

1. Select Start > Run.
2. In the available field, enter regedit.
3. Go to the key directory file: HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/

Services/Tcpip/Parameters/MaxUserPort. The value type is REG_DWORD.
4. Double-click MaxUserPort.
5. Select Decimal.
6. Type 65534 in the Value data field. The default value for this field is 0x1388 (5000 decimal). The

valid range is 5000 – 65534(decimal).

Diffusion | 800

Linux
Configuring sockets values on Linux

Decrease the time wait before closing the sockets by entering:

echo 3 > /proc/sys/net/ipv4/tcp_fin_timeout

Sometimes systems are now configured to prevent one from using a large number of ports, check the
port range and modify if required.

cat /proc/sys/net/ipv4/ip_local_port_range

This can be increased by issuing the following command

echo "1025 65535" > /proc/sys/net/ipv4/ip_local_port_range

To have these new values take effect you might have to do (as root)

/etc/rc.d/init.d/network restart

If you want these new values to survive across reboots you can at them to /etc/sysctl.conf.

 # Allowed local port range
 net.ipv4.ip_local_port_range = 1025 65535
 # net.ipv4.tcp_tw_recycle = 1
 net.ipv4.tcp_fin_timeout = 3

UNIX
Increasing the number of files a process on a UNIX system can open also increases the number of
sockets that process can open. The operating system uses file descriptors to handle filesystem files as
well as pseudo files, such as connections and sockets.

You need the following number of sockets for each client connection:

• DPT, WS — one socket per connection
• HTTP Full Duplex (deprecated), HTTP Polling, HTTP Chunked Streaming — two sockets per

connection

Use the ulimit command to increase the number of open files. You can do this in one of the
following ways:

• As a global setting.

This can be set by your network administrator.
• In the start script for Diffusion.

Edit the diffusion_installation/bin/diffusion.sh file to add the following line at the
start:

ulimit -n open_files

Where the value of open_files is any suitable integer value, for example 8192.

You can use the java.lang:type=OperatingSystem MBean to inspect the number of files on
your UNIX operating system. See the following properties:

MaxFileDescriptorCount

The total number of files that a process on a UNIX system can open. This is the
number that you can set with ulimit -n.

OpenFileDescriptorCount

The number of files that are currently open.

The difference between these values is the number of files you have available to use for sockets.

Diffusion | 801

Publisher design
Considerations when designing a publisher

Consider the following points when designing and writing a publisher:

Data modeling
The way that the data is fed to a publisher and the way in which the state of the data
is maintained within a publisher is key to good performance. Keep message sizes to
a minimum and this can be achieved using fine data granularity enabled by the topic
tree.

Caching
Cache messages wherever possible rather than building new ones every time
one must be sent. This particularly applies to topic load messages which can be
cached to send to every new client that subscribes, and rebuilt only when the data
actually changes. The ideal place to keep such cached messages is with a data object
attached to the topic (see topic data pattern).

String handling
Building of Strings by concatenation is very inefficient in Java. Keep String
concatenation to a minimum. When String content is used, message caching can help
to some degree and wherever possible cache Strings that must be built.

Conditional processing
Excessive use of conditional processing (Checking of topic names, and so on) can be
expensive. Use of the topic data pattern can significantly reduce the need for such
processing when many topics are in use.

Topic naming
As every message must carry the topic name, long topic names can lead to a large
amount of data traffic which can be disproportional to the data being carried. This
can be a particular problem when using hierarchical topics. A solution is to use the
topic aliasing feature so that only short aliases of the topic names are transmitted in
messages.

Concurrency
Concurrent programming means that access to data often must be synchronized but
care must be taken not to synchronize more than is necessary as performance can be
significantly affected.

Demos

Diffusion comes with demo applications that demonstrate certain features of Diffusion.

If you have chosen to include demos as part of the installation process, the demos are included as DAR
files in the demos directory of your Diffusion installation and as source in the demos/src directory of
your Diffusion installation. You can build the demos from source using mvndar.

Diffusion | 802

Demos
The demos in the Demos section of the default Diffusion installation web page demonstrate various
applications of Diffusion. They also contain a connection widget, allowing you to modify the transports
used as well as inspect messages incoming and outgoing from the client.

To access the Diffusion web page and demos, start the web server and type in the following URL into a
browser: http://localhost:8080.

Table 67: Demos provided with the Diffusion server

Tech Magnets demo This demo provides an example of shared state
handled by Diffusion. Tiles are created on the
server in response to client actions. When a tile
is moved by the client, a message is sent to the
Diffusion server, the state is modified and an
exclusive message is sent to all other subscribers.
Open this demo in multiple browsers to see the
realtime DOM updates.

Drawing Board demo Multiple users draw on a virtual blackboard
with colored chalk. All clients are updated in
real time with strokes from the other clients.
Open this demo in multiple browsers to see the
responsiveness of client interactions. Requires
Canvas support in the browser.

Dogfight (game) demo Aerial combat game for up to 8 players. Use the
arrow keys to control your plane and the space
key to fire. Uses HTML 5 features.

Asset Trader View and trade on our cross-platform FX trading
demo where price feeds, instruments, news, and
user interactions are all distributed in real time.

Building the demos using mvndar
You can use the Maven plugin mvndar with the provided pom.xml file to build the demos.

The pom.xml file included in the demos/src directory of your Diffusion already contains the
required reference to mvndar.

To build the demos using mvndar, complete the following steps:

1. From the command line, go to the diffusion_installation/demos/src directory.
2. Set the DIFFUSION_HOME environment variable to the absolute path of your Diffusion

installation.

• On Linux or OS X/macOS, type export DIFFUSION_HOME=/diffusion_installation
• On Windows, type set DIFFUSION_HOME=C:/diffusion_installation

3. Run the mvn clean install command.

Related concepts
Using Maven to build Java Diffusion applications on page 500

http://localhost:8080

Diffusion | 803

Apache™ Maven is a popular Java build tool and is well supported by Java IDEs. You can use Apache
Maven to build your Diffusion applications.

Build server application code with Maven on page 506
The Diffusion API for server application code is not available in the Push Technology public Maven
repository. To build server components, you must install the product locally and depend on
diffusion.jar using a Maven system scope.

Tools

If the tools were installed during the installation process, there are some tools that can help with the
monitoring of Diffusion plus some handy utilities.

There are additional tools and utilities that are available in public repositories, such as GitHub and
Maven.

Tools for Amazon Elastic Compute Cloud (EC2)
This is a description of a number of tools and adaptations which are provided for use when using
Diffusion with Amazon EC2™.

Diffusion includes in tools/ec2/ a number of files useful when deploying Diffusion to an Ubuntu®

image on an EC2 virtual machine.

diffusion.conf

Ubuntu makes use of the Upstart daemon as a replacement for init. Copied to /etc/init/
diffusion.conf this file contains configuration for Upstart to begin Diffusion at boot-time in a
background process as a unprivileged user. It establishes iptables rules to route traffic from privileged
ports to Diffusion.

Users can stop and start Diffusion using Upstart commands, for example, to start the server

service diffusion start

To stop Diffusion

service diffusion stop

To check the status of Diffusion

service diffusion status

In the event that something goes amiss Upstart writes a log file to /var/log/upstart/
diffusion.log

etc/Connectors.xml

Except for two port number changes this is an otherwise regular copy of etc/Connectors.xml
normally found in a Diffusion installation. This edition however binds the Flash policy connector
and the Silverlight policy connector to port numbers greater that 1024, making it possible to run
Diffusion as an unprivileged process. Use this file in conjunction with the iptables rules established in
diffusion.conf

http://aws.amazon.com/ec2/
http://upstart.ubuntu.com/
http://en.wikipedia.org/wiki/Iptables

Diffusion | 804

ec.xml

An illustrative Apache Ant script that can be used to start, stop, and get status from a Diffusion server
running on an Amazon EC2 Linux host. It also demonstrates an inelegant means of deploying and
undeploying a DAR file to/from the remote server, by copying the file to the remote server, then
moving it into the deploy directory.

Table 68: Targets

Property Purpose

start Runs sudo service diffusion start on remote host
using SSH

stop Runs sudo service diffusion stop on remote host using
SSH

status Runs sudo service diffusion status on remote host
using SSH

deploy Uploads local DAR file to staging dir, then moves it into Diffusion
deploy directory

undeploy Removes DAR file from deploy directory, signaling Diffusion to
undeploy related publishers (where possible)

The script is driven by named properties:

Table 69: Properties for targets start, stop and status

Property Purpose

remote.host EC2 host running sshd

remote.username Authentication username, default of ubuntu

remote.keyfile PEM encoded key use during authentication

Table 70: Additional properties for targets deploy and undeploy

Property Purpose

dar.file Name of a DAR file to deploy or undeploy

remote.diffusion.dir Root directory of the remote Diffusion installation

Example deployment:

ant -Dremote.host=54.235.65.36 \
 -Dremote.keyfile=$HOME/.ssh/ec2-push1.pem \
 -Ddar.file=$HOME/Applications/Diffusion5.9.4/demos/dogfight.dar \
 -Dremote.diffusion.dir=/home/ubuntu/Diffusion/Diffusion5.9.4 \
 deploy

The script uses no proprietary Diffusion code and is open to extension during development of a
solution. Both the sshexec and scp tasks depend on the jsch library which might have to be
downloaded.

http://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail
http://www.jcraft.com/jsch/

Diffusion | 805

Tools for Joyent
This is a description of adaptations which are provided for use when using Diffusion within the Joyent
Cloud.

Diffusion includes in tools/joyent/ files useful when deploying Diffusion to an SmartOS virtual
machine in the Joyent cloud.

diffusion.xml

SmartOS makes use of SMF to start services at boot-time. Once tailored for the host and installed into
SMF this file contains configuration for SMF to begin Diffusion at boot-time in a background process as
an unprivileged user called push. This file does not create or assert the existence of a push user.

Users can stop and start Diffusion using SMF commands. For example, to start the server

sudo svcadm enable diffusion

To stop the server

sudo svcadm disable diffusion

http://joyent.com/
http://wiki.smartos.org/display/DOC/Using+the+Service+Management+Facility

Diffusion | 806

Part
VI

Upgrading Guide

If you are planning to move from an earlier version of Diffusion to version 5.9, review the following
information about changes between versions.

We recommend that you upgrade to the latest version of Diffusion as soon as you can.

When upgrading across multiple versions, ensure that you review the release notes and upgrade steps for
all intermediate versions. For example, if you are upgrading from version 4.x to version 5.1, first follow the
upgrade steps from version 4.x to 5.0, then follow the steps to upgrade from version 5.0 to 5.1.

Release notes are available at the following location: http://download.pushtechnology.com

For more information about Diffusion versions and support and upgrade policy, see the Support Center.

Related concepts
What's new in Diffusion 5.9? on page 24
The latest version of Diffusion contains new functions, performance enhancements and bug fixes.

In this section:

• Interoperability
• Upgrading from version 4.x to version 5.1
• Upgrading from version 5.1 to version 5.5
• Upgrading from version 5.5 to version 5.6
• Upgrading from version 5.6 to version 5.7
• Upgrading from version 5.7 to version 5.8
• Upgrading from version 5.8 to version 5.9
• Upgrading to a new patch release
• Known issues in Diffusion 5.9

http://download.pushtechnology.com
https://www.pushtechnology.com/support/kb/206400337
https://www.pushtechnology.com/support/kb/205675608
https://support.pushtechnology.com

Diffusion | 807

Interoperability

If you plan to use different versions of Diffusion servers and clients together, review the following
information that summarizes support between versions.

Support for new topic types

Diffusion version 5.7 introduced the following new topic types: JSON and binary. These topic types are
not supported by previous versions of Diffusion or by Classic API clients in any version.

If you use JSON or binary topics, ensure that you use 5.7 or later and that you use the Unified API.
Attempting to use the Classic API with JSON or binary topics is not supported and results in undefined
behavior.

Interoperation between clients and servers

The following table describes which Unified API client versions interoperate with which server
versions:

Table 71: Unified API interoperation

Server version

Client version 5.1 5.6 5.7 5.8 5.9

5.1 Unified
API

5.6 Unified
API

5.7 Unified
API

5.8 Unified
API

5.9 Unified
API

The following table describes which Classic API client versions interoperate with which server versions:

Table 72: Classic API (deprecated) interoperation

Server version

Client version 5.1 5.6 5.7 5.8 5.9

5.1 Classic API

5.6 Classic API

5.7 Classic API

5.8 Classic API

Diffusion | 808

Server version

Client version 5.1 5.6 5.7 5.8 5.9

5.9 Classic API

Interoperation between servers

Replication

All Diffusion servers within a cluster must be of the same level.

Server
versions

5.1 5.6 5.7 5.8 5.9

5.1

5.6

5.7

5.8

5.9

Fan out

All servers later than 5.6 interoperate.

To receive propagated missing topic notifications through fan-out connections, all
servers must be version 5.9 or later.

Server
versions

5.1 5.6 5.7 5.8 5.9

5.1

5.6

5.7

5.8

5.9

Publishers

DEPRECATED: Publishers deployed to Diffusion servers can connect to and
communicate with publishers deployed to Diffusion servers of different versions.

Diffusion | 809

Server
versions

5.1 5.6 5.7 5.8 5.9

5.1

5.6

5.7

5.8

5.9

Related concepts
Upgrading from version 4.x to version 5.1 on page 809
Consider the following information when upgrading from Diffusion version 4.x to version 5.1.

Upgrading from version 5.1 to version 5.5 on page 815
Consider the following information when upgrading from Diffusion version 5.1 to version 5.5.

Upgrading from version 5.5 to version 5.6 on page 822
Consider the following information when upgrading from Diffusion version 5.5 to version 5.6.

Upgrading from version 5.6 to version 5.7 on page 826
Consider the following information when upgrading from Diffusion version 5.6 to version 5.7.

Upgrading from version 5.7 to version 5.8 on page 829
Consider the following information when upgrading from Diffusion version 5.7 to version 5.8.

Upgrading from version 5.8 to version 5.9 on page 832
Consider the following information when upgrading from Diffusion version 5.8 to version 5.9.

Upgrading to a new patch release on page 835
When upgrading to a new patch release there are typically no changes to the configuration values
or the APIs. All that is required is to copy your existing files from the old installation to the new
installation.

Known issues in Diffusion 5.9 on page 836
Be aware of the following issues when using Diffusion 5.9.

Upgrading from version 4.x to version 5.1

Consider the following information when upgrading from Diffusion version 4.x to version 5.1.

Upgrading your applications

Server-side components

Recompile all Java application components that are deployed to the Diffusion
server, such as publishers and authorization handlers, against the new version
diffusion.jar file. This file is located in the lib directory of your new Diffusion
server installation.

Diffusion | 810

Some features that your Java application components might use have been removed
or deprecated. Review the API changes information in the following section to see if
these changes affect your applications.

Remote control

The remote control APIs are no longer supported. Reimplement your remote control
as a control client using the Unified API control features. For more information, see
and .

Event publishers

The event publisher APIs are deprecated. Reimplement your event publisher as a
control client using the Unified API control features. For more information, see and .

Clients

You can choose not to recompile your client applications and continue to use client
libraries from a previous release. If you choose to use client libraries from a previous
release, ensure that the libraries are compatible with the new server. For more
information, see Interoperability on page 807.

You can choose to upgrade your client applications to use the new client libraries.
To do this, recompile the client applications against the client libraries located in
the clients directory of your new Diffusion server installation. Some features that
your client applications might use have been removed or deprecated. Review the
API changes information in the following section to see if these changes affect your
applications.

API changes

Further information about removed or deprecated features is available in the release notes provided in
the docs directory of your Diffusion installation.

The following table lists API classes and methods that have been removed. If you attempt to recompile
application code that uses these classes or methods against the version 5.1 APIs, it fails. Rewrite your
application code to not include these features.

Table 73: API features removed in version 5.0 and 5.1

API
affected

Removed feature Suggested alternative

Java API

.NET API

Remote control Reimplement your remote control
applications as control clients using the
Unified API.

For more information, see and .

Java API Methods in the APIProperties class:

• setInboundThreadPoolSize

• getInboundThreadPoolSize

Use the ThreadsConfig class instead.

For more information, see Java Unified API
documentation.

Android
API

Methods in the DiffusionClient class:

• getCredentials
• setCredentials

Use the methods in ServerDetails or
ConnectionDetails instead.

For more information, see Android Unified
API documentation.

http://docs.pushtechnology.com/docs/5.9.4/java/index.html
http://docs.pushtechnology.com/docs/5.9.4/java/index.html
http://docs.pushtechnology.com/docs/5.9.4/android/index.html
http://docs.pushtechnology.com/docs/5.9.4/android/index.html

Diffusion | 811

API
affected

Removed feature Suggested alternative

Java API MessageComparator interface and
compareTo and equals methods on all
Message classes.

Use conflation policies instead.

For more information, see see Java Unified
API documentation.

Java API TopicDetails class Use the TopicDefinition class instead.

For more information, see Java Unified API
documentation.

Java API Methods in the ThreadsConfig class:

• setWriterSelectors
• getWriterSelectors

No longer used and no alternative required.

Java API Management, Proxy, and
ServerProxy interfaces

No longer used and no alternative required.

Java API Publisher.consoleLogLevelChange No longer used and no alternative required.

Java API ThreadServer.getOutboundThreadPool

Publisher
API

Event
Publisher
API

The capability to set the maximum
queue size to -1, which specified
an unbounded queue size, using
Client.setMaximumQueueSize().

Set the maximum queue size value to a
positive integer.

Java
Classic
API

TopicFetchHandler Use the Publisher API or Unified API.

The following table lists API classes and methods that have been deprecated. If your application code
uses these classes or methods, consider rewriting your application code to not include these features.

Table 74: API features deprecated in version 5.0 and 5.1

API
affected

Deprecated feature Suggested alternative

Java API Using authorization handlers
for authentication and the
AuthorisationHandler.canConnect
method.

Use authentication handlers instead.

For more information, see User-written
authentication handlers on page 140.

Java API APIProperties class Use methods in the Utils or
RootConfig classes instead.

For more information, see Java Unified API
documentation.

Java API

.NET API

Event publishers Reimplement your event publishers as
control clients using the Unified API.

For more information, see and .

http://docs.pushtechnology.com/docs/5.9.4/java/index.html
http://docs.pushtechnology.com/docs/5.9.4/java/index.html
http://docs.pushtechnology.com/docs/5.9.4/java/index.html
http://docs.pushtechnology.com/docs/5.9.4/java/index.html
http://docs.pushtechnology.com/docs/5.9.4/java/index.html
http://docs.pushtechnology.com/docs/5.9.4/java/index.html

Diffusion | 812

API
affected

Deprecated feature Suggested alternative

Java Client.getNumberOfMessagesSent
and
Client.getNumberOfMessagesReceived

Use Client.getStatistics instead.

For more information, see Java Unified API
documentation.

Java Methods that navigate up from a
configuration item to its parent
configuration item.

Instead navigate down from the root
configuration item.

Java MNode.getMessage No longer used and no alternative required.

Unified
API

TopicUpdateControl.TopicSource

TopicUpdateControl.TopicSource.Default

TopicUpdateControl.TopicSource.Updater

TopicUpdateControl.UpdateSource

TopicUpdateControl.UpdateSource.Default

TopicUpdateControl.Updater

Java
Unified
API

Messaging.Listener and associated
methods

Messaging.MessageStream

Java
Unified
API

Topics.Listener and associated
methods

Topics.TopicStream

Java
Unified
API

Updater.update() methods that take
both Content and UpdateOptions as
parameters

Updater.update() methods that take
Update as a parameter

Java
Unified
API

comparator() and
duplicatesPolicy() methods in the
PagedTopicDetails.Builder class

order(String),
order(Duplicates, String), or
unordered()

Java
Unified
API

getComparator() and
getDuplicatesPolicy()
methods in the
PagedTopicDetails.Attributes
class

getOrderingPolicy()

.NET
Unified
API

All SetProperty() methods in the
ISessionFactory class, where Property
is the name of the value you want to
change

Property()

Unified
API

The autoSubscribe method in the
TopicDetails.Builder interface. In
future, auto-subscribe is always true.

None

JavaScript
Classic
API

The functions setCrypted() and
getCrytped()

setEncrypted() and
isEncrypted()

Java
Server API

The functions getStartTimeMillis(),
getUptime(), and
getUptimeMillis() on the
c.p.d.api.topic.Subscription
class

You can use a publisher to get equivalent
functionality.

http://docs.pushtechnology.com/docs/5.9.4/java/index.html
http://docs.pushtechnology.com/docs/5.9.4/java/index.html

Diffusion | 813

API
affected

Deprecated feature Suggested alternative

Java
Unified
API

All static fields in the
c.p.d.client.types.Constants
class

These fields are now available in the
c.p.d.client.content.Record
class.

Java
Unified
API, .NET
Unified
API

RecordContentReader.hasMore() RecordContentReader.hasMoreRecords(),
RecordContentReader.hasMoreFields()

The following list includes behavior that has changed in the API. If your application code relies on the
previous behavior, rewrite your application code to take into account the new behavior.

• The Publisher API methods that add topics no longer block until automatic pre-emptive
subscriptions have been processed. Matching pre-emptive subscriptions are be completed in the
background.

• The Java API now enables you to set auto-subscribe using a TopicDefinition
• The format of the generated client IDs has changed
• getStatistics no longer returns null if statistics recording is disabled. Instead it returns a value

of -1.
• Clients that subscribe to topics that they are already subscribed to, no longer receive an initial

topic load.
• An anonymous user (a user with an empty string as username) cannot authenticate with

a password. If a client provides a password but no username or an empty username, the
authorization handler cannot retrieve the password from the getCredentials() method.

• The UpdateSource API that replaces the TopicSource API in the Unified API behaves in a very
similar way, but has some differences.

• UpdateSource includes an onRegister callback, which provides a RegisteredHandler
that the client can use to deregister as an update source. Previously, TopicSource only provided
the ability to deregister as an update source to the client that was the active update source.

• UpdateSource includes an onError callback, which indicates to a client when an update
source is prematurely closed.

• Updaters do not accept an UpdateOptions object as a parameter. Instead an Update object
is used to contain the update content and any additional information about the update.

For more information about how update sources work, see Updating topics on page 327.
• In the Unified API, the logging level at which the Topics.Listener.Default logs updates has

changed from “warn” to “debug”.
• In the Unified API, topic and messaging listeners are called in the order that they were registered. In

previous releases, these listeners might have been called in any order.
• In the Unified API, you must set a fallback topic or messaging listener explicitly. In previous

releases, a fallback topic or messaging listener was set by default.
• In the Unified API, a notification occurs for any type of selector that does not match with any topics.

In previous releases, a missing topic notification occurred only if a topic path selector was used for
subscribe or fetch and there was no such topic.

• In the Unified API, you can add multiple session listeners and remove session listeners. In previous
releases, you could add only one session listener.

Upgrading your server installation

To upgrade your Diffusion server installation, complete the following steps:

1. Use the graphical or headless installer to install the new version of Diffusion.

Diffusion | 814

For more information, see Installing the Diffusion server on page 523.
2. You can copy your existing license file from your previous installation to the etc directory of your

new installation.
3. You can copy your existing configuration files from the etc directory of your previous installation

to the etc directory of your new installation. When you do, consider making the following changes:

• In the WebServer.xml configuration file for your production installation, remove or
comment out the configuration for the HTTP deploy service.

Access to this service is not restricted. If you enable the deploy service, you must restrict access
to the deploy URL by other methods to prevent unauthorized or malicious access. For example,
by setting up restrictions in your firewall.

• Remove the writer-selector configuration from the Server.xml configuration file.
Writer selectors are no longer used.

Warning: Do not confuse writer selectors with write selectors.

• If you now use authentication handlers for authentication, configure these handlers in the
Server.xml configuration file.

• If you now use the replication high availability features, configure these in the
Replication.xml configuration file.

• If you use the WhoIs service, but do not explicitly configure it, you must now configure the
service in the Server.xml configuration file.

In previous releases, if no configuration was specified for the WhoIs service, the service started
with the default configuration. In this release, the service does not start unless configuration is
present in the Server.xml configuration file.

• In the Server.xml and Connectors.xml configuration files, if you have set maximum
client queue depths to be unbounded (0), change these values. Unbounded outbound client
queues are no longer allowed.

The validation of the configuration files has been relaxed. The order of the element within the files
is less strict.

4. If you start the Diffusion server from your own scripts or Java programs, you must update them to
take into account the following changes:

• The Java license agent has been removed. Remove the following argument from the Java
command you use to start the server:

-javaagent:../lib/licenceagent.jar=../etc/licence.lic,../etc/
publicKeys.store

• New system properties are required by the Diffusion server.

Include the following properties in the Java command that starts the server:

-Ddiffusion.license.file=diffusion_installation/etc/licence.lic
-Ddiffusion.keystore.file=diffusion_installation/etc/
publicKeys.store
-Ddiffusion.home=diffusion_installation/lib

You can also supply these properties as VM arguments.

For more information, see Running from within a Java application on page 626

If you use the start scripts provided with the Diffusion installation, you do not need to make any
changes.

Diffusion | 815

Behavior changes at the Diffusion server

The following list includes behavior that has changed at the server. If your solution relies on the
previous behavior, adjust your solution to take into account the new behavior.

• In previous releases, messages that required acknowledgment were prioritized over other
messages. This might have caused ordering problems. From 5.1, messages that require
acknowledgment are queued for sending in the order of receipt. You might have to increase your
acknowledgment timeout value to allow for the additional queuing time.

• The non-configurable 5s timeout between HTTP polls has been removed. Use <system-ping-
frequency> for HTTP connectors.

Related concepts
Upgrading from version 5.1 to version 5.5 on page 815
Consider the following information when upgrading from Diffusion version 5.1 to version 5.5.

Upgrading from version 5.5 to version 5.6 on page 822
Consider the following information when upgrading from Diffusion version 5.5 to version 5.6.

Upgrading from version 5.6 to version 5.7 on page 826
Consider the following information when upgrading from Diffusion version 5.6 to version 5.7.

Upgrading from version 5.7 to version 5.8 on page 829
Consider the following information when upgrading from Diffusion version 5.7 to version 5.8.

Upgrading from version 5.8 to version 5.9 on page 832
Consider the following information when upgrading from Diffusion version 5.8 to version 5.9.

Upgrading to a new patch release on page 835
When upgrading to a new patch release there are typically no changes to the configuration values
or the APIs. All that is required is to copy your existing files from the old installation to the new
installation.

Known issues in Diffusion 5.9 on page 836
Be aware of the following issues when using Diffusion 5.9.

Related reference
Interoperability on page 807
If you plan to use different versions of Diffusion servers and clients together, review the following
information that summarizes support between versions.

Upgrading from version 5.1 to version 5.5

Consider the following information when upgrading from Diffusion version 5.1 to version 5.5.

Upgrading your applications

Server-side components

Recompile all Java application components that are deployed to the Diffusion
server, such as publishers and authorization handlers, against the new version
diffusion.jar file. This file is located in the lib directory of your new Diffusion
server installation.

Some features that your Java application components might use have been removed
or deprecated. Pay attention to new deprecation warnings and compilation failures
that occur during recompilation and review the API changes information in the
following section to see if these changes affect your applications.

Diffusion | 816

Event publishers

The event publisher APIs have been removed. Reimplement your event publisher as a
client using the Unified API control features. For more information, see .

JMS adapter

The legacy JMS adapter has been deprecated and replaced with a new version. These
JMS adapters are not compatible.

To move to the latest JMS adapter, use the JMSAdapter.xml configuration
file to configure the behavior. Refer to the provided XML and XSD file because the
configuration has changed since the previous version. For more information, see
JMSAdapter.xml on page 684.

Note: Not recommended: To continue using the legacy JMS adapter,
version 5.1, rename the JMSAdapter.xml configuration file used with
the previous versions of Diffusion to JMSAdapter51.xml.

Clients

You can choose not to recompile your client applications and continue to use client
libraries from a previous release. If you choose to use client libraries from a previous
release, ensure that the libraries are compatible with the new server. For more
information, see Interoperability on page 807.

You can choose to upgrade your client applications to use the new client libraries.
To do this, recompile the client applications against the client libraries located in
the clients directory of your new Diffusion server installation and repackage your
client application with the new library.

Alternatively, the Java library is available in the Push Public Maven Repository and
the JavaScript library from NPM.

Some features that your client applications might use have been removed or
deprecated. Review the API changes information in the following section to see if
these changes affect your applications.

Note: Java clients: When you recompile your Java clients with the new
version of the libraries, be aware that the Diffusion log framework is no
longer included in the Java client library. Applications should add an
SLF4J implementation to their classpath, such as Logback, Log4j 2, or
the SLF4J bridge to java.util.Logging.

Note: .NET clients: When you recompile your .NET clients with the new
version of the libraries, be aware that the latest .NET client libraries
require version 4.5 or later of the .NET Framework. In addition, only a
single Diffusion DLL is now required to compile a Diffusion .NET client.
For more information, see .NET on page 203.

API changes

Further information about removed or deprecated features is available in following locations:

• The release notes provided in the docs directory of your Diffusion installation or online at http://
docs.pushtechnology.com/docs/5.5.1/release/ReleaseNotice.html

• The API documentation located at http://docs.pushtechnology.com/5.5

The following table lists API classes and methods that have been removed. If you attempt to recompile
application code that uses these classes or methods against the version 5.5 APIs, it fails. Rewrite your
application code to not include these features.

http://download.pushtechnology.com/maven/com/pushtechnology/diffusion/diffusion-client/5.5.1/
https://www.npmjs.com/package/diffusion
http://docs.pushtechnology.com/docs/5.5.1/release/ReleaseNotice.html
http://docs.pushtechnology.com/docs/5.5.1/release/ReleaseNotice.html
http://docs.pushtechnology.com/5.5

Diffusion | 817

Table 75: API features removed in version 5.5

API
affected

Removed feature Suggested alternative

Event
Publisher
API

All Use the Unified API.

Java API getConflation method on
RootConfig

getConflation method on
ServerConfig

.NET
Classic
API

Credentials V4Credentials This change was made
to disambiguate between the credentials
object in the Classic API and that in the
Unified API.

The following table lists API classes and methods that have been deprecated. If your application code
uses these classes or methods, consider rewriting your application code to not include these features.

Table 76: API features deprecated in version 5.5

API
affected

Deprecated feature Suggested alternative

Java
Unified
API, .NET
Unified
API, C
Unified
API

Session.start() and the associated
'initialising' state. Now a no-op.

The asynchronous 'open' method on
SessionFactory which has callback to
notify session opened (or error).

Java
Classic
API

Client.setCredentials(),
Client.getCredentials()

None

Publisher
API

AuthorisationHandler.credentialsSupplied()None

Java
Unified
API

TopicSubscriptionHandler Use routing topics instead

Publisher
API

XMLPropertiesListener,
XMLProperties

None

Publisher
API

MultiplexerConfig.getLoadBalancer()
and
MultiplexerConfig.setLoadBalancer()

None

These methods enable you to specify the
load balancing policy for multiplexers.
Previously, round robin and least clients
policies were available. In future, only
the default, round robin, policy will be
provided.

Java API com.pushtechnology.com.api.config.ManagementUserConfig
and related methods in
com.pushtechnology.com.api.config.ManagementConfig

Instead use the system authentication
store or a custom authentication handler
to configure remote JMX users.

Diffusion | 818

API
affected

Deprecated feature Suggested alternative

.NET API Session.getFetchFeature and the
Fetch feature

Session.getTopicFeature. The
fetch capabilities are included in the Topics
feature.

.NET API,
Java API

Headers interface ReceiveContext.getHeaderList()
and
SendOptions.headers(List<String>).
Headers are now represented in the API as
a list of Strings. .

Java API RootConfig.getMessageLengthSize,
RootConfig.setMessageLengthSize

These methods are both deprecated and
no-ops. The message length size is now
hard-coded to 4 bytes.

Publisher
API

TopicProperty.AUTO_SUBSCRIBE
property. This is ignored. Auto-subscribe is
always true.

None

Unified
API

ClientControl.close methods that
include a String reason parameter

Use ClientControl.close methods
that do not include this parameter.

The reason parameter is not passed to
the client being closed. If you want to notify
the client being closed of the reason for
its closure, use the MessagingControl
feature to send a message to the client.
To ensure that the message is received
before closing the client session, wait
for callback to return before calling
ClientControl.close.

Configuration
API

WriteSelectorConfig This is ignored.
Write selectors have been unified with
other types of selector.

SelectorThreadPoolConfig All
selectors are now drawn from the selector
thread pool.

The following list includes behavior that has changed in the API. If your application code relies on the
previous behavior, rewrite your application code to take into account the new behavior.

• You can now create a SessionId object from the session ID String in the Java Unified API and
.NET Unified API.

• The result of calling the AuthorisationHandler.canWrite() is no longer cached. If an
authorisation handler is registered, it is called every time a client sends a message to the server.

Note: We recommend you use role-base security instead of authorisation handlers.

• Auto-subscription is enabled for every topic and cannot be disabled. If a client attempts to
subscribe to a topic that does not exist, the subscription request is saved and when the topic is
created, the client is automatically subscribed to the topic.

• The Publisher.subscription() method no longer sends a load message for a topic that has
state. When a topic with state — that is, a topic whose data type is not TopicDataType.NONE
— is first subscribed to, the topic load message is sent before Publisher.subscription() is
called. The default implementation of the Publisher.subscription() method does nothing.

• Topic loaders are only called for topics that have no state — that is, topics whose data type is
TopicDataType.NONE.

• SlaveTopicData no longer extends PublishingTopicData.
• Updates to slave topics no longer update the master topic.

Diffusion | 819

• Changes to how the number of subscribers to a topic are counted:

• Slave topics only count subscriptions made directly to the slave topic.

In previous releases, subscriptions to the master topic and other slave topics of the same
master were counted as subscriptions to a slave.

• Master topics count all subscriptions made directly to the master topic and all subscriptions
made indirectly through slave topics.

• Topics subscribed to through a routing topic count both direct subscriptions to the topic and
indirect subscriptions through the routing topic.

These changes affect the return values from methods that query whether a topic has subscribers or
the number of topic subscribers.

• Classic API clients are no longer required to be subscribed to topic paths that they send messages
on. However, a topic must exist at the topic path for a Classic API client to receive a message
through the topic path.

Classic API clients are still required to be subscribed to topic paths to receive messages on those
topic paths.

Upgrading your server installation

Note:

At release 5.5, the Diffusion server is tested and supported on Java HotSpot Development Kit 8
(latest update).

The Diffusion server also runs on Java HotSpot Development Kit 7. However, Oracle withdrew
support for Java 7 in April 2015. We recommend that you move to the latest update of Java 8 as
soon as possible.

To upgrade your Diffusion server installation, complete the following steps:

1. Use the graphical or headless installer to install the new version of Diffusion.

For more information, see Installing the Diffusion server on page 523.
2. You can copy your existing license file from your previous installation to the etc directory of your

new installation.
3. You can copy most of your existing configuration files from the etc directory of your previous

installation to the etc directory of your new installation. When you do, consider making the
following changes:

• The structure of JMSAdapter.xml file has changed. Do not copy your existing
JMSAdapter.xml file to the etc directory of your new installation. Instead copy it to etc/
JMSAdapter51.xml. This change is because the legacy JMS adapter is deprecated and is
replaced with a new version. For more information, see Configuring the JMS adapter on page
675

• The SubscriptionValidationPolicy.xml configuration file is now deprecated. Use the
roles and permissions provided in the new security model to define which clients can subscribe
to which topics.

• Configuring remote JMX users in the Management.xml configuration file is now deprecated.
Instead use the system authentication store or a custom authentication handler to configure
remote JMX users.

• When configuring log levels in the Logs.xml configuration file, use the SLF4J log levels:
ERROR, WARN, INFO, DEBUG, or TRACE. The java.util.Logging log level values (SEVERE,
WARING, INFO, FINE, and FINEST) are still supported, but are deprecated.

• You can now configure the format of the date in log file names in the Logs.xml configuration
file by using the optional <date-format> element.

Diffusion | 820

• Configuring the multiplexer load balancing policy in the Server.xml configuration file is
now deprecated. In future, only one load balancing policy will be provided for multiplexers: the
default, round robin, policy.

• In the Server.xml configuration file, when defining the file name of the GeoIP database
file you must use an absolute path or a path relative to the Diffusion installation directory.
Backwards compatibility with version 4.6 has been removed. You can no longer specify a path
relative to the configuration directory.

• The connector for port 8081 has been removed from the Connectors.xml configuration file.
If your clients connect on this port, you must either configure this port in Connectors.xml or
change the port that your clients connect on.

• You are now required to configure a selector thread pool definition. Update your Server.xml
configuration file to ensure that it includes this definition.

• The write selector configuration in the Server.xml configuration file is deprecated and any
configuration associated with write selectors is ignored. All selectors are now drawn from the
same pool. Use the selector thread pool definition elements to define the number and behavior
of selectors.

Behavior changes at the Diffusion server

The following list includes behavior that has changed at the server. If your solution relies on the
previous behavior, adjust your solution to take into account the new behavior.

• The message fragmentation capability has been removed from Diffusion.

Topic message fragmentation was intended to prevent head-of-line blocking by large messages.
The API allowed messages for a given topic messages to be delivered out of order, which is
incompatible with snapshot/delta processing.

If you applied topic message fragmentation to work around the maximum message size
limitations, particularly for large topic load messages, we recommend instead that you increase
the maximum message size to accommodate the largest possible application message.

Increasing the maximum message size to support large topic load messages will also require
increasing the client input buffer and server output buffer sizes. The peak memory requirement
is lower than needed when topic message fragmentation is enabled, but is approximately twice
the maximum message size. In a future release, we will improve the buffer handling to allow the
maximum message size to exceed the network buffer size.

The default value of the input buffer size has been increased to 1M.
• The default number of multiplexers has changed from 2 to the number of available processors.
• Changes to how input buffers are allocated improve the performance and memory usage of the

Diffusion server.

Input buffers are no longer bound to clients, instead they are shared by all reading tasks. Where
previously the number of connected clients defined the number of input buffers, now the
maximum number of input buffers is bounded by the configured thread pool size.

The maximum amount of memory used for input buffers is less than the thread pool size multiplied
by the input buffer size plus any small memory usage resulting from partial reads.

• It is possible to define a set of selector thread pools and have a connector refer to a member of this
set name. If no pool is defined, each connector is assigned a default pool with size = 1.

• Reconnection is enabled by default, with a reconnection timeout of 60 seconds. If you do not want
client sessions to be able to reconnect, disable reconnect in the Connectors.xml configuration
file.

When reconnection is enabled, the Diffusion server continues to queue messages for a client
session for the whole reconnection period. This can affect performance.

Diffusion | 821

• The etc directory of your Diffusion installation is no longer on the classpath. If you have included
any files in the etc directory that you require to be on the classpath, ensure that these files are
included in the classpath by other means:

• Place resource files such as hazelcast.xml that must be on the JVM system classpath in the
data directory of the Diffusion installation.

• Place resource files that are only loaded by deployed application code, such as publishers or
authentication handlers, in the ext directory of the Diffusion installation.

• Wrapper scripts for jstatd and jstack are no longer provided in the tools directory of your
Diffusion server installation.

• Messages sent on topic paths are no longer counted in the topic statistics. Only updates to the
topic are counted.

• The message length size is no longer configurable. In all cases it is hard-coded to 4 bytes. If you
have earlier versions of the Diffusion server as part of your solution, ensure that their message
length size is configured to be 4 bytes or the servers will not interoperate.

• The names of the keystores provided in the Diffusion installation have changed.

• publicKeys.store is now licence.keystore
• keystore is now sample.keystore

The start scripts provided by the Diffusion installation have been updated accordingly. If you use
these scripts, you do not need to make any changes.

If you start the Diffusion server from your own scripts, you must update them to take into account
this change. Update the following property in the Java command that starts the server to point to
the new keystore name:

-Ddiffusion.keystore.file=diffusion_installation/etc/
licence.keystore

If you start the server from a Java program and supply the keystore name as a VM arguments,
update the VM to point to the new keystore name. For more information, see Running from within a
Java application on page 626

• The supported version of Google protocol buffers is now 2.6.1. In previous versions it was 2.4.1.
• Due to the addition of the new JavaScript Unified API, the JavaScript API you might have been

using with previous versions of Diffusion is now called the Classic API.

The library for the JavaScript Classic API is now called diffusion-js-classic-version.js
and the API documentation for it is now located in the js-classic folder of the documentation.

Related concepts
Upgrading from version 4.x to version 5.1 on page 809
Consider the following information when upgrading from Diffusion version 4.x to version 5.1.

Upgrading from version 5.5 to version 5.6 on page 822
Consider the following information when upgrading from Diffusion version 5.5 to version 5.6.

Upgrading from version 5.6 to version 5.7 on page 826
Consider the following information when upgrading from Diffusion version 5.6 to version 5.7.

Upgrading from version 5.7 to version 5.8 on page 829
Consider the following information when upgrading from Diffusion version 5.7 to version 5.8.

Upgrading from version 5.8 to version 5.9 on page 832
Consider the following information when upgrading from Diffusion version 5.8 to version 5.9.

Upgrading to a new patch release on page 835

Diffusion | 822

When upgrading to a new patch release there are typically no changes to the configuration values
or the APIs. All that is required is to copy your existing files from the old installation to the new
installation.

Known issues in Diffusion 5.9 on page 836
Be aware of the following issues when using Diffusion 5.9.

Related reference
Interoperability on page 807
If you plan to use different versions of Diffusion servers and clients together, review the following
information that summarizes support between versions.

Upgrading from version 5.5 to version 5.6

Consider the following information when upgrading from Diffusion version 5.5 to version 5.6.

Upgrading your applications

Server-side components

Recompile all Java application components that are deployed to the Diffusion
server, such as publishers and authorization handlers, against the new version
diffusion.jar file. This file is located in the lib directory of your new Diffusion
server installation.

Some features that your Java application components might use have been removed
or deprecated. Pay attention to new deprecation warnings and compilation failures
that occur during recompilation and review the API changes information in the
following section to see if these changes affect your applications.

Clients

You can choose not to recompile your client applications and continue to use client
libraries from a previous release. If you choose to use client libraries from a previous
release, ensure that the libraries are compatible with the new server. For more
information, see Interoperability on page 807.

You can choose to upgrade your client applications to use the new client libraries.
To do this, recompile the client applications against the client libraries located in
the clients directory of your new Diffusion server installation and repackage your
client application with the new library.

Alternatively, the Java library is available in the Push Public Maven Repository and
the JavaScript library from NPM.

Some features that your client applications might use have been removed or
deprecated. Review the API changes information in the following section to see if
these changes affect your applications.

API changes

Further information about removed or deprecated features is available in following locations:

• The release notes provided in the docs directory of your Diffusion installation or online at http://
docs.pushtechnology.com/5.6

• The API documentation located at http://docs.pushtechnology.com/5.6

http://download.pushtechnology.com/maven/com/pushtechnology/diffusion/diffusion-client/5.6.6/
https://www.npmjs.com/package/diffusion
http://docs.pushtechnology.com/5.6
http://docs.pushtechnology.com/5.6
http://docs.pushtechnology.com/5.6

Diffusion | 823

The following table lists API classes and methods that have been removed. If you attempt to recompile
application code that uses these classes or methods against the version 5.6 APIs, it fails. Rewrite your
application code to not include these features.

Table 77: API features removed in version 5.6

API
affected

Removed feature Suggested alternative

Java Methods that navigate up from a
configuration item to its parent
configuration item.

This excludes the getServerConfig
method in ReplicationConfig, which
is only deprecated at this release.

Instead navigate down from the root
configuration item.

Java Methods that navigate up from a
configuration item to its parent
configuration item.

Instead navigate down from the root
configuration item.

.NET
Unified
API

The
IRecordContentReader.HasMore
property.

The HasMoreFields() or
HasMoreRecords() methods.

Publisher
API

Topic fetch handlers. Applications can provide fetch
results for stateless topics using the
Publisher.fetchForClient() API.

The following table lists API classes and methods that have been deprecated. If your application code
uses these classes or methods, consider rewriting your application code to not include these features.

Table 78: API features deprecated in version 5.6

API
affected

Deprecated feature Suggested alternative

Unified
API API

The setSessionDetailsListener,
setSessionDetails, and
getSessionDetails in
ClientControl

Use a session properties listener instead.

Java The getServerConfig method in
ReplicationConfig

Accessors for the parent configuration
object are no longer used. Instead navigate
down from the parent configuration item.

Java
Publisher
API

The Management class, which provided
JMX Management utilities.

Instead use methods available through the
JVM runtime.

Java
Publisher
API

All topic locking methods
and associated properties.
TopicProperty.LOCKABLE,
TopicProperty.LOCK_TIMEOUT,
TopicData.lock(),
TopicData.unlock(),
TopicData.isLockedByCurrentThread(),
Topic.isLockable(),
Topic.lock(), Topic.unlock(),

Topic locking is handled implicitly for
stateless topics. Stateful topics can be
updated transactionally. This transactional
mechanism manages the topic locks.

Diffusion | 824

API
affected

Deprecated feature Suggested alternative

Topic.isLockedByCurrentThread(),
Topic.setLockTimeout(), and
Topic.getLockTimeout()

Java
Publisher
API

Publisher.publishMessage()
methods and
Publisher.publishExclusiveMessage()

For stateless topics, use
Topic.publishMessage(). For
stateful topics (those with topic data), use
PublishingTopicData.publishMessage().

Java
Publisher
API

TopicStatistics.getInboundMessageStatistics()None.

Java
Publisher
API

Client.getFetchReply(),
TopicClient.sendFetchReply()
This change is part of deprecating fetch for
stateless topics.

Publisher.fetchForClient()

The following list includes behavior that has changed in the API. If your application code relies on the
previous behavior, rewrite your application code to take into account the new behavior.

• In the C Unified API, the session_create_async() no longer returns a session object. To
prevent the creation of an invalid pointer The method now returns NULL regardless of success or
failure.

Instead retrieve the session object on_connected callback passed to
session_create_async().

• On Java Unified API clients, new tasks that cannot be added to the inbound thread pool queue
because the queue is full block until there is space for them on the queue. This is a change in
behavior, as previously the calling thread ran the task instead of blocking, resulting in out of order
processing.

Java clients that run more than one client session within the same JVM must increase their
inbound thread pool queue size to at least 3 times the number of sessions.

• In the Publisher API, the TopicClient.subscribe() and TopicClient.unsubscribe()
methods now return false or an empty list, depending on their return type. In future releases, the
return type of the TopicClient.unsubscribe() methods will be void.

• In the Publisher API, the Topic.publishMessage() methods now enforce an order to topic
updates made using stateless topics. In previous releases, it was possible for clients to receive
updates through stateless topics in different orders.

• In the Publisher API, the Topic.publishMessage() methods now check whether the topic is
deleted before publishing to it. If the topic is deleted, the method throws an exception.

• In the Publisher API, the Topic.publishMessage() methods print a warning to the log file if
they are used to update stateful topics, which are topics with topic data. In future releases, using
Topic.publishMessage() methods this way will cause an exception.

• In the Publisher API, the PublishingTopicData.publishMessage() methods print
a warning to the log file if they are called outside of an update block. In future releases, using
PublishingTopicData.publishMessage() methods this way will cause an exception.

• All inbound message statistics now have a value of -1. Topic inbound message statistics are
disabled and all related methods deprecated.

• Changes to how the number of subscribers to a topic are counted. Each subscription by another
Diffusion server using either fan-out replication or high-availability replication is counted in the
total number of subscribers to a topic.

Diffusion | 825

Upgrading your server installation

Note:

At release 5.6, the Diffusion server is tested and supported on Java HotSpot Development Kit 8
(latest update).

The Diffusion server also runs on Java HotSpot Development Kit 7. However, Oracle withdrew
support for Java 7 in April 2015. We recommend that you move to the latest update of Java 8 as
soon as possible.

To upgrade your Diffusion server installation, complete the following steps:

1. Use the graphical or headless installer to install the new version of Diffusion.

For more information, see Installing the Diffusion server on page 523.
2. You can copy your existing license file from your previous installation to the etc directory of your

new installation.
3. You can copy most of your existing configuration files from the etc directory of your previous

installation to the etc directory of your new installation. When you do, consider making the
following changes:

• In the Server.xml configuration file, replace the <multiplexers> element and its child
elements with the <multiplexer> element and its child elements.

The <multiplexers> element is deprecated and will be removed in a future release. For
more information, see Server.xml on page 552.

Behavior changes at the Diffusion server

The following list includes behavior that has changed at the server. If your solution relies on the
previous behavior, adjust your solution to take into account the new behavior.

• The DiffusionServer class now provides a lifecycle listener. When starting your Diffusion
server from within a Java application, you can register the lifecycle listener callback that is notified
when the server changes state. For more information, see Running from within a Java application
on page 626.

• Diffusion JMX MBean ObjectNames now follow Oracle best practices. For more information, see
http://www.oracle.com/technetwork/java/javase/tech/best-practices-jsp-136021.html

Related concepts
Upgrading from version 4.x to version 5.1 on page 809
Consider the following information when upgrading from Diffusion version 4.x to version 5.1.

Upgrading from version 5.1 to version 5.5 on page 815
Consider the following information when upgrading from Diffusion version 5.1 to version 5.5.

Upgrading from version 5.6 to version 5.7 on page 826
Consider the following information when upgrading from Diffusion version 5.6 to version 5.7.

Upgrading from version 5.7 to version 5.8 on page 829
Consider the following information when upgrading from Diffusion version 5.7 to version 5.8.

Upgrading from version 5.8 to version 5.9 on page 832
Consider the following information when upgrading from Diffusion version 5.8 to version 5.9.

Upgrading to a new patch release on page 835
When upgrading to a new patch release there are typically no changes to the configuration values
or the APIs. All that is required is to copy your existing files from the old installation to the new
installation.

Known issues in Diffusion 5.9 on page 836

http://www.oracle.com/technetwork/java/javase/tech/best-practices-jsp-136021.html

Diffusion | 826

Be aware of the following issues when using Diffusion 5.9.

Related reference
Interoperability on page 807
If you plan to use different versions of Diffusion servers and clients together, review the following
information that summarizes support between versions.

Upgrading from version 5.6 to version 5.7

Consider the following information when upgrading from Diffusion version 5.6 to version 5.7.

Upgrading your applications

Server-side components

Recompile all Java application components that are deployed to the Diffusion
server, such as publishers and authorization handlers, against the new version
diffusion.jar file. This file is located in the lib directory of your new Diffusion
server installation.

Some features that your Java application components might use have been removed
or deprecated. Pay attention to new deprecation warnings and compilation failures
that occur during recompilation and review the API changes information in the
following section to see if these changes affect your applications.

Clients

You can choose not to recompile your client applications and continue to use client
libraries from a previous release. If you choose to use client libraries from a previous
release, ensure that the libraries are compatible with the new server. For more
information, see Interoperability on page 807.

You can choose to upgrade your client applications to use the new client libraries.
To do this, recompile the client applications against the client libraries located in
the clients directory of your new Diffusion server installation and repackage your
client application with the new library.

Alternatively, the Java library is available in the Push Public Maven Repository and
the JavaScript library from NPM.

Some features that your client applications might use have been removed or
deprecated. Review the API changes information in the following section to see if
these changes affect your applications.

API changes

Further information about removed or deprecated features is available in following locations:

• The release notes provided online at http://docs.pushtechnology.com/docs/5.9.4/
ReleaseNotice.html

• The API documentation located at http://docs.pushtechnology.com/5.7

The following table lists API classes and methods that have been removed. If you attempt to recompile
application code that uses these classes or methods against the version 5.7 APIs, it fails. Rewrite your
application code to not include these features.

http://download.pushtechnology.com/maven/com/pushtechnology/diffusion/diffusion-client/
https://www.npmjs.com/package/diffusion
http://docs.pushtechnology.com/docs/5.9.4/ReleaseNotice.html
http://docs.pushtechnology.com/docs/5.9.4/ReleaseNotice.html
http://docs.pushtechnology.com/5.7

Diffusion | 827

Table 79: API features removed in version 5.7

API
affected

Removed feature Suggested alternative

Unified
API

Topics.Listener and
Messages.Listener

The following table lists API classes and methods that have been deprecated. If your application code
uses these classes or methods, consider rewriting your application code to not include these features.

Table 80: API features deprecated in version 5.7

API
affected

Deprecated feature Suggested alternative

All clients The HTTP Full Duplex transport Use WebSocket connections instead.

The C
Classic
API

All use of this API Use the C Unified API instead.

All APIs Service topics and their associated classes
and methods.

Use the Messaging and MessagingControl
features of the Unified API to send point-to-
point requests.

All APIs Protocol buffer topics and their associated
classes and methods.

Use binary topics to send any binary data,
including protocol buffers. Handle the
serialization and deserialization of those
protocol buffers in the clients.

All Unified
API
clients

Content encoding Use a third-party library to encrypt or
compress all or part of the data used to
create your message content.

All Unified
API
clients

getStreamsForTopic() method in the
PTDiffusionTopicStreamDelegate
class

None

Apple
Unified
API

diffusionTopicStream:didUnsubscribeFromTopicPath:reason:
method in the Topics class

diffusionStream:didUnsubscribeFromTopicPath:reason:

Configuration
API

ClientServiceConfig.isClosingCallbackRequests
and
ClientServiceConfig.setCloseCallbackRequests

None

The following list includes behavior that has changed in the API. If your application code relies on the
previous behavior, rewrite your application code to take into account the new behavior.

• If the connection or write timeouts are configured to be greater than one hour, a warning message
is output and a timeout of one hour is used.

Upgrading your server installation

Note:

At release 5.7, the Diffusion server is tested and supported on Java HotSpot Development Kit 8
(latest update).

Java 7 is not supported.

Diffusion | 828

To upgrade your Diffusion server installation, complete the following steps:

1. Use the graphical or headless installer to install the new version of Diffusion.

For more information, see Installing the Diffusion server on page 523.
2. You can copy your existing license file from your previous installation to the etc directory of your

new installation.
3. You can copy most of your existing configuration files from the etc directory of your previous

installation to the etc directory of your new installation. When you do, consider making the
following changes:

• In the Management.xml file remove the register-topics element. This element was
deprecated and a no-op, but has now been removed from the schema.

• In the Server.xml file ensure that the connection timeout and write timeout are set to less
than one hour. If these values are greater than one hour, a value of one hour is used and a
message is written to the log. In future releases, timeouts greater than one hour will not be valid
configuration and the server will not start.

• In the Security.store, to maintain the previous security configuration, grant the
select_topic permission to all sessions that already have read_topic permission.

For example, in the default Security.store file, change the following lines:

set "CLIENT" default topic permissions [READ_TOPIC,
 SEND_TO_MESSAGE_HANDLER]
...
set "OPERATOR" topic "Diffusion" permissions [READ_TOPIC,
 SEND_TO_MESSAGE_HANDLER]

Add the select_topic permission to the CLIENT and OPERATOR roles:

set "CLIENT" default topic permissions [SELECT_TOPIC,
 READ_TOPIC, SEND_TO_MESSAGE_HANDLER]
...
set "OPERATOR" topic "Diffusion" permissions [SELECT_TOPIC,
 READ_TOPIC, SEND_TO_MESSAGE_HANDLER]

As this configuration grants the CLIENT role to all sessions, the session inherit the select_topic
permission.

Behavior changes at the Diffusion server

The following list includes behavior that has changed at the server. If your solution relies on the
previous behavior, adjust your solution to take into account the new behavior.

• If the connection or write timeouts are configured to be greater than one hour, a warning message
is output and a timeout of one hour is used.

Related concepts
Upgrading from version 4.x to version 5.1 on page 809
Consider the following information when upgrading from Diffusion version 4.x to version 5.1.

Upgrading from version 5.1 to version 5.5 on page 815
Consider the following information when upgrading from Diffusion version 5.1 to version 5.5.

Upgrading from version 5.5 to version 5.6 on page 822
Consider the following information when upgrading from Diffusion version 5.5 to version 5.6.

Upgrading from version 5.7 to version 5.8 on page 829
Consider the following information when upgrading from Diffusion version 5.7 to version 5.8.

Upgrading from version 5.8 to version 5.9 on page 832

Diffusion | 829

Consider the following information when upgrading from Diffusion version 5.8 to version 5.9.

Upgrading to a new patch release on page 835
When upgrading to a new patch release there are typically no changes to the configuration values
or the APIs. All that is required is to copy your existing files from the old installation to the new
installation.

Known issues in Diffusion 5.9 on page 836
Be aware of the following issues when using Diffusion 5.9.

Related reference
Interoperability on page 807
If you plan to use different versions of Diffusion servers and clients together, review the following
information that summarizes support between versions.

Upgrading from version 5.7 to version 5.8

Consider the following information when upgrading from Diffusion version 5.7 to version 5.8.

Upgrading your applications

Server-side components

Recompile all Java application components that are deployed to the Diffusion
server, such as publishers and authorization handlers, against the new version
diffusion.jar file. This file is located in the lib directory of your new Diffusion
server installation.

Some features that your Java application components might use have been removed
or deprecated. Pay attention to new deprecation warnings and compilation failures
that occur during recompilation and review the API changes information in the
following section to see if these changes affect your applications.

Clients

You can choose not to recompile your client applications and continue to use client
libraries from a previous release. If you choose to use client libraries from a previous
release, ensure that the libraries are compatible with the new server. For more
information, see Interoperability on page 807.

You can choose to upgrade your client applications to use the new client libraries.
To do this, recompile the client applications against the client libraries located in
the clients directory of your new Diffusion server installation and repackage your
client application with the new library.

Alternatively, the Java library is available in the Push Public Maven Repository and
the JavaScript library from NPM.

Some features that your client applications might use have been removed or
deprecated. Review the API changes information in the following section to see if
these changes affect your applications.

API changes

Further information about removed or deprecated features is available in following locations:

• The release notes provided online at http://docs.pushtechnology.com/docs/5.9.4/
ReleaseNotice.html

• The API documentation located at http://docs.pushtechnology.com/5.8

http://download.pushtechnology.com/maven/com/pushtechnology/diffusion/diffusion-client/
https://www.npmjs.com/package/diffusion
http://docs.pushtechnology.com/docs/5.9.4/ReleaseNotice.html
http://docs.pushtechnology.com/docs/5.9.4/ReleaseNotice.html
http://docs.pushtechnology.com/5.8

Diffusion | 830

The following table lists API classes and methods that have been removed. If you attempt to recompile
application code that uses these classes or methods against the version 5.8 APIs, it fails. Rewrite your
application code to not include these features.

Table 81: API features removed in version 5.8

API
affected

Removed feature Suggested alternative

Java
Classic
API

QueuesConfig This configuration can now only be done
on the Diffusion server

MBeans MultiplexerLatencyNotification
in the Multiplexer MBean and
PermissionNotification in the
AuthorisationManager MBean

None

The following table lists API classes and methods that have been deprecated. If your application code
uses these classes or methods, consider rewriting your application code to not include these features.

Table 82: API features deprecated in version 5.8

API
affected

Deprecated feature Suggested alternative

Configuration
API

setPriority and getPriority
methods in ThreadPoolConfig

None.

Configuration
API

setThreadPriority and
getThreadPriority methods in
MultiplexerConfig

None

Configuration
API

ThreadPoolListenerConfig class None

Configuration
API

setThreadPoolListener,
getThreadPoolListener, and
removeThreadPoolListener
methods in ThreadPoolConfig

None. These methods are now no-ops.

Java
Classic
API

getInboundThreadPool method in the
ThreadService class

None

The following list includes behavior that has changed in the API. If your application code relies on the
previous behavior, rewrite your application code to take into account the new behavior.

• For JavaScript, Android, and Java clients that register session properties listeners, the Diffusion
server can aggregate the initial batch of notifications into a single message. This decreases the risk
of overflow in the message queue that is used to queue messages to be sent to the client. The client
session registering the session properties listener might need to use a larger maximum message
size to accommodate this message.

• In Android, Java, and .NET, a session properties listener now receives a notification when a client
becomes disconnected from the Diffusion server.

• In Android, Java, and .NET, a session properties listener now receives a notification when a client
fails over connection to another Diffusion server.

Diffusion | 831

• Clients can subscribe to a routing topic before a routing subscription handler is added. This
subscription is now evaluated when a handler is added.

• Publishers no longer receive not acknowledged notifications for messages sent to Unified API
clients.

Upgrading your server installation

Note:

At release 5.8, the Diffusion server is tested and supported on Java HotSpot Development Kit 8
(latest update).

Java 7 is not supported.

To upgrade your Diffusion server installation, complete the following steps:

1. Use the graphical or headless installer to install the new version of Diffusion.

For more information, see Installing the Diffusion server on page 523.
2. You can copy your existing license file from your previous installation to the etc directory of your

new installation.
3. You can copy most of your existing configuration files from the etc directory of your previous

installation to the etc directory of your new installation. When you do, consider making the
following changes:

• In the Server.xml file remove the thread-priority elements for all types of thread. This
element is deprecated and a no-op.

• In the Server.xml file remove the keep-alive and priority elements for thread pool
definitions. These elements are deprecated and a no-op.

• In the WebServer.xml file ensure that the value of message-sequence-timeout is
less that 1 hour. Values greater than 1 hour (3600000ms) cause a warning to be logged and the
timeout is set to one hour.

This parameter is used to re-order out-of-order messages received over separate HTTP
connections opened by client browsers. It is rarely necessary to set this to more than a few tens
of seconds.

Behavior changes at the Diffusion server

The following list includes behavior that has changed at the server. If your solution relies on the
previous behavior, adjust your solution to take into account the new behavior.

• You can no longer set a thread priority for threads.
• You can no longer set a priority or keep-alive time for a thread pool.
• Configuring max-size for a thread pool is now optional. If no value is define, the max-size defaults

to the core-size.
• You can no longer set the message sequence timeout to more that 1 hour.

Related concepts
Upgrading from version 4.x to version 5.1 on page 809
Consider the following information when upgrading from Diffusion version 4.x to version 5.1.

Upgrading from version 5.1 to version 5.5 on page 815
Consider the following information when upgrading from Diffusion version 5.1 to version 5.5.

Upgrading from version 5.5 to version 5.6 on page 822
Consider the following information when upgrading from Diffusion version 5.5 to version 5.6.

Upgrading from version 5.6 to version 5.7 on page 826

Diffusion | 832

Consider the following information when upgrading from Diffusion version 5.6 to version 5.7.

Upgrading from version 5.8 to version 5.9 on page 832
Consider the following information when upgrading from Diffusion version 5.8 to version 5.9.

Upgrading to a new patch release on page 835
When upgrading to a new patch release there are typically no changes to the configuration values
or the APIs. All that is required is to copy your existing files from the old installation to the new
installation.

Known issues in Diffusion 5.9 on page 836
Be aware of the following issues when using Diffusion 5.9.

Related reference
Interoperability on page 807
If you plan to use different versions of Diffusion servers and clients together, review the following
information that summarizes support between versions.

Upgrading from version 5.8 to version 5.9

Consider the following information when upgrading from Diffusion version 5.8 to version 5.9.

Upgrading your applications

Server-side components

Recompile all Java application components that are deployed to the Diffusion
server, such as publishers and authorization handlers, against the new version
diffusion.jar file. This file is located in the lib directory of your new Diffusion
server installation.

Some features that your Java application components might use have been removed
or deprecated. Pay attention to new deprecation warnings and compilation failures
that occur during recompilation and review the API changes information in the
following section to see if these changes affect your applications.

Clients

You can choose not to recompile your client applications and continue to use client
libraries from a previous release. If you choose to use client libraries from a previous
release, ensure that the libraries are compatible with the new server. For more
information, see Interoperability on page 807.

You can choose to upgrade your client applications to use the new client libraries.
To do this, recompile the client applications against the client libraries located in
the clients directory of your new Diffusion server installation and repackage your
client application with the new library.

Alternatively, the Java library is available in the Push Public Maven Repository and
the JavaScript library from NPM.

Some features that your client applications might use have been removed or
deprecated. Review the API changes information in the following section to see if
these changes affect your applications.

The Classic API has been deprecated at this release and will be removed in a future
release. Consider rewriting all Classic API clients using the Unified API.

http://download.pushtechnology.com/maven/com/pushtechnology/diffusion/diffusion-client/
https://www.npmjs.com/package/diffusion

Diffusion | 833

API changes

Further information about removed or deprecated features is available in following locations:

• The release notes provided online at http://docs.pushtechnology.com/docs/5.9.4/
ReleaseNotice.html

• The API documentation located at http://docs.pushtechnology.com/docs/5.9

The following table lists API classes and methods that have been removed. If you attempt to recompile
application code that uses these classes or methods against the version 5.9 APIs, it fails. Rewrite your
application code to not include these features.

Table 83: API features removed in version 5.9

API
affected

Removed feature Suggested alternative

All APIs Delegated topics and all related classes
and methods, including state providers.

Java
Unified
API

Topics.getStreamsForTopic None

Java
Unified
API

Headers None

.NET
Unified
API

Topics.GetStreamsForTopic None

The following table lists API classes and methods that have been deprecated. If your application code
uses these classes or methods, consider rewriting your application code to not include these features.

Table 84: API features deprecated in version 5.9

API
affected

Deprecated feature Suggested alternative

Classic
API

Every Classic client API. The Java Publisher
API is not deprecated.

Use the Unified API instead

Java
Unified
API

In TopicControl: removeTopics,
RemoveCallback, and
RemoveContextCallback

remove, RemovalCallback, and
RemovalContextCallback

These changes correspond to a change in
behavior that allows topics to be
deleted without also deleting their child
topics in the topic tree.

Apple
Unified
API

PTDiffusionSessionErrorHandler
and
PTDiffusionSessionDefaultErrorHandler

.NET
Unified
API

All session details methods in
IClientControl

Use session properties instead.

http://docs.pushtechnology.com/docs/5.9.4/ReleaseNotice.html
http://docs.pushtechnology.com/docs/5.9.4/ReleaseNotice.html
http://docs.pushtechnology.com/docs/5.9

Diffusion | 834

API
affected

Deprecated feature Suggested alternative

Authorisation
handler
API

canSubscribe() Use declarative role-based security
instead.

The following list includes behavior that has changed in the API. If your application code relies on the
previous behavior, rewrite your application code to take into account the new behavior.

• There are additional reasons why client sessions can become unsubscribed from a topic:

AUTHORIZATION. A client session is unsubscribed from a topic with this reason when the session
principal changes and the roles assigned to that session no longer contain permissions for that
topic.

SUBSCRIPTION_REFRESH. A client session is unsubscribed from a topic with this reason when
the topic type or attributes have changed. For example, if the session connection fails over to
another Diffusion server.

• When creating a topic at a multi-part topic path, for example A/B/C, the intermediate paths, A and
A/B, remain empty and topics can be created at these paths at a later point.

In previous releases, stateless topics were created at these intermediate paths. If your application
relies on these stateless topics being present, you must now explicitly create them.

Upgrading your server installation

Note:

At release 5.9, the Diffusion server is tested and supported on Java HotSpot Development Kit 8
(latest update).

Java 7 is not supported.

To upgrade your Diffusion server installation, complete the following steps:

1. Use the graphical or headless installer to install the new version of Diffusion.

For more information, see Installing the Diffusion server on page 523.
2. You can copy your existing license file from your previous installation to the etc directory of your

new installation.
3. You can copy most of your existing configuration files from the etc directory of your previous

installation to the etc directory of your new installation. When you do, consider making the
following changes:

• In Connectors.xml the default value has changed from classic to all. If you did not
specify an api-type element and relied upon the default behavior, you must now specify a
value of classic to restrict Unified API connections through a connector.

• In the Management.xml file, consider removing the users and assigned-roles
elements, which are now deprecated. Instead use roles and permissions defined in the
Security.store.

Behavior changes at the Diffusion server

The following list includes behavior that has changed at the server. If your solution relies on the
previous behavior, adjust your solution to take into account the new behavior.

• By default, connectors now accept connections from both Classic API clients and Unified API
clients. Previously the default was to only accept connections from Classic API clients. If you relied
upon this behavior to restrict connections from Unified API client, you must now explicitly define an
api-type element with a value classic.

Diffusion | 835

Related concepts
Upgrading from version 4.x to version 5.1 on page 809
Consider the following information when upgrading from Diffusion version 4.x to version 5.1.

Upgrading from version 5.1 to version 5.5 on page 815
Consider the following information when upgrading from Diffusion version 5.1 to version 5.5.

Upgrading from version 5.5 to version 5.6 on page 822
Consider the following information when upgrading from Diffusion version 5.5 to version 5.6.

Upgrading from version 5.6 to version 5.7 on page 826
Consider the following information when upgrading from Diffusion version 5.6 to version 5.7.

Upgrading from version 5.7 to version 5.8 on page 829
Consider the following information when upgrading from Diffusion version 5.7 to version 5.8.

Upgrading to a new patch release on page 835
When upgrading to a new patch release there are typically no changes to the configuration values
or the APIs. All that is required is to copy your existing files from the old installation to the new
installation.

Known issues in Diffusion 5.9 on page 836
Be aware of the following issues when using Diffusion 5.9.

Related reference
Interoperability on page 807
If you plan to use different versions of Diffusion servers and clients together, review the following
information that summarizes support between versions.

Upgrading to a new patch release

When upgrading to a new patch release there are typically no changes to the configuration values
or the APIs. All that is required is to copy your existing files from the old installation to the new
installation.

To upgrade to a new patch release, complete the following steps:

1. Use the graphical or headless installer to install the new version of Diffusion.

For more information, see Installing the Diffusion server on page 523.
2. Copy your existing license file from your previous installation to the etc directory of your new

installation.
3. Copy your existing configuration files from the etc directory of your previous installation to the

etc directory of your new installation.
4. Copy any publishers located in the ext directory of the previous installation into the ext directory

of the new installation.

Related concepts
Upgrading from version 4.x to version 5.1 on page 809
Consider the following information when upgrading from Diffusion version 4.x to version 5.1.

Upgrading from version 5.1 to version 5.5 on page 815
Consider the following information when upgrading from Diffusion version 5.1 to version 5.5.

Upgrading from version 5.5 to version 5.6 on page 822
Consider the following information when upgrading from Diffusion version 5.5 to version 5.6.

Upgrading from version 5.6 to version 5.7 on page 826

Diffusion | 836

Consider the following information when upgrading from Diffusion version 5.6 to version 5.7.

Upgrading from version 5.7 to version 5.8 on page 829
Consider the following information when upgrading from Diffusion version 5.7 to version 5.8.

Upgrading from version 5.8 to version 5.9 on page 832
Consider the following information when upgrading from Diffusion version 5.8 to version 5.9.

Known issues in Diffusion 5.9 on page 836
Be aware of the following issues when using Diffusion 5.9.

Related reference
Interoperability on page 807
If you plan to use different versions of Diffusion servers and clients together, review the following
information that summarizes support between versions.

Known issues in Diffusion 5.9

Be aware of the following issues when using Diffusion 5.9.

Publishers cannot send to Unified API clients via Messaging

When a publisher sends a message to a Unified API client, the messages are not routed to the client's
Messaging feature as expected but instead are delivered as if they were updates via topic streams.

Messages sent in this way do not have headers. If the messages are set as requiring acknowledgment,
they are not acknowledged and cause a nack callback even though they have been delivered to the
correct client, though through the wrong mechanism.

JMS adapter can duplicate messages received from Diffusion at configuration change

During configuration change there is a window during which both old and new JMS connections are
in place and can deliver messaging from Diffusion clients to JMS destinations. A message sent from
a Diffusion client to a topic associated with a JMS destination that is unaffected by a configuration
change (i.e. it is neither removed or added) during the configuration change window is duplicated.

Latest value not notified for Record topics when new TopicStream added

If the Topics feature is used to add a new TopicStream that covers Record topics that are already
subscribed to then the stream will be notified of subscription to the topic but will not be given the
latest value for the topic and therefore would be unable to process subsequent deltas. For this reason,
when using Record topics, it is important that the stream that will process the topics is added before
the topics are subscribed to.

Issues with message loss on reconnect for Classic API clients and any clients using DPT

After reconnecting a C Unified API client to the same server it is possible that there could be some
message loss. When using single value topics this may not be a problem as a full value is always
delivered but for topics that deliver deltas this could mean that deltas are missed and therefore the
current state is unknown. For this reason it is not recommended to use reconnection with C Unified API
clients.

This issue will not be resolved. We recommend you do not use the DPT transport if you have
reconnection configured. We recommend you use Unified API clients instead of Classic API clients.

Related concepts
Upgrading from version 4.x to version 5.1 on page 809

Diffusion | 837

Consider the following information when upgrading from Diffusion version 4.x to version 5.1.

Upgrading from version 5.1 to version 5.5 on page 815
Consider the following information when upgrading from Diffusion version 5.1 to version 5.5.

Upgrading from version 5.5 to version 5.6 on page 822
Consider the following information when upgrading from Diffusion version 5.5 to version 5.6.

Upgrading from version 5.6 to version 5.7 on page 826
Consider the following information when upgrading from Diffusion version 5.6 to version 5.7.

Upgrading from version 5.7 to version 5.8 on page 829
Consider the following information when upgrading from Diffusion version 5.7 to version 5.8.

Upgrading from version 5.8 to version 5.9 on page 832
Consider the following information when upgrading from Diffusion version 5.8 to version 5.9.

Upgrading to a new patch release on page 835
When upgrading to a new patch release there are typically no changes to the configuration values
or the APIs. All that is required is to copy your existing files from the old installation to the new
installation.

Related reference
Interoperability on page 807
If you plan to use different versions of Diffusion servers and clients together, review the following
information that summarizes support between versions.

Diffusion | 838

Appendix

Appendices

The appendices contain reference information.

In this section:

• Document conventions
• Glossary
• Trademarks
• Copyright Notices

Diffusion | 839

Appendix
A

Document conventions

This user manual uses certain typographic conventions to distinguish between different types of
information.

The following table describes how different types of information are represented typographically.

Table 85: Typographic conventions used in this manual

Convention Usage

Monospace Indicates the following items:

• Source code
• Class or method names
• Command names
• File paths
• Information input by the user

Bold Indicates the following items:

• Interface element titles (buttons, menu items,
field names)

• Window or panel titles

Italic Indicates the following items:

• New terms – when appearing in the text
• Variable values – when appearing in code or

syntax examples

Greater than sign (>) Indicates a menu item or sequence of menu items.
For example, “Choose File > Save” means choose
the Save item from the File menu.

Highlighting Indicates an example value in descriptive text.

Diffusion | 840

Appendix
B

Glossary

The glossary contains key terms associated with Diffusion and their definitions.

In this section:

• A
• C
• D
• E
• F
• G
• H
• I
• J
• L
• M
• N
• P
• Q
• R
• S
• T
• U
• V
• W
• X

Diffusion | 841

A

acknowledgment
A message sent by the recipient of a message or update to inform the sender of that message or
update that it was received.Not all messages or updates are acknowledged. A message or update must
specify that acknowledgment is required to receive an acknowledgment.

ack

API
Application Programming Interface
A set of contracts that you can program against to interact with Diffusion.

The following APIs are available:

• Publisher API
• Unified API
• Classic API

API

API

API

APNS
Apple Push Notification Service

Apple Push Notification Service (APNS)

APNS

APNS

APR
Apache Portable Runtime

Apache Portable Runtime (APR)

APR

APR

ASCII
American Standard Code for Information Interchange

A character-encoding scheme that encodes 128 specified characters into 7-bit binary integers.

ASCII

Diffusion | 842

ASCII

ASCII

C

callback
An object, specific to a single call, that is used to respond to a request.

CBOR
Concise Binary Object Representation

Concise Binary Object Representation (CBOR)

CBOR

CBOR

certify
Push Technology certifies specific hardware and software version for use with Diffusion. Certified
versions have been fully functional tested and performance tested with the Diffusion server. In
addition, Push Technology supports some hardware and software that has not been certified.

client
An entity that connects to the Diffusion server and subscribes to topics.

Typically a client is a user-written application communicating with the Diffusion server through a
client API or the Diffusion protocol. A publisher can be a client of another publisher in a distributed
environment.

client library
A library that is included in a client application to enable interaction with the Diffusion server.

conflation
The merging or replacing of a queued update with a newer update to reduce network traffic.
Conflation removes outdated information from the queue of content to be sent and either replaces the
outdated information with the conflated information or appends the conflated information to the end
of the queue.

connector
A configured point of connection to a server.

There can be one or more connectors (each listening on a different port). Each connector can accept
single or multiple types of connection.

consume
When a message or update is received by a topic listener and that listener chooses not to pass on the
message or update to subsequent topic listeners. Topic streams cannot choose to consume messages
or updates they receive.

Diffusion | 843

CORS
Cross-Origin Resource Sharing

cross-origin resource sharing (CORS)

CORS

CORS

CPU
Central Processing Unit

CPU

CPU

CPU

credentials
A piece of information that is used to authenticate a principal.

CSR
Certificate Signing Request

certificate signing request (CSR)

CSR

CSR

CSS
Cascading Style Sheet

CSS

CSS

CSS

D

DAR file
A Diffusion archive file. This file contains a publisher and can be deployed on the Diffusion server.

DAR

Diffusion | 844

DAR

DAR

delimiter
A byte value that is used as a separator in messages or updates.

Depending on the type of message or update, it can contain field delimiters or record delimiters.

delta
Data that is sent to a client subscribed to a topic. The delta contains only information that has been
updated on the topic since the last data was sent to the client. Topics that contain only a single item of
data cannot use delta messages.

Diffusion
The Diffusion product comprising the Diffusion server and client libraries.

dirty
The state of a page in a paged topic at the client if its content has been changed on the Diffusion
server, but not updated on the client.

DLL
Dynamic Link Library

DLL

DLL

DLL

DOM
Document Object Model

DOM

DOM

DOM

DMZ
De-militarized Zone

de-militarized zone (DMZ)

DMZ

DMZ

DPT
Diffusion Protocol for TCP DEPRECATED: A Diffusion proprietary streaming protocol that clients can
use to communicate with the Diffusion server.

Diffusion | 845

DPT

Diffusion Protocol for TCP

DPT

E

EULA
End User License Agreement

EULA

EULA

EULA

F

feature
An API module that contains a conceptual set of facilities.

fetch
A request from a client for the current state of all data on a topic. A client can fetch a topic's state
without being subscribed to the topic. This request-response mechanism of getting data from a topic
is separate from the pub-sub mechanism.

flow control
A mechanism within a Diffusion client that limits the rate that client sends messages as the load level
from that client increases. A client application rapidly making thousands of calls to the Diffusion server
might overflow the internal queues, which results in the client session being closed. Flow control
protects against these queues overflowing by progressively delaying messages from the client to the
Diffusion server.

field
A section of content that contains data of a specific type. Fields are nested inside records. A record can
contain one or many fields.

functional topic
A topic to which data cannot be published. These topics provide other capabilities to subscribing
clients, for example, notifications.

The following types of topic are functional topics:

• Routing
• Child list
• Service
• Topic notify

Diffusion | 846

G

GBE
Gigabit Ethernet

GBE

GBE

GBE

GCM
Google Cloud Messaging

Google Cloud Messaging (GCM)

GCM

GCM

global-scoped permission
Permissions at global scope apply to actions on the Diffusion server.

GUI
Graphical User Interface

GUI

GUI

GUI

H

handler
A handler is an object responsible for responding to one or more instances of a single type of request.

HDD
Hard Disk Drive

HDD

HDD

HDD

HTML
Hypertext Markup Language

Diffusion | 847

HTML

HTML

HTML

HTTP
Hypertext Transfer Protocol

HTTP

HTTP

HTTP

I

IDE
Integrated Development Environment

integrated development environment (IDE)

IDE

IDE

ISAPI
Internet Server Application Programming Interface

ISAPI

initial topic load
The data sent to a client when it first subscribes to a topic. This data contains the value of the current
state of the topic.

initial topic load (ITL)

ITL

ITL

J

JAR
Java Archive

JAR

Diffusion | 848

JAR

JAR

JDK
Java Development Kit

Java Development Kit (JDK)

JDK

JDK

JMS
Java Message Service

Java Message Service (JMS)

JMS

JMS

JMX
Java Management Extensions

Java Management Extensions (JMX)

JMX

JMX

JRE
Java Runtime Environment

Java Runtime Environment (JRE)

JRE

JRE

JSON
JavaScript Object Notation

JavaScript Object Notation (JSON)

JSON

JSON

JVM
Java Virtual Machine

Diffusion | 849

Java Virtual Machine (JVM)

JVM

JVM

L

LDAP
Lightweight Directory Access Protocol

Lightweight Directory Access Protocol (LDAP)

LDAP

LDAP

line
An entry in a page of a paged topic.The number of lines on a page is specified by the client that views
the paged topic.

listener
In the Unified API, a listener is an object that is always called when a particular event occurs.

M

message
A message is a series of bytes of information formatted according to the Diffusion protocol which can
be sent between components utilizing Diffusion.

message queue
A queue of messages. Each client connection to Diffusion has such a queue on the Diffusion server
upon which messages are put for sending to the client.

queue

metadata
Data about data. In Diffusion metadata is used to define the structure of messages.

message metadata

multicast
To send data to several recipients at the same time.

The datagrid uses multicasting to locate other datagrid nodes.

Diffusion | 850

N

NAT
Network Address Translation

network address translation (NAT)

NAT

NAT

NIC
Network Interface Controller

NIC

NIC

NIC

NIO
New Input-Output

NIO

NIO

Non-blocking Input/Output

NIO

notification
...

P

paged topic
A topic whose data is formatted in lines and viewed as pages containing one or more lines.

The following types of topic are paged topics:

• Paged string
• Paged record

PNG
Portable Network Graphics

PNG

Diffusion | 851

PNG

PNG

permission
A permission represents the right to perform an action on the Diffusion server or on data hosted by the
Diffusion server. Permissions can be global- or topic-scoped.

PID
Process ID

PID

PID

PID

ping
A query sent by a publisher, client or by the Diffusion server to a connected component to check that
the connection exists and the latency of the connection.
The following types of ping are available:

server ping
A client pings the Diffusion server.

client ping
A publisher pings a specific client.

system ping
Diffusion pings all clients at a regular interval.

PDF
Portable Document Format

PDF

PDF

PDF

primary server
In a fan-out solution, the server from which updates are fanned out to replica servers.

In previous releases, this server was called the master server. This terminology in no longer used.

master server

principal
An identity that can be authenticated by the Diffusion server or by a client.

A principal can be a user or client. After a principal has been authenticated, it can be assigned roles
that enable it to access actions or resources.

Diffusion | 852

protocol
A protocol defines the exact format of data passed between the Diffusion server and a client.

publisher
The component which publishes messages relating to one or more topics.

A server can host one or more publishers. Messages sent by clients on particular topics are routed
to the Publisher that owns the topic. Publisher functionality is provided by users by writing a Java
publisher class.

publishing topic
A topic where data is published and from which the data is distributed to subscribing clients.

The following types of topic are publishing topics:

• Single value
• Record
• Stateless
• Protocol buffer (Deprecated)
• Custom

push notification destination
An endpoint, described by either an APNS device token or a GCM registration ID, where push
notifications are received.

Q

message queue
A queue of messages. Each client connection to Diffusion has such a queue on the Diffusion server
upon which messages are put for sending to the client.

queue

R

RAID
Redundant Array of Independent Disks

RAID

RAID

RAID

RAM
Random Access Memory

RAM

Diffusion | 853

RAM

RAM

record
A section of content that acts as a container for a set of fields. Inside the content of a message or
update you can have one or many records. A record can contain one or many fields.

regular expression
A string that uses special characters to describe a search pattern.

Diffusion uses Java-style regular expressions.

regex

replica server
In a fan-out solution, a server to which updates are fanned out from the primary server.

In previous releases, this server was called the slave server. This terminology in no longer used.

slave server

RMI
Remote Method Invocation

remote method invocation (RMI)

RMI

RMI

role
A role is a named set of permissions and other roles. Principals and sessions can both be assigned
roles.

role hierarchy
Roles are hierarchical. A role can include other roles and, by doing so, have the permissions assigned
to the included roles. A role cannot include itself, either directly or indirectly – through a number of
included roles.

RPM
Redhat Package Manager

Redhat Package Manager (RPM)

Diffusion | 854

RPM

RPM

S

SAS
Serial Attached SCSI

SAS

SAS

SAS

SDK
Software Development Kit

software development kit (SDK)

SDK

SDK

server
The component that hosts topics and publishers. A server broadcasts topic updates to all subscribed
clients.

Clients can connect to servers through the Unified API or Classic API (deprecated).

Diffusion server

session
An ongoing dialog between a client and the Diffusion server.

Typically, a session represents a single client connection to a single server. However, in the event of
connection failure the session can automatically reconnect to the same server or even fail over to
another server and still retain its context.

session will
A set of actions to be completed after a session closes.

A client session can specify actions that are completed by the Diffusion server that the session
connects to after the session has closed. A session will can be used to close or tidy up topics managed
or updated by the client session.

will

SLF4J
Simple Logging Facade for Java

Diffusion | 855

SLF4J

SLF4J

SLF4J

SSH
Secure Shell

SSH

SSH

SSH

SSL
Secure Sockets Layer

Secure Sockets Layer (SSL)

SSL

SSL

state
The latest published values of all data items on the topic. The state of a topic is stored on the Diffusion
server.

stateful topic
A topic that stores a current value as topic data on the Diffusion server.

stateless topic
A topic that does not store a current value on the Diffusion server.

structural conflation
A form of conflation that enables you to define the operations performed on outdated content. You
can merge, aggregate, reverse or combine the effects of multiple changes into a single consistent and
current notification to the client.

stream
In the Unified API, a stream is a sequence of responses to a single request.

subscribe
A client registers interest in a topic such that the client receives messages sent to that topic.

support
Push Technology supports a number of hardware and software versions, these versions have not
necessarily been tested. Those hardware and software versions that we have tested are listed as
'certified'.

Diffusion | 856

T

TCP
Transmission Control Protocol

TCP

TCP

TCP

throttling
Limiting the volume of messages that the Diffusion server transmits to a client within a specified
period of time.

Throttling can be used to limit bandwidth usage or to prevent more messages being sent to a client
than the client can handle.

TLS
Transport Layer Security

Transport Layer Security (TLS)

TLS

TLS

topic
A logical channel through which messages are distributed.

Topics provide a logical link between publishers and subscribers. Clients or publishers publish
messages to topics. Clients subscribe to topics to receive messages published to that topic.

topic path
A string representation of a location in the topic tree.

A topic path consists of parts separated by a slash character (/).

Topic paths describe a location where a topic can be bound and used for pub-sub distribution of data.

Topic paths can also be used for bi-directional messaging: a client can send a message to a topic path
and the Diffusion server routes the message to the topic's publisher or publishers.

Diffusion | 857

topic name

hierarchic topic name

full topic name

topic path prefix
The root part of a topic selector.

A concrete topic path to the most specific part of the topic tree that contains all topics that the selector
can specify. For example, for the topic selector ?foo/bar/baz/.*/bing, the topic path prefix is
foo/bar/baz.

path prefix

topic selector
An object that retrieves one or more topics based on their topic paths.

A topic selector uses a pattern expression, which can include one or more regular expressions, to
match to the path of one of more topics.

selector

topic-scoped permission
Permissions at topic scope apply to actions on a topic.

Topic-scoped permissions are defined against topic branches. The permissions that apply to a topic
are the set of permissions defined at the most specific branch of the topic tree.

topic tree
The organization structure of topics on the Diffusion server.

A topic can have subtopics and can itself be a subtopic of another topic. All topics created on the
Diffusion server by a publisher or client are in the topic tree.

topic hierarchy

transport
An implementation of a network protocol. The mechanism by which clients communicate with the
Diffusion server.

U

update
Data published to a topic by a client or publisher that is applied to the topic to change the topic state.
The updated data is then pushed out to all subscribing clients.

URL
Uniform Resource Locator

URL

Diffusion | 858

URL

URL

UTF-8
Universal Character Set Transformation Format 8-bit

A character encoding capable of encoding all possible characters in Unicode.

UTF-8

UTF-8

UTF-8

V

VCPU
Virtual Central Processing Unit

VCPU

VCPU

VCPU

W

WAR
Web Application Archive

WAR

WAR

WAR

X

XHR
XmlHttpRequest

XHR

Diffusion | 859

XHR

XHR

XML
Extensible Markup Language

XML

XML

XML

XSD
XML Schema Definition

XSD

XSD

XSD

Diffusion | 860

Appendix
C

Trademarks

The following trademarked terms are included in this manual.

Diffusion is trademark of Push Technology Ltd.

ActionScript, Adobe, Flash, and Flexare registered trademarks of Adobe Systems Incorporated.

AIX™, Bluemix®, Cast Iron®, and WebSphere® are trademarks of IBM.

Amazon and Amazon EC2 are trademarks of Amazon.

Android and Chrome are trademarks of Google Inc.

Ant, Apache, Apache Derby™, Apache Tomcat™, and Maven are trademarks of The Apache Software
Foundation.

Apple, Mac®, macOS, Safari, and Siri® are registered trademarks of Apple Inc.

BlackBerry® is a registered trademark of RIM.

CentOS and Red Hat are trademarks or registered trademarks of Red Hat, Inc.

Dell™ is trademark of Dell, Inc.

Docker is trademarks or registered trademarks of Docker, Inc. in the United States and/or other countries.

Eclipse is a trademark of the Eclipse Foundation, Inc.

F5 is a registered trademark of F5 Networks, Inc.

Firefox is a registered trademark of Mozilla Foundation.

Hazelcast is a trademark of Hazelcast Inc.

Intel and Xeon are trademarks of Intel Corporation.

Internet Explorer, Microsoft, Silverlight, and Windows are trademarks or registered trademarks of Microsoft
Corporation.

iOS is a registered trademark of Cisco.

Java, JavaScript, Oracle, and Solaris™ are trademarks or registered trademarks of Oracle Corporation.

Joyent is a trademarks of Joyent.

Linux is a trademark of Linus Torvalds.

Diffusion | 861

Nagios® is a registered trademark of Nagios Enterprises.

Node.js is a trademark of Joyent, Inc.

Opera is a registered trademark of Opera Software ASA.

Splunk is a trademark of Splunk, Inc.

SUSE® is a registered trademark of SUSE LLC.

TIBCO Enterprise Message Service is a trademark of TIBCO Software Inc.

Ubuntu is a registered trademark of Canonical Ltd.

UNIX is a registered trademark of The Open Group.

VeriSign® is a registered trademark of VeriSign, Inc.

VMware® and VMware vSphere are registered trademarks of VMware, Inc.

Diffusion | 862

Appendix
D

Copyright Notices

Diffusion uses third party, open source software. The rights to this software are not owned by Push
Technology and the software is distributed under different licensing agreements. The distribution and use of
third-party software is subject to the applicable terms.

The following sections list the software used, their licenses, copyright notices and disclaimers.

In this section:

• ANTLR
• apns
• Apache Commons Codec
• Apache Portable Runtime
• Bootstrap
• CocoaAsyncSocket
• concurrent-trees
• CQEngine
• cron4j
• d3
• disruptor
• FastColoredTextBox
• Fluent validation
• Fluidbox
• gcm-server
• GeoIP API
• GeoLite City Database
• geronimo-jms_1.1_spec
• Google code prettify
• hashmap
• Hazelcast
• HPPC
• htmlcompressor

Diffusion | 863

• inherits
• jackson-core
• jackson-dataformat-cbor
• JCIP Annotations
• JCTools
• jQuery
• json-simple
• JZlib
• Knockout
• libwebsockets
• log4j2
• loglevel
• long
• Metrics
• Minimal JSON
• Modernizr
• NLog
• opencsv
• OpenSSL
• PCRE
• Picocontainer
• Protocol Buffers
• Rickshaw
• Servlet API
• SLF4J
• slf4j-android-logger
• SocketRocket
• Tabber
• Tapestry (Plastic)
• TrueLicense
• when
• ws
• Licenses

Diffusion | 864

ANTLR

Version 4.3

http://www.antlr.org

ANTLR is distributed under the BSD 3-clause License.

Copyright (c) 2014 Terence Parr, Sam Harwell

apns

Version 1.0.0.Beta6

https://github.com/notnoop/java-apns/

apns is distributed under the BSD 3-clause License.

Copyright (c) 2009 Mahmood Ali

Apache Commons Codec

Version 1.8

http://commons.apache.org/codec/

Apache Commons Codec is distributed under the Apache License 2.0.

Copyright 2002-2011 The Apache Software Foundation. All Rights Reserved

Additional notices

The following information is included in the NOTICE.txt file that accompanies the source:

Apache Commons Codec
Copyright 2002-2011 The Apache Software Foundation

This product includes software developed by
The Apache Software Foundation (http://www.apache.org/).

--
src/test/org/apache/commons/codec/language/DoubleMetaphoneTest.java
 contains
test data from http://aspell.sourceforge.net/test/batch0.tab.

Copyright (C) 2002 Kevin Atkinson (kevina@gnu.org). Verbatim copying
and distribution of this entire article is permitted in any medium,
provided this notice is preserved.
--

Apache Portable Runtime

Version 8.3.3

http://apr.apache.org

APR is distributed under the Apache 2.0 License.

http://www.antlr.org
https://github.com/notnoop/java-apns/
http://commons.apache.org/codec/
http://apr.apache.org

Diffusion | 865

Copyright (c) 2015 The Apache Software Foundation

Bootstrap

Version: 3.2.0

https://github.com/twbs/bootstrap/

Bootstrap is distributed under the MIT License.

Copyright (c) 2011-2014 Twitter, Inc

Additional notes

We also use Glyphicons, which are included as part of Bootstrap.

CocoaAsyncSocket

Version 7.3.4

https://github.com/robbiehanson/CocoaAsyncSocket

The CocoaAsyncSocket project is in the public domain.

The original TCP version (AsyncSocket) was created by Dustin Voss in January 2003.

Updated and maintained by Deusty LLC and the Apple development community.

concurrent-trees

Version 2.4.0

https://code.google.com/p/concurrent-trees/

concurrent-trees is distributed under the Apache 2.0 License.

Copyright 2012-2013 Niall Gallagher

CQEngine

Version 1.2.6

https://code.google.com/p/cqengine/

CQEngine is distributed under the Apache 2.0 License.

Copyright 2012-2015 Niall Gallagher

cron4j

Version 2.2.5

http://www.sauronsoftware.it/projects/cron4j/

Cron4j is distributed under the LGPL 2.1.

https://github.com/twbs/bootstrap/
http://glyphicons.com
https://github.com/robbiehanson/CocoaAsyncSocket
https://code.google.com/p/concurrent-trees/
https://code.google.com/p/cqengine/
http://www.sauronsoftware.it/projects/cron4j/

Diffusion | 866

Copyright (C) 2007-2010 Carlo Pelliccia (www.sauronsoftware.it)

Source code is available from the following location: http://sourceforge.net/projects/cron4j/files/
cron4j/2.2.5/cron4j-2.2.5.zip/download/

For a fee, Push Technology can also provide this source on a CD. To request a copy, contact
support@pushtechnology.com.

d3

Version 3.2.1

http://d3js.org/

d3 is distributed under the Apache License 2.0.

Copyright (c) 2010-2014, Michael Bostock

disruptor

Version 3.3.5

https://github.com/LMAX-Exchange/disruptor

disruptor is distributed under the Apache License 2.0.

Copyright 2011 LMAX Ltd.

FastColoredTextBox

https://github.com/PavelTorgashov/FastColoredTextBox

FastColoredTextBox distributed under the LGPL 3.0 or later.

Copyright (C) Pavel Torgashov, 2011-2014.

Source code is available at the following location: https://github.com/PavelTorgashov/
FastColoredTextBox

For a fee, Push Technology can also provide this source on a CD. To request a copy, contact
support@pushtechnology.com.

Fluent validation

Version 3.3.1.0

http://fluentvalidation.codeplex.com/

Fluent validation is distributed under the Apache License 2.0.

Copyright Jeremy Skinner

Fluidbox

https://github.com/terrymun/Fluidbox

http://sourceforge.net/projects/cron4j/files/cron4j/2.2.5/cron4j-2.2.5.zip/download/
http://sourceforge.net/projects/cron4j/files/cron4j/2.2.5/cron4j-2.2.5.zip/download/
http://d3js.org/
https://github.com/LMAX-Exchange/disruptor
https://github.com/PavelTorgashov/FastColoredTextBox
https://github.com/PavelTorgashov/FastColoredTextBox
https://github.com/PavelTorgashov/FastColoredTextBox
http://fluentvalidation.codeplex.com/
https://github.com/terrymun/Fluidbox

Diffusion | 867

Fluidbox is distributed under the MIT License.

Copyright (c) 2014 Terry Mun

gcm-server

Version 1.0.0

https://github.com/google/gcm/

gcm-server is distributed under the Apache License 2.0.

Copyright 2012 Google Inc. All rights reserved.

GeoIP API

Version 1.2.13

http://www.maxmind.com/en/opensource

The GeoIP API is distributed under the LGPL 2.1 or later.

Copyright (C) 2003 MaxMind LLC. All Rights Reserved

GeoLite City Database

http://www.maxmind.com/en/opensource

The GeoLite City Database is distributed under the Creative Commons Attribution-ShareAlike 3.0
Unported License.

Copyright MaxMind LLC

geronimo-jms_1.1_spec

Version 1.1

http://geronimo.apache.org/

geronimo-jms_1.1_spec is distributed under the Apache License 2.0

Copyright 2003-2006 The Apache Software Foundation

Additional notices

The following information is included in the NOTICE.txt file that accompanies the source:

Apache Geronimo
Copyright 2003-2006 The Apache Software Foundation

This product includes software developed by
The Apache Software Foundation (http://www.apache.org/).

http://terrymun.com
https://github.com/google/gcm/
http://www.maxmind.com/en/opensource
http://www.maxmind.com/en/opensource
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://geronimo.apache.org/

Diffusion | 868

Google code prettify

https://code.google.com/p/google-code-prettify/

Prettify is distributed under the Apache 2.0 License.

Copyright (C) 2006 Google Inc.

hashmap

Version: 2.0.3

https://github.com/flesler/hashmap

hashmap is distributed under the MIT License.

Copyright (c) 2012-2013 Ariel Flesler aflesler@gmail.com

Hazelcast

Version 3.6.4

http://www.hazelcast.org/

Hazelcast is distributed under the Apache License 2.0

Copyright (c) 2008-2016, Hazelcast, Inc. All Rights Reserved.

Additional notices

The following information is included in the NOTICE.txt file that accompanies the source:

**
** NOTICE file corresponding to the section 4 (d) of the Apache
 License,
** Version 2.0, in this case for the Hazelcast distribution.
**

The end-user documentation included with a redistribution, if any,
must include the following acknowledgement:

 "This product includes software developed by the Hazelcast
 Project (http://www.hazelcast.com)."

Alternately, this acknowledgement may appear in the software itself,
if and wherever such third-party acknowledgements normally appear.

The name "Hazelcast" must not be used to endorse or promote products
derived from this software without prior written permission. For
written permission, please contact talip@hazelcast.com or
 fuad@hazelcast.com

Copyright (c) 2008-2014 Hazelcast Inc. All rights reserved.

https://code.google.com/p/google-code-prettify/
https://github.com/flesler/hashmap
http://www.hazelcast.org/

Diffusion | 869

HPPC

Version 0.7.1

http://labs.carrotsearch.com/hppc.html

HPPC is distributed under the Apache License 2.0.

Copyright 2010-2013, Carrot Search s.c., Boznicza 11/56, Poznan, Poland

htmlcompressor

Version 1.5.2

http://code.google.com/p/htmlcompressor/

The htmlcompressor is distributed under the Apache License 2.0.

Copyright 2009-2011 Sergiy Kovalchuk

Additional notices: Apache License 2.0 Notice

inherits

Version 2.0.1

https://github.com/isaacs/inherits

Inherits is distributed under the ISC License.

Copyright (c) Isaac Z. Schlueter.

jackson-core

Version 2.7.1

https://github.com/fasterxml/jackson-core

jackson-core is distributed under the Apache License 2.0

Copyright Tatu Saloranta

jackson-dataformat-cbor

Version 2.7.1

https://github.com/fasterxml/jackson-dataformat-cbor

jackson-dataformat-cbor is distributed under the Apache License 2.0

Copyright Tatu Saloranta

http://labs.carrotsearch.com/hppc.html
http://code.google.com/p/htmlcompressor/
https://github.com/isaacs/inherits
https://github.com/fasterxml/jackson-core
https://github.com/fasterxml/jackson-dataformat-cbor

Diffusion | 870

JCIP Annotations

Version 1

https://github.com/stephenc/jcip-annotations

jcip-annotations is distributed under the Apache License 2.0

Copyright 2013 Stephen Connolly.

JCTools

Version 1.1

https://github.com/JCTools/JCTools

JCTools is distributed under the Apache License 2.0

Copyright 2015 Nitsan Wakart.

jQuery

Version: 1.7.1

https://jquery.org/

jQuery is distributed under the MIT License.

Copyright 2014 jQuery Foundation and other contributors http://jquery.com/

json-simple

Version 1.1.1

https://code.google.com/p/json-simple/

json-simple is distributed under the Apache License 2.0.

Copyright (c) Yidong Fang, Chris Nokleberg

JZlib

Version 1.02

http://www.jcraft.com/jzlib/

JZlib is distributed under the BSD 3-clause License. This has not been modified, it has been compiled
from the source code for distribution.

Copyright 2000-2011 ymnk, JCraft,Inc. All rights reserved.

https://github.com/stephenc/jcip-annotations
https://github.com/JCTools/JCTools
https://jquery.org/
https://code.google.com/p/json-simple/
http://www.jcraft.com/jzlib/

Diffusion | 871

Knockout

Version 2.1.0

http://knockoutjs.com/

Knockout is distributed under the MIT License.

Copyright (c) Steven Sanderson, the Knockout.js team, and other contributors

libwebsockets

Version 1.7.7

https://libwebsockets.org/index.html

libwebsockets is distributed under the LGPL 2.1.

Copyright (C) 2010-2015 Andy Green <andy@warmcat.com>

Source code is available from the following location: https://github.com/warmcat/libwebsockets

For a fee, Push Technology can also provide this source on a CD. To request a copy, contact
support@pushtechnology.com.

log4j2

Version 2.4.1

http://logging.apache.org/log4j/2.x/

log4j2 is distributed under the Apache License 2.0.

Copyright The Apache Software Foundation. All Rights Reserved.

loglevel

Version: 1.4.0

https://github.com/pimterry/loglevel

loglevel is distributed under the MIT License.

Copyright (c) 2013 Tim Perry

long

Version: 2.2.5

https://github.com/dcodeIO/Long.js

long is distributed under the Apache License 2.0.

Copyright 2013 Daniel Wirtz dcode@dcode.io

Copyright 2009 The Closure Library Authors. All Rights Reserved.

http://knockoutjs.com/
https://libwebsockets.org/index.html
https://github.com/warmcat/libwebsockets
http://logging.apache.org/log4j/2.x/
https://jquery.org/https://github.com/pimterry/loglevel
https://jquery.org/https://github.com/dcodeIO/Long.js

Diffusion | 872

Metrics

Version 3.0.0-BETA

http://metrics.codahale.com/

Metrics is distributed under the Apache License 2.0.

Copyright (c) 2010-2013 Coda Hale, Yammer.com

Additional notices

The following information is included in the NOTICE.txt file that accompanies the source:

Metrics
Copyright 2010-2013 Coda Hale and Yammer, Inc.

This product includes software developed by Coda Hale and Yammer, Inc.

This product includes code derived from the JSR-166 project
 (ThreadLocalRandom, Striped64,
LongAdder), which was released with the following comments:

 Written by Doug Lea with assistance from members of JCP JSR-166
 Expert Group and released to the public domain, as explained at
 http://creativecommons.org/publicdomain/zero/1.0/

Minimal JSON

https://github.com/ralfstx/minimal-json

Minimal JSON is distributed under the MIT License.

Copyright (c) 2014, 2015 EclipseSource

Modernizr

Version: 2.8.3

http://modernizr.com/

Modernizr is distributed under the MIT License and BSD 3-clause License.

NLog

Version 3.1.0

https://github.com/NLog/NLog/

NLog is distributed under the BSD 3-clause License.

Copyright (c) 2004-2011 Jaroslaw Kowalski <jaak@jkowalski.net>

http://metrics.codahale.com/
https://github.com/ralfstx/minimal-json
http://modernizr.com/
https://github.com/NLog/NLog/

Diffusion | 873

opencsv

Version 2.3

http://opencsv.sourceforge.net/

opencsv is distributed under the Apache License 2.0.

Copyright 2005 Bytecode Pty Ltd.

OpenSSL

Version 1.0.2a

https://www.openssl.org/

OpenSSL is distributed under the OpenSSL and SSLeay Licenses.

PCRE

Version 1.5.2

http://www.pcre.org/

PCRE is distributed under the BSD 3-clause License.

THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel

Email local part: ph10

Email domain: cam.ac.uk

University of Cambridge Computing Service,

Cambridge, England.

Copyright (c) 1997-2015 University of Cambridge

All rights reserved.

PCRE2 JUST-IN-TIME COMPILATION SUPPORT

Written by: Zoltan Herczeg

Email local part: hzmester

Emain domain: freemail.hu

Copyright(c) 2010-2015 Zoltan Herczeg

All rights reserved.

STACK-LESS JUST-IN-TIME COMPILER

Written by: Zoltan Herczeg

Email local part: hzmester

Emain domain: freemail.hu

http://opencsv.sourceforge.net/
https://www.openssl.org/
http://www.pcre.org

Diffusion | 874

Copyright(c) 2009-2015 Zoltan Herczeg

All rights reserved.

Picocontainer

Version 2.15

http://picocontainer.codehaus.org/

Picocontainer is distributed under the BSD 3-clause License.

Copyright (c) 2003-2008 PicoContainer Organization. All rights reserved.

Protocol Buffers

Version 2.6.1

http://code.google.com/p/protobuf/

Google's Protocol Buffers are distributed under the BSD 3-clause License.

Copyright 2008 Google Inc. All rights reserved.

Rickshaw

http://code.shutterstock.com/rickshaw/

Rickshaw is distributed under the MIT License.

Copyright (C) 2011-2013 by Shutterstock Images, LLC

Servlet API

http://jetty.mortbay.org/project/modules/servlet-api-2.5

Servlet API is distributed under the CDDL v1.0 License.

SLF4J

Version 1.7.7

http://www.slf4j.org/

SLF4J is distributed under the MIT License.

Copyright (c) 2004-2013 QOS.ch All rights reserved.

slf4j-android-logger

Version 1.0.4

https://github.com/PSDev/slf4j-android-logger

http://picocontainer.codehaus.org/
http://code.google.com/p/protobuf/
http://code.shutterstock.com/rickshaw/
http://jetty.mortbay.org/project/modules/servlet-api-2.5
http://www.slf4j.org/
https://github.com/PSDev/slf4j-android-logger

Diffusion | 875

slf4j-android-logger is distributed under the Apache 2.0 License.

Copyright 2013 Philip Schiffer

SocketRocket

Version 0.3.1-beta2

https://github.com/square/SocketRocket

SocketRocket is distributed under the Apache License 2.0.

Copyright 2012 Square Inc.

Tabber

Version: 1.9

http://www.barelyfitz.com/projects/tabber/

Tabber is distributed under the MIT License.

Copyright (c) 2006 Patrick Fitzgerald pat@barelyfitz.com

Tapestry (Plastic)

Version 5.3.7

http://tapestry.apache.org/

Tapestry is distributed under the Apache License 2.0.

Copyright 2011, 2012 The Apache Software Foundation

Additional notices

The following information is included in the NOTICE.txt file that accompanies the source:

This product includes software developed by
The Apache Software Foundation (http://www.apache.org/).

Please refer to the NOTICE.txt in each sub-module to
identify further dependencies.

The Maven central repository is the preferred method to download
 Tapestry
and its dependencies. The binary archive includes just basic
dependencies for tapestry-core; using other modules (such as
tapestry-hibernate or any of the others) requires downloading
additional dependencies. Please refer to the Maven POM for each module
to identify its dependencies.

TrueLicense

Version 1.33

http://truelicense.java.net/

https://github.com/square/SocketRocket
http://www.barelyfitz.com/projects/tabber/
http://tapestry.apache.org/
http://truelicense.java.net/

Diffusion | 876

This version of TrueLicense was distributed under the EPL.

Copyright 2005-2012 Schlichtherle IT Services

when

Version 3.7.3

https://github.com/cujojs/when

http://cujojs.com/

When is distributed under the MIT License.

Copyright (c) 2011 Brian Cavalier

ws

Version 0.8.0

https://github.com/websockets/ws

WS is distributed under the MIT License.

Copyright (c) 2011 Einar Otto Stangvik

Licenses

The following licenses are used by the third party, open source software that is distributed with
Diffusion.

Apache License 2.0

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting
the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are
controlled by, or are under common control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the direction or management of such entity,
whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding
shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this
License.

https://github.com/cujojs/when
http://cujojs.com/
https://github.com/websockets/ws
http://www.apache.org/licenses/

Diffusion | 877

"Source" form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and
conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived
from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes of this License, Derivative
Works shall not include works that remain separable from, or merely link (or bind by name) to the
interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any
modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to
Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized
to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means
any form of electronic, verbal, or written communication sent to the Licensor or its representatives,
including but not limited to communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving the Work, but excluding communication that is conspicuously marked or
otherwise designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution
has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that
the Work or a Contribution incorporated within the Work constitutes direct or contributory patent
infringement, then any patent licenses granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet the
following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files;
and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those notices
that do not pertain to any part of the Derivative Works; and

Diffusion | 878

(d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that
You distribute must include a readable copy of the attribution notices contained within such NOTICE
file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed as part of the Derivative Works; within
the Source form or documentation, if provided along with the Derivative Works; or, within a display
generated by the Derivative Works, if and wherever such third-party notices normally appear. The
contents of the NOTICE file are for informational purposes only and do not modify the License. You
may add Your own attribution notices within Derivative Works that You distribute, alongside or as an
addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot
be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the
Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions. Notwithstanding the above, nothing herein
shall supersede or modify the terms of any separate license agreement you may have executed with
Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor
provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation,
any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this
License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct,
indirect, special, incidental, or consequential damages of any character arising as a result of this
License or out of the use or inability to use the Work (including but not limited to damages for loss of
goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages
or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof,
You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other
liability obligations and/or rights consistent with this License. However, in accepting such obligations,
You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other
Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any
liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such
warranty or additional liability.

Related concepts
Apache Commons Codec on page 864

Apache Portable Runtime on page 864

CQEngine on page 865

concurrent-trees on page 865

d3 on page 866

Diffusion | 879

disruptor on page 866

Fluent validation on page 866

geronimo-jms_1.1_spec on page 867

gcm-server on page 867

Hazelcast on page 868

HPPC on page 869

htmlcompressor on page 869

jackson-core on page 869

jackson-dataformat-cbor on page 869

JCIP Annotations on page 870

JCTools on page 870

json-simple on page 870

log4j2 on page 871

long on page 871

Metrics on page 872

Google code prettify on page 868

opencsv on page 873

slf4j-android-logger on page 874

SocketRocket on page 875

Tapestry (Plastic) on page 875

BSD 3-clause License

Copyright (c) <YEAR>, <OWNER>

All rights reserved.

Note: The copyright statement above is included in its completed form in the sections of this
document specific to the individual products covered by this license.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The names of the authors may not be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT, INC. OR ANY CONTRIBUTORS
TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

Diffusion | 880

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Related concepts
ANTLR on page 864

apns on page 864

Protocol Buffers on page 874

JZlib on page 870

NLog on page 872

Modernizr on page 872

PCRE on page 873

Picocontainer on page 874

Common Development and Distribution License

Sun Microsystems, Inc. ("Sun") ENTITLEMENT for SOFTWARE

Licensee/Company: Entity receiving Software.

Effective Date: Date of delivery of the Software to You.

Software: JavaMail 1.4.

License Term: Perpetual (subject to termination under the SLA).

Licensed Unit: Software Copy.

Licensed unit Count: Unlimited.

Permitted Uses:

1. You may reproduce and use the Software for Individual, Commercial, or Research and
Instructional Use for the purposes of designing, developing, testing, and running Your applets and
application("Programs").

2. Subject to the terms and conditions of this Agreement and restrictions and exceptions set forth in
the Software's documentation, You may reproduce and distribute portions of Software identified as a
redistributable in the documentation ("Redistributable"), provided that:

(a) you distribute Redistributable complete and unmodified and only bundled as part of Your
Programs,

(b) your Programs add significant and primary functionality to the Redistributable,

(c) you distribute Redistributable for the sole purpose of running your Programs,

(d) you do not distribute additional software intended to replace any component(s) of the
Redistributable,

(e) you do not remove or alter any proprietary legends or notices contained in or on the
Redistributable.

(f) you only distribute the Redistributable subject to a license agreement that protects Sun's interests
consistent with the terms contained in this Agreement, and

Diffusion | 881

(g) you agree to defend and indemnify Sun and its licensors from and against any damages, costs,
liabilities, settlement amounts and/or expenses (including attorneys' fees) incurred in connection with
any claim, lawsuit or action by any third party that arises or results from the use or distribution of any
and all Programs and/or Redistributable.

3. Java Technology Restrictions. You may not create, modify, or change the behavior of, or authorize
your licensees to create, modify, or change the behavior of, classes, interfaces, or subpackages that
are in any way identified as "java", "javax", "sun" or similar convention as specified by Sun in any
naming convention designation.

B. Sun Microsystems, Inc. ("Sun") SOFTWARE LICENSE AGREEMENT

READ THE TERMS OF THIS AGREEMENT ("AGREEMENT") CAREFULLY BEFORE OPENING SOFTWARE
MEDIA PACKAGE. BY OPENING SOFTWARE MEDIA PACKAGE, YOU AGREE TO THE TERMS OF THIS
AGREEMENT. IF YOU ARE ACCESSING SOFTWARE ELECTRONICALLY, INDICATE YOUR ACCEPTANCE
OF THESE TERMS BY SELECTING THE "ACCEPT" BUTTON AT THE END OF THIS AGREEMENT. IF YOU
DO NOT AGREE TO ALL OF THE TERMS, PROMPTLY RETURN THE UNUSED SOFTWARE TO YOUR
PLACE OF PURCHASE FOR A REFUND OR, IF SOFTWARE IS ACCESSED ELECTRONICALLY, SELECT THE
"DECLINE" (OR "EXIT") BUTTON AT THE END OF THIS AGREEMENT. IF YOU HAVE SEPARATELY AGREED
TO LICENSE TERMS ("MASTER TERMS") FOR YOUR LICENSE TO THIS SOFTWARE, THEN SECTIONS 1-5
OF THIS AGREEMENT ("SUPPLEMENTAL LICENSE TERMS") SHALL SUPPLEMENT AND SUPERSEDE THE
MASTER TERMS IN RELATION TO THIS SOFTWARE.

1. Definitions.

(a) "Entitlement" means the collective set of applicable documents authorized by Sun evidencing your
obligation to pay associated fees (if any) for the license, associated Services, and the authorized scope
of use of Software under this Agreement.

(b) "Licensed Unit" means the unit of measure by which your use of Software and/or Service is
licensed, as described in your Entitlement.

(c) "Permitted Use" means the licensed Software use(s) authorized in this Agreement as specified in
your Entitlement. The Permitted Use for any bundled Sun software not specified in your Entitlement
will be evaluation use as provided in Section 3.

(d) "Service" means the service(s) that Sun or its delegate will provide, if any, as selected in your
Entitlement and as further described in the applicable service listings at www.sun.com/service/
servicelist.

(e) "Software" means the Sun software described in your Entitlement. Also, certain software may be
included for evaluation use under Section 3.

(f) "You" and "Your" means the individual or legal entity specified in the Entitlement, or for evaluation
purposes, the entity performing the evaluation.

2. License Grant and Entitlement.

Subject to the terms of your Entitlement, Sun grants you a nonexclusive, nontransferable limited
license to use Software for its Permitted Use for the license term. Your Entitlement will specify (a)
Software licensed, (b) the Permitted Use, (c) the license term, and (d) the Licensed Units.

Additionally, if your Entitlement includes Services, then it will also specify the (e) Service and (f) service
term.

If your rights to Software or Services are limited in duration and the date such rights begin is other
than the purchase date, your Entitlement will provide that beginning date(s).

The Entitlement may be delivered to you in various ways depending on the manner in which you
obtain Software and Services, for example, the Entitlement may be provided in your receipt, invoice or
your contract with Sun or authorized Sun reseller. It may also be in electronic format if you download
Software.

Diffusion | 882

3. Permitted Use.

As selected in your Entitlement, one or more of the following Permitted Uses will apply to your use
of Software. Unless you have an Entitlement that expressly permits it, you may not use Software for
any of the other Permitted Uses. If you don't have an Entitlement, or if your Entitlement doesn't cover
additional software delivered to you, then such software is for your Evaluation Use.

(a) Evaluation Use. You may evaluate Software internally for a period of 90 days from your first use.

(b) Research and Instructional Use. You may use Software internally to design, develop and test, and
also to provide instruction on such uses.

(c) Individual Use. You may use Software internally for personal, individual use.

(d) Commercial Use. You may use Software internally for your own commercial purposes.

(e) Service Provider Use. You may make Software functionality accessible (but not by providing
Software itself or through outsourcing services) to your end users in an extranet deployment, but not
to your affiliated companies or to government agencies.

4. Licensed Units.

Your Permitted Use is limited to the number of Licensed Units stated in your Entitlement. If you require
additional Licensed Units, you will need additional Entitlement(s).

5. Restrictions.

(a) The copies of Software provided to you under this Agreement are licensed, not sold, to you by Sun.
Sun reserves all rights not expressly granted. (b) You may make a single archival copy of Software,
but otherwise may not copy, modify, or distribute Software. However if the Sun documentation
accompanying Software lists specific portions of Software, such as header files, class libraries,
reference source code, and/or redistributable files, that may be handled differently, you may do so
only as provided in the Sun documentation. (c) You may not rent, lease, lend or encumber Software.
(d) Unless enforcement is prohibited by applicable law, you may not decompile, or reverse engineer
Software. (e) The terms and conditions of this Agreement will apply to any Software updates, provided
to you at Sun's discretion, that replace and/or supplement the original Software, unless such update
contains a separate license. (f) You may not publish or provide the results of any benchmark or
comparison tests run on Software to any third party without the prior written consent of Sun. (g)
Software is confidential and copyrighted. (h) Unless otherwise specified, if Software is delivered with
embedded or bundled software that enables functionality of Software, you may not use such software
on a stand-alone basis or use any portion of such software to interoperate with any program(s) other
than Software. (i) Software may contain programs that perform automated collection of system data
and/or automated software updating services. System data collected through such programs may be
used by Sun, its subcontractors, and its service delivery partners for the purpose of providing you with
remote system services and/or improving Sun's software and systems. (j) Software is not designed,
licensed or intended for use in the design, construction, operation or maintenance of any nuclear
facility and Sun and its licensors disclaim any express or implied warranty of fitness for such uses. (k)
No right, title or interest in or to any trademark, service mark, logo or trade name of Sun or its licensors
is granted under this Agreement.

6. Term and Termination.

The license and service term are set forth in your Entitlement(s). Your rights under this Agreement
will terminate immediately without notice from Sun if you materially breach it or take any action
in derogation of Sun's and/or its licensors' rights to Software. Sun may terminate this Agreement
should any Software become, or in Sun's reasonable opinion likely to become, the subject of a claim of
intellectual property infringement or trade secret misappropriation. Upon termination, you will cease
use of, and destroy, Software and confirm compliance in writing to Sun. Sections 1, 5, 6, 7, and 9-15
will survive termination of the Agreement.

7. Java Compatibility and Open Source.

Diffusion | 883

Software may contain Java technology. You may not create additional classes to, or modifications of,
the Java technology, except under compatibility requirements available under a separate agreement
available at www.java.net.

Sun supports and benefits from the global community of open source developers, and thanks the
community for its important contributions and open standards-based technology, which Sun has
adopted into many of its products.

Please note that portions of Software may be provided with notices and open source licenses from
such communities and third parties that govern the use of those portions, and any licenses granted
hereunder do not alter any rights and obligations you may have under such open source licenses,
however, the disclaimer of warranty and limitation of liability provisions in this Agreement will apply
to all Software in this distribution.

8. Limited Warranty.

Sun warrants to you that for a period of 90 days from the date of purchase, as evidenced by a copy
of the receipt, the media on which Software is furnished (if any) will be free of defects in materials
and workmanship under normal use. Except for the foregoing, Software is provided "AS IS". Your
exclusive remedy and Sun's entire liability under this limited warranty will be at Sun's option to
replace Software media or refund the fee paid for Software. Some states do not allow limitations on
certain implied warranties, so the above may not apply to you. This limited warranty gives you specific
legal rights. You may have others, which vary from state to state.

9. Disclaimer of Warranty.

UNLESS SPECIFIED IN THIS AGREEMENT, ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS
AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT
THESE DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

10. Limitation of Liability.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
ANY LOST REVENUE, PROFIT OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL
OR PUNITIVE DAMAGES, HOWEVER CAUSED REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
OF OR RELATED TO THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. In no event will Sun's liability to you, whether in contract,
tort (including negligence), or otherwise, exceed the amount paid by you for Software under this
Agreement. The foregoing limitations will apply even if the above stated warranty fails of its essential
purpose. Some states do not allow the exclusion of incidental or consequential damages, so some of
the terms above may not be applicable to you.

11. Export Regulations.

All Software, documents, technical data, and any other materials delivered under this Agreement
are subject to U.S. export control laws and may be subject to export or import regulations in other
countries. You agree to comply strictly with these laws and regulations and acknowledge that you
have the responsibility to obtain any licenses to export, re-export, or import as may be required after
delivery to you.

12. U.S. Government Restricted Rights.

If Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime
contractor or subcontractor (at any tier), then the Government's rights in Software and accompanying
documentation will be only as set forth in this Agreement; this is in accordance with 48 CFR 227.7201
through 227.7202-4 (for Department of Defense (DOD) acquisitions) and with 48 CFR 2.101 and 12.212
(for non-DOD acquisitions).

13. Governing Law.

Diffusion | 884

Any action related to this Agreement will be governed by California law and controlling U.S. federal
law. No choice of law rules of any jurisdiction will apply.

14. Severability.

If any provision of this Agreement is held to be unenforceable, this Agreement will remain in effect
with the provision omitted, unless omission would frustrate the intent of the parties, in which case this
Agreement will immediately terminate.

15. Integration.

This Agreement, including any terms contained in your Entitlement, is the entire agreement between
you and Sun relating to its subject matter. It supersedes all prior or contemporaneous oral or written
communications, proposals, representations and warranties and prevails over any conflicting or
additional terms of any quote, order, acknowledgment, or other communication between the parties
relating to its subject matter during the term of this Agreement. No modification of this Agreement will
be binding, unless in writing and signed by an authorized representative of each party.

Please contact Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, California 95054 if you have
questions.

Related concepts
Servlet API on page 874

Eclipse Public License – v 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS ECLIPSE PUBLIC LICENSE
("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE PROGRAM CONSTITUTES
RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.

1. DEFINITIONS

"Contribution" means:

• a) in the case of the initial Contributor, the initial code and documentation distributed under this
Agreement, and

• b) in the case of each subsequent Contributor:

• i) changes to the Program, and
• ii) additions to the Program;

where such changes and/or additions to the Program originate from and are distributed by that
particular Contributor. A Contribution 'originates' from a Contributor if it was added to the Program
by such Contributor itself or anyone acting on such Contributor's behalf. Contributions do not include
additions to the Program which: (i) are separate modules of software distributed in conjunction with
the Program under their own license agreement, and (ii) are not derivative works of the Program.
"Contributor" means any person or entity that distributes the Program.

"Licensed Patents" mean patent claims licensable by a Contributor which are necessarily infringed by
the use or sale of its Contribution alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this Agreement.

"Recipient" means anyone who receives the Program under this Agreement, including all Contributors.

Diffusion | 885

2. GRANT OF RIGHTS

a) Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free copyright license to reproduce, prepare derivative works of, publicly display,
publicly perform, distribute and sublicense the Contribution of such Contributor, if any, and such
derivative works, in source code and object code form.

b) Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer to sell, import
and otherwise transfer the Contribution of such Contributor, if any, in source code and object code
form. This patent license shall apply to the combination of the Contribution and the Program if, at
the time the Contribution is added by the Contributor, such addition of the Contribution causes such
combination to be covered by the Licensed Patents. The patent license shall not apply to any other
combinations which include the Contribution. No hardware per se is licensed hereunder.

c) Recipient understands that although each Contributor grants the licenses to its Contributions
set forth herein, no assurances are provided by any Contributor that the Program does not infringe
the patent or other intellectual property rights of any other entity. Each Contributor disclaims any
liability to Recipient for claims brought by any other entity based on infringement of intellectual
property rights or otherwise. As a condition to exercising the rights and licenses granted hereunder,
each Recipient hereby assumes sole responsibility to secure any other intellectual property rights
needed, if any. For example, if a third party patent license is required to allow Recipient to distribute
the Program, it is Recipient's responsibility to acquire that license before distributing the Program.

d) Each Contributor represents that to its knowledge it has sufficient copyright rights in its
Contribution, if any, to grant the copyright license set forth in this Agreement.

3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code form under its own license
agreement, provided that:

• a) it complies with the terms and conditions of this Agreement; and
• b) its license agreement:

• i) effectively disclaims on behalf of all Contributors all warranties and conditions, express
and implied, including warranties or conditions of title and non-infringement, and implied
warranties or conditions of merchantability and fitness for a particular purpose;

• ii) effectively excludes on behalf of all Contributors all liability for damages, including direct,
indirect, special, incidental and consequential damages, such as lost profits;

• iii) states that any provisions which differ from this Agreement are offered by that Contributor
alone and not by any other party; and

• iv) states that source code for the Program is available from such Contributor, and informs
licensees how to obtain it in a reasonable manner on or through a medium customarily used for
software exchange.

When the Program is made available in source code form:

• a) it must be made available under this Agreement; and
• b) a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that
reasonably allows subsequent Recipients to identify the originator of the Contribution.

Diffusion | 886

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities with respect to end users,
business partners and the like. While this license is intended to facilitate the commercial use of the
Program, the Contributor who includes the Program in a commercial product offering should do so in
a manner which does not create potential liability for other Contributors. Therefore, if a Contributor
includes the Program in a commercial product offering, such Contributor ("Commercial Contributor")
hereby agrees to defend and indemnify every other Contributor ("Indemnified Contributor") against
any losses, damages and costs (collectively "Losses") arising from claims, lawsuits and other legal
actions brought by a third party against the Indemnified Contributor to the extent caused by the acts
or omissions of such Commercial Contributor in connection with its distribution of the Program in
a commercial product offering. The obligations in this section do not apply to any claims or Losses
relating to any actual or alleged intellectual property infringement. In order to qualify, an Indemnified
Contributor must: a) promptly notify the Commercial Contributor in writing of such claim, and b)
allow the Commercial Contributor to control, and cooperate with the Commercial Contributor in, the
defense and any related settlement negotiations. The Indemnified Contributor may participate in any
such claim at its own expense.

For example, a Contributor might include the Program in a commercial product offering, Product
X. That Contributor is then a Commercial Contributor. If that Commercial Contributor then
makes performance claims, or offers warranties related to Product X, those performance claims
and warranties are such Commercial Contributor's responsibility alone. Under this section, the
Commercial Contributor would have to defend claims against the other Contributors related to those
performance claims and warranties, and if a court requires any other Contributor to pay any damages
as a result, the Commercial Contributor must pay those damages.

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED ON AN "AS
IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED
INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is solely responsible
for determining the appropriateness of using and distributing the Program and assumes all risks
associated with its exercise of rights under this Agreement, including but not limited to the risks and
costs of program errors, compliance with applicable laws, damage to or loss of data, programs or
equipment, and unavailability or interruption of operations.

6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY
CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS),
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR
DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. GENERAL

If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect
the validity or enforceability of the remainder of the terms of this Agreement, and without further
action by the parties hereto, such provision shall be reformed to the minimum extent necessary to
make such provision valid and enforceable.

If Recipient institutes patent litigation against any entity (including a cross-claim or counterclaim in a
lawsuit) alleging that the Program itself (excluding combinations of the Program with other software
or hardware) infringes such Recipient's patent(s), then such Recipient's rights granted under Section
2(b) shall terminate as of the date such litigation is filed.

Diffusion | 887

All Recipient's rights under this Agreement shall terminate if it fails to comply with any of the material
terms or conditions of this Agreement and does not cure such failure in a reasonable period of time
after becoming aware of such noncompliance. If all Recipient's rights under this Agreement terminate,
Recipient agrees to cease use and distribution of the Program as soon as reasonably practicable.
However, Recipient's obligations under this Agreement and any licenses granted by Recipient relating
to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid
inconsistency the Agreement is copyrighted and may only be modified in the following manner. The
Agreement Steward reserves the right to publish new versions (including revisions) of this Agreement
from time to time. No one other than the Agreement Steward has the right to modify this Agreement.
The Eclipse Foundation is the initial Agreement Steward. The Eclipse Foundation may assign the
responsibility to serve as the Agreement Steward to a suitable separate entity. Each new version of the
Agreement will be given a distinguishing version number. The Program (including Contributions) may
always be distributed subject to the version of the Agreement under which it was received. In addition,
after a new version of the Agreement is published, Contributor may elect to distribute the Program
(including its Contributions) under the new version. Except as expressly stated in Sections 2(a) and 2(b)
above, Recipient receives no rights or licenses to the intellectual property of any Contributor under
this Agreement, whether expressly, by implication, estoppel or otherwise. All rights in the Program not
expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of
the United States of America. No party to this Agreement will bring a legal action under this Agreement
more than one year after the cause of action arose. Each party waives its rights to a jury trial in any
resulting litigation.

Related concepts
TrueLicense on page 875

ISC License –

Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee
is hereby granted, provided that the above copyright notice and this permission notice appear in all
copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN
NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Related concepts
inherits on page 869

The GNU Lesser General Public License, version 2.1 (LGPL-2.1)

GNU Lesser General Public License

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Diffusion | 888

[This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library
Public License, version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and
change free software – to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software
packages – typically libraries – of the Free Software Foundation and other authors who decide to use
it. You can use it too, but we suggest you first think carefully about whether this license or the ordinary
General Public License is the better strategy to use in any particular case, based on the explanations
below.

When we speak of free software, we are referring to freedom of use, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish); that you receive source code or can get it if you want it; that
you can change the software and use pieces of it in new free programs; and that you are informed that
you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights
or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if
you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the
recipients all the rights that we gave you. You must make sure that they, too, receive or can get the
source code. If you link other code with the library, you must provide complete object files to the
recipients, so that they can relink them with the library after making changes to the library and
recompiling it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this
license, which gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free library.
Also, if the library is modified by someone else and passed on, the recipients should know that what
they have is not the original version, so that the original author's reputation will not be affected by
problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to make
sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive
license from a patent holder. Therefore, we insist that any patent license obtained for a version of the
library must be consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License.
This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite
different from the ordinary General Public License. We use this license for certain libraries in order to
permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the combination
of the two is legally speaking a combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the entire combination fits its criteria of
freedom. The Lesser General Public License permits more lax criteria for linking other code with the
library.

We call this license the "Lesser" General Public License because it does Less to protect the user's
freedom than the ordinary General Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages are the reason we use the
ordinary General Public License for many libraries. However, the Lesser license provides advantages in
certain special circumstances.

Diffusion | 889

For example, on rare occasions, there may be a special need to encourage the widest possible use of
a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free library does the same job as widely used
non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so
we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater number
of people to use a large body of free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU operating system, as well as its
variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that
the user of a program that is linked with the Library has the freedom and the wherewithal to run that
program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention
to the difference between a "work based on the library" and a "work that uses the library". The former
contains code derived from the library, whereas the latter must be combined with the library in order
to run.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a notice
placed by the copyright holder or other authorized party saying it may be distributed under the terms
of this Lesser General Public License (also called "this License"). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be conveniently
linked with application programs (which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work which has been distributed under
these terms. A "work based on the Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with
modifications and/or translated straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for making modifications to it. For
a library, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
library.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based on the Library (independent of
the use of the Library in a tool for writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and distribute a copy of this License along with the
Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on
the Library, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

Diffusion | 890

b) You must cause the files modified to carry prominent notices stating that you changed the files and
the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms
of this License.

d) If a facility in the modified Library refers to a function or a table of data to be supplied by an
application program that uses the facility, other than as an argument passed when the facility is
invoked, then you must make a good faith effort to ensure that, in the event an application does not
supply such function or table, the facility still operates, and performs whatever part of its purpose
remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely well-
defined independent of the application. Therefore, Subsection 2d requires that any application-
supplied function or table used by this function must be optional: if the application does not supply it,
the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Library, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a
work based on the Library) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to
a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that
they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer
version than version 2 of the ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General
Public License applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a
library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you accompany it
with the complete corresponding machine-readable source code, which must be distributed under the
terms of Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place satisfies the requirement to distribute
the source code, even though third parties are not compelled to copy the source along with the object
code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with the
Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in
isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License.

Diffusion | 891

However, linking a "work that uses the Library" with the Library creates an executable that is a
derivative of the Library (because it contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License. Section 6 states terms for distribution of
such executables.

When a "work that uses the Library" uses material from a header file that is part of the Library, the
object code for the work may be a derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be linked without the Library, or if the work
is itself a library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and
small macros and small inline functions (ten lines or less in length), then the use of the object file is
unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object
code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work
under the terms of Section 6. Any executables containing that work also fall under Section 6, whether
or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work that uses the Library"
with the Library to produce a work containing portions of the Library, and distribute that work under
terms of your choice, provided that the terms permit modification of the work for the customer's own
use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the
Library and its use are covered by this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the copyright notice for the Library
among them, as well as a reference directing the user to the copy of this License. Also, you must do one
of these things:

a) Accompany the work with the complete corresponding machine-readable source code for the
Library including whatever changes were used in the work (which must be distributed under Sections
1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-
readable "work that uses the Library", as object code and/or source code, so that the user can
modify the Library and then relink to produce a modified executable containing the modified Library.
(It is understood that the user who changes the contents of definitions files in the Library will not
necessarily be able to recompile the application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one
that (1) uses at run time a copy of the library already present on the user's computer system, rather
than copying library functions into the executable, and (2) will operate properly with a modified
version of the library, if the user installs one, as long as the modified version is interface-compatible
with the version that the work was made with.

c) Accompany the work with a written offer, valid for at least three years, to give the same user the
materials specified in Subsection 6a, above, for a charge no more than the cost of performing this
distribution.

d) If distribution of the work is made by offering access to copy from a designated place, offer
equivalent access to copy the above specified materials from the same place.

e) Verify that the user has already received a copy of these materials or that you have already sent this
user a copy.

For an executable, the required form of the "work that uses the Library" must include any data and
utility programs needed for reproducing the executable from it. However, as a special exception, the
materials to be distributed need not include anything that is normally distributed (in either source
or binary form) with the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the executable.

Diffusion | 892

It may happen that this requirement contradicts the license restrictions of other proprietary libraries
that do not normally accompany the operating system. Such a contradiction means you cannot use
both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single library
together with other library facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on the Library and of the other
library facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined
with any other library facilities. This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on the
Library, and explaining where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute
the Library is void, and will automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library
(or any work based on the Library), you indicate your acceptance of this License to do so, and all its
terms and conditions for copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or modify the
Library subject to these terms and conditions. You may not impose any further restrictions on the
recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by
third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you from
the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence you may not distribute
the Library at all. For example, if a patent license would not permit royalty-free redistribution of the
Library by all those who receive copies directly or indirectly through you, then the only way you could
satisfy both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply, and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Library under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

Diffusion | 893

13. The Free Software Foundation may publish revised and/or new versions of the Lesser General
Public License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this
License which applies to it and "any later version", you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If
the Library does not specify a license version number, you may choose any version ever published by
the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution
conditions are incompatible with these, write to the author to ask for permission. For software which
is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals of preserving the free status of
all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY,
TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY
AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY
OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

Related concepts
cron4j on page 865

GeoIP API on page 867

libwebsockets on page 871

The GNU Lesser General Public License, version 3.0 (LGPL-3.0)

This license is a set of additional permissions added to version 3 of the GNU General Public License.

GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version
3 of the GNU General Public License, supplemented by the additional permissions listed below.

0. Additional Definitions.

Diffusion | 894

As used herein, “this License” refers to version 3 of the GNU Lesser General Public License, and the
“GNU GPL” refers to version 3 of the GNU General Public License.

“The Library” refers to a covered work governed by this License, other than an Application or a
Combined Work as defined below.

An “Application” is any work that makes use of an interface provided by the Library, but which is not
otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an Application with the Library. The
particular version of the Library with which the Combined Work was made is also called the “Linked
Version”.

The “Minimal Corresponding Source” for a Combined Work means the Corresponding Source for the
Combined Work, excluding any source code for portions of the Combined Work that, considered in
isolation, are based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the object code and/or source
code for the Application, including any data and utility programs needed for reproducing the
Combined Work from the Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound by section
3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data
to be supplied by an Application that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified version:

a) under this License, provided that you make a good faith effort to ensure that, in the event an
Application does not supply the function or data, the facility still operates, and performs whatever part
of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that is part
of the Library. You may convey such object code under terms of your choice, provided that, if the
incorporated material is not limited to numerical parameters, data structure layouts and accessors,
or small macros, inline functions and templates (ten or fewer lines in length), you do both of the
following:

a) Give prominent notice with each copy of the object code that the Library is used in it and that the
Library and its use are covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together, effectively do
not restrict modification of the portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of the following:

a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that
the Library and its use are covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

Diffusion | 895

c) For a Combined Work that displays copyright notices during execution, include the copyright notice
for the Library among these notices, as well as a reference directing the user to the copies of the GNU
GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding
Application Code in a form suitable for, and under terms that permit, the user to recombine or relink
the Application with a modified version of the Linked Version to produce a modified Combined Work,
in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.

1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one
that (a) uses at run time a copy of the Library already present on the user's computer system, and
(b) will operate properly with a modified version of the Library that is interface-compatible with the
Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to provide such
information under section 6 of the GNU GPL, and only to the extent that such information is necessary
to install and execute a modified version of the Combined Work produced by recombining or relinking
the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation
Information must accompany the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation Information in the manner specified by
section 6 of the GNU GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single library
together with other library facilities that are not Applications and are not covered by this License, and
convey such a combined library under terms of your choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined
with any other library facilities, conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it is a work based on the Library, and
explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General
Public License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that
a certain numbered version of the GNU Lesser General Public License “or any later version” applies
to it, you have the option of following the terms and conditions either of that published version or of
any later version published by the Free Software Foundation. If the Library as you received it does not
specify a version number of the GNU Lesser General Public License, you may choose any version of the
GNU Lesser General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU
Lesser General Public License shall apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the Library.

Related concepts
FastColoredTextBox on page 866

The MIT License (MIT)

Copyright (c) <year> <copyright holders>

Diffusion | 896

Note: The copyright statement above is included in its completed form in the sections of this
document specific to the individual products covered by this license.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Related concepts
Bootstrap on page 865

Fluidbox on page 866

hashmap on page 868

jQuery on page 870

Knockout on page 871

loglevel on page 871

Modernizr on page 872

Rickshaw on page 874

SLF4J on page 874

Tabber on page 875

Minimal JSON on page 872

when on page 876

ws on page 876

OpenSSL and SSLeay Licenses
The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL License and
the original SSLeay license apply to the toolkit. See below for the actual license texts.

OpenSSL License

Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

Diffusion | 897

3. All advertising materials mentioning features or use of this software must display the following
acknowledgment: "This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission,
please contact openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear in
their names without prior written permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment: "This product
includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL
PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product
includes software written by Tim Hudson (tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The
implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as the following conditions are
aheared to. The following conditions apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is
covered by the same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be removed.
If this package is used in a product, Eric Young should be given attribution as the author of the parts of
the library used. This can be in the form of a textual message at program startup or in documentation
(online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgement:

"This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)"

The word 'cryptographic' can be left out if the routines from the library being used are not
cryptographic related :-).

Diffusion | 898

4. If you include any Windows specific code (or a derivative thereof) from the apps directory
(application code) you must include an acknowledgement: "This product includes software written
by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The licence and distribution terms for any publically available version or derivative of this code
cannot be changed. i.e. this code cannot simply be copied and put under another distribution licence
[including the GNU Public Licence.]

Related concepts
OpenSSL on page 873

	Contents
	List of Figures
	List of Tables
	Welcome
	Introducing Diffusion
	What's new in Diffusion 5.9?
	What was new in Diffusion 5.8?
	What was new in Diffusion 5.7?
	What was new in Diffusion 5.6?
	What was new in Diffusion 5.1?
	What was new in Diffusion 5.0?

	Quick Start Guide
	Get Diffusion
	Install Diffusion
	Start the Diffusion server
	Default configuration
	The Diffusion monitoring console
	Develop a publishing client
	Develop a subscribing client
	Resources

	Design Guide
	Support
	System requirements for the Diffusion server
	Platform support for the Diffusion Unified API libraries
	Feature support in the Diffusion Unified API
	Protocol support
	Browser support
	Browser limitations
	WebSocket limitations
	Cross-origin resource sharing limitations
	Browser connection limitations

	Designing your data model
	Topic tree
	Topic naming
	Topic selectors in the Unified API
	Regular expressions

	Topic selectors in the Classic API (deprecated)

	Topics
	JSON topics
	Binary topics
	Single value topics
	Record topics
	Metadata

	Stateless topics
	Advanced topics
	Routing topics
	Slave topics
	DEPRECATED: Custom topics
	DEPRECATED: Topic notify topics
	DEPRECATED: Child list topics
	DEPRECATED: Paged string topics
	DEPRECATED: Paged record topics
	DEPRECATED: Service topics
	Service topic data

	DEPRECATED: Protocol buffer topics

	Publication
	Publishing data
	Subscribing to topics

	Messaging
	Advanced usage
	Conflation
	Types of message conflation
	How conflation works

	DEPRECATED: Distributing and viewing data as pages

	Designing your solution
	Servers
	Fan-out
	Using missing topic notifications with fan-out

	High availability
	Session replication
	Topic replication
	Failover of active update sources

	Clients
	Client types
	Using clients
	Using clients for control

	User-written components
	Publishers
	Other user-written components

	Third party components
	Load balancers
	Web servers
	Push notification networks
	JMS

	Example solutions
	Example: Simple solution
	Example: A solution using clients
	Example: Scalable and resilient solution

	Security
	Role-based authorization
	Permissions
	Pre-defined roles

	Authentication
	User-written authentication handlers
	System authentication handler
	Pre-defined users

	DEPRECATED: Authorization handlers
	Securing the console

	Developer Guide
	Developing a client
	Best practice for developing clients
	Feature support in the Diffusion Unified API
	Getting started
	JavaScript
	Start subscribing with JavaScript
	Start publishing with JavaScript

	Apple
	Start subscribing with iOS
	Start publishing with OS X/macOS

	Android
	Start subscribing with Android
	Start publishing with Android

	Java
	Start subscribing with Java
	Start publishing with Java

	.NET
	Start subscribing with .NET
	Start publishing with .NET

	C
	Start subscribing with C
	Start publishing with C

	Connecting to the Diffusion server
	Connecting basics
	Connecting securely
	Connect to the Diffusion server with a security principal and credentials
	Connecting through an HTTP proxy
	Connecting through a load balancer

	Reconnect to the Diffusion server
	Detecting connection problems
	Specifying a reconnection strategy
	Session failover

	Ping the Diffusion server
	Change the security principal and credentials associated with your client session
	Session properties
	Session filtering

	Receiving data from topics
	Example: Subscribe to a topic
	Example: Subscribe to a JSON topic
	Example: Fetch topic state

	Managing topics
	Example: Create a topic
	Creating a metadata definition for a record topic
	Handling subscriptions to missing topics
	Example: Receive missing topic notifications
	Listening for topic events
	Removing topics with sessions

	Updating topics
	Example: Make exclusive updates to a topic
	Example: Make non-exclusive updates to a topic

	Managing subscriptions
	Example: Subscribe other clients to topics
	Example: Receive notifications when a client subscribes to a routing topic

	Messaging to topic paths
	Example: Send a message to a topic path
	Example: Send a request message to the Push Notification Bridge

	Messaging to clients
	Example: Handle messages and send messages to sessions
	Example: Use session property filters with messaging

	Authenticating clients
	Example: Register an authentication handler
	Developing a control authentication handler
	Developing a composite control authentication handler

	Updating the system authentication store
	DSL syntax: system authentication store
	Example: Update the system authentication store

	Updating the security store
	DSL syntax: security store
	Example: Update the security store

	Managing clients
	Handling client queues

	DEPRECATED: Classic API
	DEPRECATED: Java Client Classic API
	DEPRECATED: .NET Classic API
	.NET Client Classic API
	Connection events

	DEPRECATED: JavaScript Classic API
	Using the JavaScript Classic API
	Reconnecting with the JavaScript Classic API
	Service topic data in JavaScript Classic API
	Paged topic data in JavaScript Classic API

	DEPRECATED: ActionScript Classic API
	Using the ActionScript Classic API
	Reconnecting with the ActionScript Classic API
	Logging Flash

	DEPRECATED: Silverlight Classic API
	Using the Silverlight Classic API

	DEPRECATED: iOS Classic API
	Getting started with iOS Classic API
	Using the iOS Classic API
	iOS Classic API examples

	DEPRECATED: Android Classic API
	Getting started with Android Classic API
	Using the Android Classic API
	Android Classic API examples

	DEPRECATED: C Classic API
	Using the C Classic API

	diffusion-wrapper.js
	How to use Diffusion wrapper

	Developing a publisher
	Publisher basics
	Defining publishers
	Loading publisher code
	Load publishers by using the API
	Starting and stopping publishers
	Publisher topics
	Receiving and maintaining data
	Publishing and sending messages
	Publisher notifications
	Client handling
	Publisher properties
	Using concurrent threads
	Publisher logging
	DEPRECATED: Server connections
	General utilities

	Writing a publisher
	Creating a Publisher class
	Publisher startup
	Data state
	Data inputs
	Handling client subscriptions
	Publishing messages
	Publishing using stateful topics
	Publishing using stateless topics
	DEPRECATED: Publishing using paged topics

	DEPRECATED: Topic locking
	Handling clients
	Publisher closedown

	Testing a publisher
	Client queues
	Queue enquiries
	Maximum queue depth
	Queue notification thresholds
	Tidy on unsubscribe
	Filtering queued messages

	Client Geo and WhoIs information
	The Diffusion WhoIs service

	Client groups
	Client notifications
	Adding a ClientListener
	Using DefaultClientListener

	Developing other components
	Local authentication handlers
	Developing a local authentication handler
	Developing a composite authentication handler

	Push Notification Bridge persistence plugin

	Using Maven to build Java Diffusion applications
	Build client applications
	Build publishers with Maven
	Building a publisher with mvndar

	Build server application code with Maven

	Testing
	DEPRECATED: Flex/Flash client
	DEPRECATED: Java client test tool
	DEPRECATED: JavaScript client test tool
	Silverlight client test tool
	Stress test tuning
	Stress test

	Benchmarking suite
	Test tools

	Administrator Guide
	Installing the Diffusion server
	System requirements for the Diffusion server
	Installing the Diffusion server using the graphical installer
	Installing the Diffusion server using the headless installer
	Installing the Diffusion server using Red Hat Package Manager
	Installing the Diffusion server using Docker
	Next steps with Docker

	The Diffusion license
	License restrictions
	Updating your license file

	Installed files
	Verifying the Diffusion installation

	Configuring your Diffusion server
	XML configuration
	Programmatic configuration
	Using the configuration API
	The configuration tree

	Configuring the Diffusion server
	Configuring fan-out
	Configuring conflation
	Configuring authentication handlers
	Configuring performance
	Server.xml

	Configuring connectors
	Connectors.xml

	Configuring user security
	Security.store
	SystemAuthentication.store

	Configuring logging on the Diffusion server
	Configuring default logging
	Logs.xml
	Configuring log4j2
	Log4j2.xml
	Logging using another SLF4J implementation

	Configuring JMX
	Configuring the Diffusion JMX connector server
	Configuring a remote JMX server connector
	Configuring a local JMX connector server
	Management.xml
	Configuring the JMX adapter
	Publishers.xml

	Configuring replication
	Configuring the Diffusion server to use replication
	Configuring your datagrid provider
	Replication.xml

	Configuring the Diffusion web server
	Configuring Diffusion web server security
	WebServer.xml
	Aliases.xml

	ConnectionValidationPolicy.xml
	Env.xml
	Mime.xml
	Publishers.xml
	Statistics.xml
	SubscriptionValidationPolicy.xml
	Additional XML files

	Starting the Diffusion server
	Running from within a Java application

	Deploying publishers on your Diffusion server
	Classic deployment
	Hot deployment
	Deployment methods

	Load balancers
	Routing strategies at your load balancer
	Monitoring available Diffusion servers from your load balancer
	Compositing URL spaces using your load balancer
	Secure Sockets Layer (SSL) offloading at your load balancer
	Using load balancers for resilience
	Common issues when using a load balancer

	Web servers
	Diffusion web server
	Server-side processing
	Hosting a status page on the Diffusion web server

	Hosting Diffusion web clients in a third-party web server
	Running the Diffusion server inside of a third-party web application server
	Example: Deploying the Diffusion server within Tomcat
	Other considerations when running the Diffusion server inside of a third-party web application server

	Cross domain policies
	Flash security model
	Silverlight security model
	JavaScript security model

	Push Notification Bridge
	Configuring your Push Notification Bridge
	PushNotifications.xml
	Getting an Apple certificate for the Push Notification Bridge
	Getting a Google API key for the Push Notification Bridge

	Running the Push Notification Bridge
	JSON formats used by the Push Notification Bridge
	Request and response JSON formats
	Push notification JSON format

	JMS adapter
	Transforming JMS messages into Diffusion messages or updates
	Publishing using the JMS adapter
	Sending messages using the JMS adapter
	Using JMS request-response services with the JMS adapter
	Configuring the JMS adapter
	Example: Configuring the Diffusion connection for the JMS adapter running as a standalone client
	Example: Configuring JMS providers for the JMS adapter
	Example: Configuring topics for use with the JMS adapter
	Example: Configuring pub-sub with the JMS adapter
	Example: Configuring messaging with the JMS adapter
	Example: Configuring the JMS adapter to work with JMS services
	JMSAdapter.xml

	Running the JMS adapter
	DEPRECATED: Legacy JMS adapter
	DEPRECATED: Configuring the legacy JMS adapter version 5.1
	Configuring the JMS Adapter v5.1
	JMSAdapter51.xml

	DEPRECATED: JMS adapter data flow examples
	DEPRECATED: Receiving data from JMS
	DEPRECATED: Sending messages to JMS
	DEPRECATED: Processing a request-reply message with a Diffusion client
	DEPRECATED: Sending a request-reply message from a Diffusion client

	Network security
	Going to production
	Pre-production testing
	Setting up your test environment
	Understanding production usage conditions
	How to create production usage conditions in your test environment

	Types of testing
	Testing your security
	Tools you can use in your pre-production testing

	Planning for production
	Deploying to your production environment

	Managing and monitoring your running Diffusion server
	JMX
	Using Java VisualVM
	Using JConsole
	Detecting deadlocks with JConsole

	MBeans
	AggregateStatistics
	AuthorisationManager
	ClientStatistics
	Connector
	JMXAdapter
	Log
	Multiplexer
	MultiplexerManager
	Publisher
	Server
	StatisticsService
	ThreadPool
	VirtualHost

	The JMX adapter

	Statistics
	Configuring statistics

	Diffusion monitoring console
	DEPRECATED: Introspector
	Supported platforms.
	Installing from update site
	Installing subsequent plugin updates.
	Uninstalling
	Opening the Diffusion perspective
	Adding servers
	Opening servers
	Exploring the topics
	Getting topic values
	Configuring columns
	Ping servers
	Count topics
	Using the clients view
	Ping
	Statistics
	Topics
	Logging
	Server logs
	Property obfuscator

	Logging
	Logging back-end
	Logging reference
	Connection counts

	Integration with Splunk

	Tuning
	Concurrency
	Buffer sizing
	Message sizing
	Client queues
	Client multiplexers
	Connectors
	Thread pools
	Client reconnection
	Client failover
	Client throttling
	Java memory usage
	Platform-specific issues
	Socket issues
	Windows
	Linux
	UNIX

	Publisher design

	Demos
	Demos
	Building the demos using mvndar

	Tools
	Tools for Amazon Elastic Compute Cloud (EC2)
	Tools for Joyent

	Upgrading Guide
	Interoperability
	Upgrading from version 4.x to version 5.1
	Upgrading from version 5.1 to version 5.5
	Upgrading from version 5.5 to version 5.6
	Upgrading from version 5.6 to version 5.7
	Upgrading from version 5.7 to version 5.8
	Upgrading from version 5.8 to version 5.9
	Upgrading to a new patch release
	Known issues in Diffusion 5.9

	Appendices
	Document conventions
	Glossary
	A
	acknowledgment
	API
	APNS
	APR
	ASCII

	C
	callback
	CBOR
	certify
	client
	client library
	conflation
	connector
	consume
	CORS
	CPU
	credentials
	CSR
	CSS

	D
	DAR file
	delimiter
	delta
	Diffusion
	dirty
	DLL
	DOM
	DMZ
	DPT

	E
	EULA

	F
	feature
	fetch
	flow control
	field
	functional topic

	G
	GBE
	GCM
	global-scoped permission
	GUI

	H
	handler
	HDD
	HTML
	HTTP

	I
	IDE
	ISAPI
	initial topic load

	J
	JAR
	JDK
	JMS
	JMX
	JRE
	JSON
	JVM

	L
	LDAP
	line
	listener

	M
	message
	message queue
	metadata
	multicast

	N
	NAT
	NIC
	NIO
	notification

	P
	paged topic
	PNG
	permission
	PID
	ping
	PDF
	primary server
	principal
	protocol
	publisher
	publishing topic
	push notification destination

	Q
	message queue

	R
	RAID
	RAM
	record
	regular expression
	replica server
	RMI
	role
	role hierarchy
	RPM

	S
	SAS
	SDK
	server
	session
	session will
	SLF4J
	SSH
	SSL
	state
	stateful topic
	stateless topic
	structural conflation
	stream
	subscribe
	support

	T
	TCP
	throttling
	TLS
	topic
	topic path
	topic path prefix
	topic selector
	topic-scoped permission
	topic tree
	transport

	U
	update
	URL
	UTF-8

	V
	VCPU

	W
	WAR

	X
	XHR
	XML
	XSD

	Trademarks
	Copyright Notices
	ANTLR
	apns
	Apache Commons Codec
	Apache Portable Runtime
	Bootstrap
	CocoaAsyncSocket
	concurrent-trees
	CQEngine
	cron4j
	d3
	disruptor
	FastColoredTextBox
	Fluent validation
	Fluidbox
	gcm-server
	GeoIP API
	GeoLite City Database
	geronimo-jms_1.1_spec
	Google code prettify
	hashmap
	Hazelcast
	HPPC
	htmlcompressor
	inherits
	jackson-core
	jackson-dataformat-cbor
	JCIP Annotations
	JCTools
	jQuery
	json-simple
	JZlib
	Knockout
	libwebsockets
	log4j2
	loglevel
	long
	Metrics
	Minimal JSON
	Modernizr
	NLog
	opencsv
	OpenSSL
	PCRE
	Picocontainer
	Protocol Buffers
	Rickshaw
	Servlet API
	SLF4J
	slf4j-android-logger
	SocketRocket
	Tabber
	Tapestry (Plastic)
	TrueLicense
	when
	ws
	Licenses
	Apache License 2.0
	BSD 3-clause License
	Common Development and Distribution License
	Eclipse Public License – v 1.0
	ISC License –
	The GNU Lesser General Public License, version 2.1 (LGPL-2.1)
	The GNU Lesser General Public License, version 3.0 (LGPL-3.0)
	The MIT License (MIT)
	OpenSSL and SSLeay Licenses

